
 1

System.GC Class 1

 2

[ILAsm] 3
.class public sealed GC extends System.Object 4

[C#] 5
public sealed class GC 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Provides a mechanism for programmatic control of the garbage collector. 15

Inherits From: System.Object 16
 17
Library: BCL 18
 19
Thread Safety: All public static members of this type are safe for multithreaded operations. 20
No instance members are guaranteed to be thread safe. 21
 22
Description 23

[Note: The garbagecollector is responsible for tracking and reclaiming objects allocated 24
in managed memory. Periodically, the garbage collector performs a garbage collection to 25
reclaim memory allocated to objects for which there are no valid references. Garbage 26
collections happen automatically when a request for memory cannot be satisfied using 27
available free memory. 28
 29
A garbage collection consists of the following steps: 30

1. The garbage collector searches for managed objects that are referenced in managed 31
code. 32

2. The garbage collector attempts to finalize unreferenced objects. 33
3. The garbage collector frees unreferenced objects and reclaims their memory. 34

During a collection, the garbage collector will not free an object if it finds one or more 35
references to the object in managed code. However, the garbage collector does not 36
recognize references to an object from unmanaged code, and can free objects that are 37
being used exclusively in unmanaged code unless explicitly prevented from doing so. The 38

 2

System.GC.KeepAlive method provides a mechanism that prevents the garbage collector 1
from collecting objects that are still in use in unmanaged code. 2
 3
Implementations of the garbage collector should track the following information: 4

· Memory allocated to objects that are still in use 5

· Memory allocated to objects that are no longer in use 6

· Objects that require finalization prior to being freed 7

Other than managed memory allocations, implementations of the garbage collector should 8
not maintain information about resources held by an object, such as file handles or 9
database connections. When a type uses unmanaged resources that must be released 10
before instances of the type are reclaimed, the type should implement a finalizer. In most 11
cases, finalizers are implemented by overriding the System.Object.Finalize method; 12
however, types written in C# or C++ implement destructors, which compilers turn into an 13
override of System.Object.Finalize. 14
 15
In most cases, if an object has a finalizer, the garbage collector calls it prior to freeing the 16
object. However, the garbage collector is not required to call finalizers in all situations. Also, 17
the garbage collector is not required to use a specific thread to finalize objects, or guarantee 18
the order in which finalizers are called for objects that reference each other but are 19
otherwise available for garbage collection. 20
 21
In scenarios where resources must be released at a specific time, classes should implement 22
the System.IDisposable interface, which contains a single method 23
(System.IDisposable.Dispose) that is used to perform resource management and cleanup 24
tasks. Classes that implement System.IDisposable.Dispose must specify, as part of their 25
class contract, if and when class consumers call the method to clean up the object. The 26
garbage collector does not, by default, call the System.IDisposable.Dispose method; 27
however, implementations of the System.IDisposable.Dispose method can call methods 28
in the System.GC class to customize the finalization behavior of the garbage collector. 29
 30
] 31

32

 3

 GC.Collect() Method 1

[ILAsm] 2
.method public hidebysig static void Collect() 3

[C#] 4
public static void Collect() 5

Summary 6

Requests that the garbage collector reclaim memory allocated to objects for which there 7
are no valid references. 8

Description 9

A call to this method is only a suggestion; such a call does not guarantee that any 10
inaccessible memory is, in fact, reclaimed. 11

12

 4

 GC.KeepAlive(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static void KeepAlive(object obj) 3

[C#] 4
public static void KeepAlive(object obj) 5

Summary 6

Creates a reference to the specified object. 7

Parameters 8
 9
 10

Parameter Description

obj A System.Object that is not to be reclaimed by the garbage collector.

 11
Description 12

The purpose of the System.GC.KeepAlive method is to ensure the existence of a 13
reference to an object that is at risk of being reclaimed by the garbage collector 14
prematurely. 15
 16
The System.GC.KeepAlive method performs no operations and does not produce any 17
side effects. 18
 19
This method is required to be implemented in such a way as to prevent optimizing tools 20
from omitting the method call from the executable code. 21
 22
During program execution, after the call to the System.GC.KeepAlive method is 23
executed, if there are no additional references to obj in managed code or data, obj is 24
eligible for garbage collection. 25

26

 5

 GC.ReRegisterForFinalize(System.Object) 1

Method 2

[ILAsm] 3
.method public hidebysig static void ReRegisterForFinalize(object obj) 4

[C#] 5
public static void ReRegisterForFinalize(object obj) 6

Summary 7

Requests that the specified object be added to the list of objects that require 8
finalization. 9

Parameters 10
 11
 12

Parameter Description

obj The System.Object to add to the set of objects that require finalization.

 13
Description 14

The System.GC.ReRegisterForFinalize method adds obj to the list of objects that 15
request finalization before the garbage collector frees the object. obj is required to be 16
the caller of this method. 17
 18
Calling the System.GC.ReRegisterForFinalize method does not guarantee that the 19
garbage collector will call an object's finalizer. [Note: For more information, see 20
System.Object.Finalize.] 21
 22
 23
 24
[Note: By default, all objects that implement finalizers are added to the list of objects 25
that require finalization; however, an object might have already been finalized, or might 26
have disabled finalization by calling the System.GC.SuppressFinalize method.] 27
 28
 29

Exceptions 30
 31
 32

Exception Condition

 6

System.ArgumentNullException obj is a null reference.

 1
 2

3

 7

 GC.SuppressFinalize(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static void SuppressFinalize(object obj) 3

[C#] 4
public static void SuppressFinalize(object obj) 5

Summary 6

Instructs the garbage collector not to call the System.Object.Finalize method on the 7
specified object. 8

Parameters 9
 10
 11

Parameter Description

obj The System.Object whose System.Object.Finalize method will not be called.

 12
Description 13

The method removes obj from the set of objects that require finalization. obj is required 14
to be the caller of this method. 15
 16
[Note: Objects that implement the System.IDisposable interface should call this 17
method from the System.IDisposable.Dispose method to prevent the garbage 18
collector from calling System.Object.Finalize on an object that does not require it.] 19
 20
 21

Exceptions 22
 23
 24

Exception Condition

System.ArgumentNullException obj is a null reference.

 25
 26

27

 8

 GC.WaitForPendingFinalizers() Method 1

[ILAsm] 2
.method public hidebysig static void WaitForPendingFinalizers() 3

[C#] 4
public static void WaitForPendingFinalizers() 5

Summary 6

Suspends the current thread until the set of objects waiting for finalization is empty. 7

Description 8

System.GC.WaitForPendingFinalizers blocks an application until all objects that are 9
awaiting finalization have been finalized. 10
 11
When the garbage collector finds objects that can be reclaimed, it checks each object to 12
determine the object's finalization requirements. If an object implements a finalizer and 13
has not disabled finalization by calling System.GC.SuppressFinalize, the object is 14
passed to the thread that handles finalization. The 15
System.GC.WaitForPendingFinalizers method blocks until all finalizers have run to 16
completion. 17

 18

