
 1

System.Collections.ArrayList Class 1

 2

[ILAsm] 3
.class public serializable ArrayList extends System.Object implements 4
System.ICloneable, System.Collections.ICollection, 5
System.Collections.IEnumerable, System.Collections.IList 6

[C#] 7
public class ArrayList: ICloneable, ICollection, IEnumerable, IList 8

Assembly Info: 9

· Name: mscorlib 10
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 11
· Version: 2.0.x.x 12
· Attributes: 13

o CLSCompliantAttribute(true) 14

Type Attributes: 15

· DefaultMemberAttribute("Item") [Note: This attribute requires the 16
RuntimeInfrastructure library.] 17

Implements: 18

· System.Collections.IList 19
· System.Collections.ICollection 20
· System.Collections.IEnumerable 21
· System.ICloneable 22

Summary 23
 24

Implements a variable-size System.Collections.IList that uses an array of objects to 25
store its elements. 26

Inherits From: System.Object 27
 28
Library: BCL 29
 30
Thread Safety: This class is safe for multiple readers and no concurrent writers. 31
 32
Description 33

System.Collections.ArrayList implements a variable-size 34
System.Collections.IList that uses an array of objects to store the elements. A 35
System.Collections.ArrayList has a System.Collections.ArrayList.Capacity, 36

 2

which is the allocated length of the internal array. The total number of elements 1
contained by a list is its System.Collections.ArrayList.Count. As elements are added 2
to a list, its capacity is automatically increased as required by reallocating the internal 3
array. 4

Example 5
 6

The following example shows how to create, initialize, and display the values of a 7
System.Collections.ArrayList. 8
 9
[C#] 10

using System; 11
using System.Collections; 12
 13
public class SamplesArrayList { 14
 15
 public static void Main() { 16
 17
 // Create and initialize a new ArrayList. 18
 ArrayList myAL = new ArrayList(); 19
 myAL.Add("Hello"); 20
 myAL.Add("World"); 21
 myAL.Add("!"); 22
 23
 // Display the properties and values of the ArrayList. 24
 Console.WriteLine("myAL"); 25
 Console.WriteLine("Count: {0}", myAL.Count); 26
 Console.WriteLine("Capacity: {0}", myAL.Capacity); 27
 Console.Write("Values:"); 28
 PrintValues(myAL); 29
 } 30
 31
public static void PrintValues(IEnumerable myList) { 32
 33
 IEnumerator myEnumerator = myList.GetEnumerator(); 34
 while (myEnumerator.MoveNext()) 35
 Console.Write(" {0}", myEnumerator.Current); 36
 Console.WriteLine(); 37
 } 38
} 39
The output is 40
 41
myAL 42
 43
Count: 3 44
 45
Capacity: 16 46
 47
Values: Hello World ! 48

49

 3

 ArrayList() Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor() 3

[C#] 4
public ArrayList() 5

Summary 6

Constructs and initializes a new instance of the System.Collections.ArrayList class 7
that is empty and has the default initial System.Collections.ArrayList.Capacity. 8

Description 9

The default initial System.Collections.ArrayList.Capacity of a 10
System.Collections.ArrayList is 16. 11

12

 4

 ArrayList(System.Int32) Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor(int32 capacity) 3

[C#] 4
public ArrayList(int capacity) 5

Summary 6

Constructs and initializes a new instance of the System.Collections.ArrayList class 7
that is empty and has the specified initial System.Collections.ArrayList.Capacity. 8

Parameters 9
 10
 11

Parameter Description

capacity
A System.Int32 that specifies the number of elements that the new instance is
initially capable of storing.

 12
Description 13

If capacity is zero, the System.Collections.ArrayList.Capacity of the current 14
instance is set to 16 when the first element is added. 15

Exceptions 16
 17
 18

Exception Condition

System.ArgumentOutOfRangeException capacity < 0.

 19
 20

21

 5

 ArrayList(System.Collections.ICollection) 1

Constructor 2

[ILAsm] 3
public rtspecialname specialname instance void .ctor(class 4
System.Collections.ICollection c) 5

[C#] 6
public ArrayList(ICollection c) 7

Summary 8

Constructs and initializes a new instance of the System.Collections.ArrayList class 9
with the elements from the specified System.Collections.ICollection. The initial 10
System.Collections.ArrayList.Count and 11
System.Collections.ArrayList.Capacity of the new list are both equal to the number 12
of elements in the specified collection. 13

Parameters 14
 15
 16

Parameter Description

c
The System.Collections.ICollection whose elements are copied to the new
list.

 17
Description 18

The elements in the new System.Collections.ArrayList instance are in the same 19
order as contained in c. 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentNullException c is null.

 24
 25

26

 6

 ArrayList.Adapter(System.Collections.IList) 1

Method 2

[ILAsm] 3
.method public hidebysig static class System.Collections.ArrayList 4
Adapter(class System.Collections.IList list) 5

[C#] 6
public static ArrayList Adapter(IList list) 7

Summary 8

Creates a System.Collections.ArrayList that is a wrapper for the specified 9
System.Collections.IList. 10

Parameters 11
 12
 13

Parameter Description

list The System.Collections.IList to wrap.

 14
Return Value 15
 16

The System.Collections.ArrayList wrapper for list. 17

Description 18

This method returns a System.Collections.ArrayList that contains a reference to the 19
System.Collections.IListlist. Any modifications to the elements in either the 20
returned list or list are reflected in the other. 21
 22
[Note: The System.Collections.ArrayList class provides generic 23
System.Collections.ArrayList.Reverse, 24
System.Collections.ArrayList.BinarySearch and 25
System.Collections.ArrayList.Sort methods. This wrapper provides a means to use 26
those methods on System.Collections.IListlist without implementing the methods 27
for the list. Performing these operations through the wrapper might be less efficient than 28
operations applied directly to the list.] 29
 30
 31

 7

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException list is null.

 4
 5

6

 8

 ArrayList.Add(System.Object) Method 1

[ILAsm] 2
.method public hidebysig virtual int32 Add(object value) 3

[C#] 4
public virtual int Add(object value) 5

Summary 6

Adds the specified System.Object to the end of the current instance. 7

Parameters 8
 9
 10

Parameter Description

value The System.Object to be added to the end of the current instance.

 11
Return Value 12
 13

A System.Int32 that specifies the index of the current instance at which value has been 14
added. 15

Behaviors 16

As described above. 17

 18

Exceptions 19
 20
 21

Exception Condition

System.NotSupportedException The current instance is read-only or has a fixed size.

 22
 23

24

 9

 1

ArrayList.AddRange(System.Collections.IColl2

ection) Method 3

[ILAsm] 4
.method public hidebysig virtual void AddRange(class 5
System.Collections.ICollection c) 6

[C#] 7
public virtual void AddRange(ICollection c) 8

Summary 9

Adds the elements of the specified System.Collections.ICollection to the end of the 10
current instance. 11

Parameters 12
 13
 14

Parameter Description

c
The System.Collections.ICollection whose elements are added to the end
of the current instance.

 15
Description 16

Behaviors 17

As described above. 18

 19

Default 20

If the System.Collections.ArrayList.Count of the current instance plus the size of 21
the collection being added is greater than the 22
System.Collections.ArrayList.Capacity of the current instance, the capacity of the 23
current instance is either doubled or increased to the new 24
System.Collections.ArrayList.Count, whichever is greater. The internal array is 25
reallocated to accommodate the new elements and the existing elements are copied to 26
the new array before the new elements are added. 27

 28
 29
[Note: For the default implementation, if the current instance can accommodate the new 30

 10

elements without increasing the System.Collections.ArrayList.Capacity, this method is 1
an O(n) operation, where n is the number of elements to be added. If the capacity needs to 2
be increased to accommodate the new elements, this method becomes an O(n+m) 3
operation, where n is the number of elements to be added and m is 4
System.Collections.ArrayList.Count.] 5
 6
 7

Exceptions 8
 9
 10

Exception Condition

System.ArgumentNullException c is null.

System.NotSupportedException The current instance is read-only or has a fixed size.

 11
 12

13

 11

 ArrayList.BinarySearch(System.Object, 1

System.Collections.IComparer) Method 2

[ILAsm] 3
.method public hidebysig virtual int32 BinarySearch(object value, class 4
System.Collections.IComparer comparer) 5

[C#] 6
public virtual int BinarySearch(object value, IComparer comparer) 7

Summary 8

Searches the current instance for the specified System.Object using the specified 9
System.Collections.IComparer implementation. 10

Parameters 11
 12
 13

Parameter Description

value The System.Object for which to search.

comparer
The System.Collections.IComparer implementation to use when comparing
elements. Specify null to use the System.IComparable implementation of
each element.

 14
Return Value 15
 16

A System.Int32 that specifies the results of the search as follows: 17

Return Value Description

The index of value in the current instance. value was found.

The bitwise complement of the index of the first
element that is greater than value.

value was not found, and at least
one element in the current
instance is greater than value.

The bitwise complement of the
System.Collections.ArrayList.Count of the current
instance.

value was not found, and value is
greater than all elements in the
current instance.

 12

 1
[Note: If value is not found and the current instance is already sorted, the bitwise 2
complement of the return value indicates the index in the current instance where value 3
would be found.] 4
 5
 6

Description 7

This method performs a binary search. 8
 9
[Note: A null reference can be compared with any type; therefore, comparisons with a 10
null reference do not generate exceptions. A null reference evaluates to less than any 11
non-null object, or equal to another null reference, when the two are compared.] 12
 13
 14

Behaviors 15

As described above. 16

 17

Default 18

This method uses System.Array.BinarySearch to search for value. 19
 20
value is compared to elements in a binary search of the current instance until an 21
element with a value greater than or equal to value is found. If comparer is null, the 22
System.IComparable implementation of the element being compared -- or of value if 23
the element being compared does not implement the interface -- is used to make the 24
comparison. If value does not implement the System.IComparable interface and is 25
compared to an element that does not implement the interface, 26
System.InvalidOperationException is thrown. If the current instance is not already 27
sorted, correct results are not guaranteed. 28

[Note: For the default implementation, this method is an O(log2

Exceptions 33
 34
 35

n) operation where n is 29
equal to the System.Collections.ArrayList.Count of the current instance.] 30
 31
 32

Exception Condition

System.ArgumentException comparer is null, and value is not assignment-
compatible with at least one element in the current

 13

instance.

System.InvalidOperationException

comparer is null, and both value and at least one
element involved in the search in the current
instance do not implement the System.IComparable
interface.

 1
 2

3

 14

 ArrayList.BinarySearch(System.Object) 1

Method 2

[ILAsm] 3
.method public hidebysig virtual int32 BinarySearch(object value) 4

[C#] 5
public virtual int BinarySearch(object value) 6

Summary 7

Searches the current instance for the specified System.Object. 8

Parameters 9
 10
 11

Parameter Description

value The System.Object for which to search.

 12
Return Value 13
 14

A System.Int32 that specifies the results of the search as follows: 15

Return Value Description

The index of value in the current instance. value was found.

The bitwise complement of the index of the first
element that is greater than value.

value was not found, and at least
one element in the current
instance is greater than value.

The bitwise complement of the
System.Collections.ArrayList.Count of the current
instance.

value was not found, and value is
greater than all elements in the
current instance.

 16
[Note: If value is not found and the current instance is already sorted, the bitwise 17
complement of the return value indicates the index in the current instance where value 18
would be found.] 19
 20
 21

 15

Description 1

This method performs a binary search. 2
 3
[Note: A null reference can be compared with any type; therefore, comparisons with a 4
null reference do not generate exceptions. A null reference evaluates to less than any 5
non-null object, or equal to another null reference, when the two are compared.] 6
 7
 8

Behaviors 9

As described above. 10

 11

Default 12

This method uses System.Array.BinarySearch to search for value. 13
 14
value is compared to elements in a binary search of the current instance until an 15
element with a value greater than or equal to value is found. The System.IComparable 16
implementation of the element being compared -- or of value if the element being 17
compared does not implement the interface -- is used to make the comparison. If value 18
does not implement the System.IComparable interface and is compared to an element 19
that does not implement the interface, System.InvalidOperationException is thrown. 20
If the current instance is not already sorted, correct results are not guaranteed. 21

[Note: For the default implementation, this method is an O(log2

Exceptions 26
 27
 28

n) operation where n is 22
equal to the System.Collections.ArrayList.Count of the current instance.] 23
 24
 25

Exception Condition

System.ArgumentException
value is not assignment-compatible with at least one
element in the current instance.

System.InvalidOperationException
Both value and at least one element involved in the
search of the current instance do not implement the
System.IComparable interface.

 29
 30

 16

1

 17

 ArrayList.BinarySearch(System.Int32, 1

System.Int32, System.Object, 2

System.Collections.IComparer) Method 3

[ILAsm] 4
.method public hidebysig virtual int32 BinarySearch(int32 index, int32 5
count, object value, class System.Collections.IComparer comparer) 6

[C#] 7
public virtual int BinarySearch(int index, int count, object value, 8
IComparer comparer) 9

Summary 10

Searches the specified range in the current instance for the specified System.Object 11
using the specified System.Collections.IComparer implementation. 12

Parameters 13
 14
 15

Parameter Description

index
A System.Int32 that specifies the index at which searching starts. This value is
greater than or equal to zero, and less than the
System.Collections.ArrayList.Count of the current instance.

count

A System.Int32 that specifies the number of elements to search, beginning
with index. This value is greater than or equal to zero, and less than or equal to
the System.Collections.ArrayList.Count of the current instance minus
index.

value The System.Object for which to search.

comparer
The System.Collections.IComparer implementation to use when comparing
elements. Specify null to use the System.IComparable implementation of
each element.

 16
Return Value 17
 18

A System.Int32 that specifies the results of the search as follows: 19

 18

Return Value Description

The index of value in the current
instance.

value was found.

The bitwise complement of the index
of the first element that is greater
than value.

value was not found, and at least one element in the
range of index to index + count - 1 in the current
instance is greater than value.

The bitwise complement of (index +
count)

value was not found, and value is greater than all
elements in the range of index to index + count - 1 in
the current instance.

 1
[Note: If value is not found and the current instance is already sorted, the bitwise 2
complement of the return value indicates the index in the current instance where value 3
would be found in the range of index to index + count - 1.] 4
 5
 6

Description 7

This method performs a binary search. 8
 9
[Note: A null reference can be compared with any type; therefore, comparisons with a 10
null reference do not generate exceptions. A null reference evaluates to less than any 11
non-null object, or equal to another null reference, when the two are compared.] 12
 13
 14

Behaviors 15

As described above. 16

 17

Default 18

This method uses System.Array.BinarySearch to search for value. 19
 20
value is compared to elements in a binary search of the range of index to index + count 21
- 1 in the current instance until an element with a value greater than or equal to value is 22
found or the end of the range is reached. If comparer is null, the System.IComparable 23
implementation of the element being compared -- or of value if the element being 24
compared does not implement the interface -- is used to make the comparison. If value 25
does not implement the System.IComparable interface and is compared to an element 26
that does not implement the interface, System.InvalidOperationException is thrown. 27
If the current instance is not already sorted, correct results are not guaranteed. 28

 19

[Note: For the default implementation, this method is an O(log2

Exceptions 4
 5
 6

count) operation.] 1
 2
 3

Exception Condition

System.ArgumentException

System.Collections.ArrayList.Count of the
current instance - index < count.

-or-

comparer is null, and value is not
assignment-compatible with at least one
element in the current instance.

System.ArgumentOutOfRangeException

index < 0.

-or-

count < 0.

System.InvalidOperationException

comparer is null, and both value and at least
one element involved in the search of the
current instance do not implement the
System.IComparable interface.

 7
 8

9

 20

 ArrayList.Clear() Method 1

[ILAsm] 2
.method public hidebysig virtual void Clear() 3

[C#] 4
public virtual void Clear() 5

Summary 6

Sets the elements in the current instance to zero, false, or null, depending upon the 7
element type. 8

Description 9

[Note: This method is implemented to support the System.Collections.IList 10
interface.] 11
 12
 13

Behaviors 14

Reference-type elements are set to null. Value-type elements are set to zero, except 15
for System.Boolean elements, which are set to false. 16

 17

Default 18

This method uses System.Array.Clear to reset the values of the current instance. 19
System.Collections.ArrayList.Count is set to zero. 20
System.Collections.ArrayList.Capacity is not changed. 21

 22

Usage 23

To reset the System.Collections.ArrayList.Capacity of the current instance, call 24
System.Collections.ArrayList.TrimToSize or set the 25
System.Collections.ArrayList.Capacity property directly. 26

 27

Exceptions 28
 29
 30

 21

Exception Condition

System.NotSupportedException The current instance is read-only or has a fixed size.

 1
 2

3

 22

 ArrayList.Clone() Method 1

[ILAsm] 2
.method public hidebysig virtual object Clone() 3

[C#] 4
public virtual object Clone() 5

Summary 6

Returns a System.Object that is a copy of the current instance. 7

Return Value 8
 9

A System.Object that is a copy of the current instance. 10

Description 11

[Note: This method is implemented to support the System.ICloneable interface.] 12
 13
 14

Behaviors 15

As described above. 16

 17

Default 18

This method uses System.Array.Copy to clone the current instance. 19

20

 23

 ArrayList.Contains(System.Object) Method 1

[ILAsm] 2
.method public hidebysig virtual bool Contains(object item) 3

[C#] 4
public virtual bool Contains(object item) 5

Summary 6

Determines whether the specified System.Object is contained in the current instance. 7

Parameters 8
 9
 10

Parameter Description

item The System.Object to locate in the current instance.

 11
Return Value 12
 13

true if item is contained in the current instance; otherwise, false. 14

Description 15

[Note: This method is implemented to support the System.Collections.IList 16
interface.] 17
 18
 19

Behaviors 20

As described above. 21

 22

Default 23

This method determines equality by calling the System.Object.Equals implementation 24
of the type of item. 25

 26
 27
[Note: For the default implementation, this method is an O(n) operation where n is equal to 28

 24

the System.Collections.ArrayList.Count of the current instance. If the current instance 1
is sorted, it is more efficient to call System.Collections.ArrayList.BinarySearch 2
method.] 3
 4
 5

6

 25

 ArrayList.CopyTo(System.Int32, 1

System.Array, System.Int32, System.Int32) 2

Method 3

[ILAsm] 4
.method public hidebysig virtual void CopyTo(int32 index, class 5
System.Array array, int32 arrayIndex, int32 count) 6

[C#] 7
public virtual void CopyTo(int index, Array array, int arrayIndex, int 8
count) 9

Summary 10

Copies the specified range of elements from the current instance to the specified 11
System.Array, starting at the specified index of the array. 12

Parameters 13
 14
 15

Parameter Description

index
A System.Int32 that specifies the index in the current instance at which
copying begins. This value is greater than or equal to 0, and less than the
System.Collections.ArrayList.Count of the current instance.

array
The one-dimensional System.Array that is the destination of the elements
copied from the current instance.

arrayIndex
A System.Int32 that specifies the first index of array to which the elements of
the current instance are copied. This value is greater than or equal to zero, and
less than array.Length minus count.

count

A System.Int32 that specifies the number of elements to copy. This value is
greater than or equal to 0, and less than both the
System.Collections.ArrayList.Count of the current instance minus index
and array.Length minus arrayIndex.

 16
 17

Behaviors 18

As described above. 19

 26

 1

Default 2

This method uses System.Array.Copy to copy the current instance to array. 3

 4

Exceptions 5
 6
 7

Exception Condition

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException

index < 0.

-or-

arrayIndex < 0.

-or-

count < 0.

System.ArgumentException

array has more than one dimension.

-or-

index >=
System.Collections.ArrayList.Count of the
current instance.

-or-

count >=
System.Collections.ArrayList.Count of the
current instance - index.

-or-

count >= array.Length - arrayIndex.

 27

System.InvalidCastException
At least one element of the current instance is
not assignment-compatible with the type of
array.

 1
 2

3

 28

 ArrayList.CopyTo(System.Array) Method 1

[ILAsm] 2
.method public hidebysig virtual void CopyTo(class System.Array array) 3

[C#] 4
public virtual void CopyTo(Array array) 5

Summary 6

Copies the elements from the current instance to the specified System.Array. 7

Parameters 8
 9
 10

Parameter Description

array

The one-dimensional System.Array that is the destination of the elements
copied from the current instance. The System.Array.Length of this array is
greater than or equal to the System.Collections.ArrayList.Count of the
current instance.

 11
 12

Behaviors 13

As described above. 14

 15

Default 16

This method uses System.Array.Copy to copy the current instance to array. 17

 18

Exceptions 19
 20
 21

Exception Condition

System.ArgumentNullException array is null.

 29

System.ArgumentException

array has more than one dimension.

-or-

System.Collections.ArrayList.Count of the current
instance > array.Length.

System.InvalidCastException At least one element in the current instance is not
assignment-compatible with the type of array.

 1
 2

3

 30

 ArrayList.CopyTo(System.Array, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual void CopyTo(class System.Array array, 4
int32 arrayIndex) 5

[C#] 6
public virtual void CopyTo(Array array, int arrayIndex) 7

Summary 8

Copies the elements from the current instance to the specified System.Array, starting 9
at the specified index of the array. 10

Parameters 11
 12
 13

Parameter Description

array

The one-dimensional System.Array that is the destination of the elements
copied from the current instance. The System.Array.Length of this array is
greater than or equal to the sum of arrayIndex and the
System.Collections.ArrayList.Count of the current instance.

arrayIndex
A System.Int32 that specifies the first index of array to which the elements of
the current instance are copied. This value is greater than or equal to zero, and
less than array.Length.

 14
Description 15

[Note: This method is implemented to support the System.Collections.IList 16
interface.] 17
 18
 19

Behaviors 20

As described above. 21

 22

Default 23

 31

This method uses System.Array.Copy to copy the current instance to array. 1

 2

Exceptions 3
 4
 5

Exception Condition

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException arrayIndex < 0.

System.ArgumentException

array has more than one dimension.

-or-

arrayIndex >= array.Length.

-or-

arrayIndex +
System.Collections.ArrayList.Count of the
current instance > array.Length.

System.InvalidCastException
At least one element in the current instance is
not assignment-compatible with the type of
array.

 6
 7

8

 32

 1

ArrayList.FixedSize(System.Collections.Array2

List) Method 3

[ILAsm] 4
.method public hidebysig static class System.Collections.ArrayList 5
FixedSize(class System.Collections.ArrayList list) 6

[C#] 7
public static ArrayList FixedSize(ArrayList list) 8

Summary 9

Returns a System.Collections.ArrayList wrapper with a fixed size. 10

Parameters 11
 12
 13

Parameter Description

list The System.Collections.ArrayList to wrap.

 14
Return Value 15
 16

A System.Collections.ArrayList wrapper with a fixed size. 17

Description 18

This method returns a fixed-size System.Collections.ArrayList that contains a 19
reference to list. Operations that attempt to add to or delete from this new list will throw 20
System.NotSupportedException. Any modifications of the elements in either the 21
returned list or list will be reflected in the other. 22
 23
[Note: The System.Collections.ArrayList.IsFixedSize property of the new list is 24
true. Every other property value of the new list references the same property value of 25
list. 26
 27
Adding to or removing from list will not throw an exception and is reflected in the 28
returned list. 29
 30
By performing operations on the new list, this wrapper can be used to prevent additions 31
to and deletions from the System.Collections.ArrayListlist. The elements of the list 32
can still be modified by operations on the returned list. 33
 34
] 35

 33

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException list is null.

 4
 5

6

 34

 ArrayList.GetEnumerator() Method 1

[ILAsm] 2
.method public hidebysig virtual class System.Collections.IEnumerator 3
GetEnumerator() 4

[C#] 5
public virtual IEnumerator GetEnumerator() 6

Summary 7

Returns a System.Collections.IEnumerator for the current instance. 8

Return Value 9
 10

A System.Collections.IEnumerator for the current instance. 11

Description 12

If the the current instance is modified while an enumeration is in progress, a call to 13
System.Collections.IEnumerator.MoveNext or 14
System.Collections.IEnumerator.Reset throws 15
System.InvalidOperationException. 16
 17
[Note: For detailed information regarding the use of an enumerator, see 18
System.Collections.IEnumerator. 19
 20
This property is implemented to support the System.Collections.IList interface. 21
 22
] 23

Behaviors 24

As described above. 25

 26

27

 35

 ArrayList.GetEnumerator(System.Int32, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual class System.Collections.IEnumerator 4
GetEnumerator(int32 index, int32 count) 5

[C#] 6
public virtual IEnumerator GetEnumerator(int index, int count) 7

Summary 8

Returns a System.Collections.IEnumerator for the specified section of the current 9
instance. 10

Parameters 11
 12
 13

Parameter Description

index
A System.Int32 that specifies the index of the current instance before which
the enumerator is initially placed. This value is greater than or equal to 0, and
less than the System.Collections.ArrayList.Count of the current instance.

count

A System.Int32 that specifies the number of elements, beginning with index,
in the current instance over which the enumerator can iterate. This value is
greater than or equal to 0, and less than or equal to the
System.Collections.ArrayList.Count of the current instance minus index.

 14
Return Value 15
 16

A System.Collections.IEnumerator that can iterate over the range of index to index + 17
count - 1 in the current instance. 18

Description 19

The enumerator only enumerates over the range of the current instance from index to 20
index + count - 1. If the current instance is modified while an enumeration is in 21
progress, a call to System.Collections.IEnumerator.MoveNext or 22
System.Collections.IEnumerator.Reset will throw 23
System.InvalidOperationException. 24
 25
[Note: For detailed information regarding the use of an enumerator, see 26
System.Collections.IEnumerator.] 27

 36

 1
 2

Behaviors 3

As described above. 4

 5

Default 6

The enumerator is initially placed just before the element at position index in the current 7
instance. A call to System.Collections.IEnumerator.Reset returns the enumerator to 8
this position. 9
 10
If the elements of the current instance have not been modified while the enumeration 11
was in progress, a call to System.Collections.IEnumerator.MoveNext either returns 12
true and advances the enumerator one element in the current instance, or returns 13
false indicating the enumerator is at the end of the specified range. 14

Exceptions 15
 16
 17

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

count < 0.

System.ArgumentException
index + count >
System.Collections.ArrayList.Count of the
current instance.

 18
 19

20

 37

 ArrayList.GetRange(System.Int32, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual class System.Collections.ArrayList 4
GetRange(int32 index, int32 count) 5

[C#] 6
public virtual ArrayList GetRange(int index, int count) 7

Summary 8

Returns a System.Collections.ArrayList that represents the specified range of the 9
current instance. 10

Parameters 11
 12
 13

Parameter Description

index

A System.Int32 that specifies the zero-based index in the current instance at
which the range starts. This value is between 0 and the
System.Collections.ArrayList.Count of the current instance minus count,
inclusive.

count
A System.Int32 that specifies the number of elements in the range. This value
is between 0 and the System.Collections.ArrayList.Count of the current
instance minus index, inclusive.

 14
Return Value 15
 16

A System.Collections.ArrayList that represents the range in the current instance 17
from index to index + count - 1. 18

Behaviors 19

As described above. 20

 21

Default 22

 38

This method does not create copies of the elements: the new 1
System.Collections.ArrayList instance is a view window into the source list. 2
Therefore, all subsequent changes to the source list must be done through this view 3
window System.Collections.ArrayList. If changes are made directly to the source 4
list, the view window list is invalidated and any operations on it throw 5
System.InvalidOperationException. 6

 7

Exceptions 8
 9
 10

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

count < 0.

System.ArgumentException
System.Collections.ArrayList.Count of the
current instance - index < count.

 11
 12

13

 39

 ArrayList.IndexOf(System.Object) Method 1

[ILAsm] 2
.method public hidebysig virtual int32 IndexOf(object value) 3

[C#] 4
public virtual int IndexOf(object value) 5

Summary 6

Searches the current instance, returning the index of the first occurrence of the specified 7
System.Object. 8

Parameters 9
 10
 11

Parameter Description

value The System.Object to locate in the current instance.

 12
Return Value 13
 14

A System.Int32 that specifies the index of the first occurrence of value in the current 15
instance, if found; otherwise, -1. 16
 17
[Note: This provides the caller with a standard code for a failed search.] 18
 19
 20

Description 21

[Note: This method is implemented to support the System.Collections.IList 22
interface.] 23
 24
 25

Behaviors 26

As described above. 27

 28

Default 29

This method uses System.Array.IndexOf to search the current instance for value. 30

 40

 1
 2
[Note: For the default implementation, this method performs a linear search. On average, 3
this is an O(n/2) operation, where n is count. The longest search is an O(n) operation.] 4
 5
 6

7

 41

 ArrayList.IndexOf(System.Object, 1

System.Int32, System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual int32 IndexOf(object value, int32 4
startIndex, int32 count) 5

[C#] 6
public virtual int IndexOf(object value, int startIndex, int count) 7

Summary 8

Searches the current instance, returning the index of the first occurrence of the specified 9
System.Object in the specified range. 10

Parameters 11
 12
 13

Parameter Description

value The System.Object to locate in current instance.

startIndex
A System.Int32 that specifies the index at which to begin searching. This value
is greater than or equal to zero, and less than the
System.Collections.ArrayList.Count of the current instance.

count
A System.Int32 that specifies the number of elements to search. This value is
between 0 and the System.Collections.ArrayList.Count of the current
instance minus startIndex, inclusive.

 14
Return Value 15
 16

A System.Int32 that specifies the index of the first occurrence of value in the current 17
instance, within the range startIndex to startIndex + count - 1, if found; otherwise, -1. 18
 19
[Note: This provides the caller with a standard code for a failed search.] 20
 21
 22

Description 23

Behaviors 24

 42

As described above. 1

 2

Default 3

This method uses System.Array.IndexOf to search the current instance for value. 4

 5
 6
[Note: For the default implementation, this method performs a linear search. On average, 7
this is an O(n/2) operation, where n is count. The longest search is an O(n) operation.] 8
 9
 10

Exceptions 11
 12
 13

Exception Condition

System.ArgumentOutOfRangeException

startIndex>=
System.Collections.ArrayList.Count of the
current instance.

-or-

count < 0.

-or-

count
>System.Collections.ArrayList.Count of
the current instance - startIndex.

 14
 15

16

 43

 ArrayList.IndexOf(System.Object, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual int32 IndexOf(object value, int32 4
startIndex) 5

[C#] 6
public virtual int IndexOf(object value, int startIndex) 7

Summary 8

Searches the current instance, returning the index of the first occurrence of the specified 9
System.Object in the specified range. 10

Parameters 11
 12
 13

Parameter Description

value The System.Object to locate in current instance.

startIndex
A System.Int32 that specifies the index at which searching begins. This value
is between 0 and the System.Collections.ArrayList.Count of the current
instance minus 1, inclusive.

 14
Return Value 15
 16

A System.Int32 that specifies the index of the first occurrence of value in the current 17
instance, if found within the range startIndex to the end of the current instance; 18
otherwise, -1. 19
 20
[Note: This provides the caller with a standard code for a failed search.] 21
 22
 23

Description 24

Behaviors 25

As described above. 26

 27

 44

Default 1

This method uses System.Array.IndexOf to search the current instance for value. 2

 3
 4
[Note: For the default implementation, this method performs a linear search. On average, 5
this is an O(n/2) operation, where n is count. The longest search is an O(n) operation.] 6
 7
 8

Exceptions 9
 10
 11

Exception Condition

System.ArgumentOutOfRangeException

startIndex < 0.

-or-

startIndex >=
System.Collections.ArrayList.Count of the
current instance.

 12
 13

14

 45

 ArrayList.Insert(System.Int32, 1

System.Object) Method 2

[ILAsm] 3
.method public hidebysig virtual void Insert(int32 index, object value) 4

[C#] 5
public virtual void Insert(int index, object value) 6

Summary 7

Inserts the specified System.Object into the current instance at the specified index. 8

Parameters 9
 10
 11

Parameter Description

index
A System.Int32 that specifies the index in the current instance at which value
is inserted. This value is between 0 and the
System.Collections.ArrayList.Count of the current instance, inclusive.

value The System.Object to insert.

 12
Description 13

[Note: This method is implemented to support the System.Collections.IList 14
interface.] 15
 16
 17

Behaviors 18

As described above. 19

 20

Default 21

If the System.Collections.ArrayList.Count of the current instance is equal to the 22
System.Collections.ArrayList.Capacity of the current instance, the capacity of the 23
list is doubled by automatically reallocating the internal array before the new element is 24
inserted. If index is equal to the System.Collections.ArrayList.Count of the current 25
instance, value is added to the end of the current instance. 26

 46

 1

Exceptions 2
 3
 4

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

index >
System.Collections.ArrayList.Count of the
current instance.

System.NotSupportedException
The current instance is read-only or has a fixed
size.

 5
 6

7

 47

 ArrayList.InsertRange(System.Int32, 1

System.Collections.ICollection) Method 2

[ILAsm] 3
.method public hidebysig virtual void InsertRange(int32 index, class 4
System.Collections.ICollection c) 5

[C#] 6
public virtual void InsertRange(int index, ICollection c) 7

Summary 8

Inserts the elements of the specified System.Collections.ICollection at the specified 9
index of the current instance. 10

Parameters 11
 12
 13

Parameter Description

index
A System.Int32 that specifies the index in the current instance at which the
new elements are inserted. This value is between 0 and the
System.Collections.ArrayList.Count of the current instance, inclusive.

c
The System.Collections.ICollection whose elements are inserted into the
current instance.

 14
 15

Behaviors 16

As described above. 17

 18

Default 19

If the System.Collections.ArrayList.Count of the current instance plus the size of 20
System.Collections.ICollectionc is greater than the 21
System.Collections.ArrayList.Capacity of the current instance, the capacity of the 22
current instance is either doubled or increased to the new count, whichever yields a 23
greater capacity. The internal array is reallocated to accommodate the new elements. If 24
index is equal to the System.Collections.ArrayList.Count of the current instance, 25
the elements of c are added to the end of the current instance. 26

 48

 1
The order of the elements in the System.Collections.ICollectionc is preserved in 2
the current instance. 3

Exceptions 4
 5
 6

Exception Condition

System.ArgumentNullException c is null.

System.ArgumentOutOfRangeException

index < 0.

index >
System.Collections.ArrayList.Count of the
current instance.

System.NotSupportedException
The current instance is read-only or has a fixed
size.

 7
 8

9

 49

 ArrayList.LastIndexOf(System.Object) 1

Method 2

[ILAsm] 3
.method public hidebysig virtual int32 LastIndexOf(object value) 4

[C#] 5
public virtual int LastIndexOf(object value) 6

Summary 7

Searches the current instance, returning the index of the last occurrence of the specified 8
System.Object. 9

Parameters 10
 11
 12

Parameter Description

value The System.Object to locate in the current instance.

 13
Return Value 14
 15

A System.Int32 that specifies the index of the last occurrence of value in the current 16
instance, if found; otherwise, -1. 17
 18
[Note: This provides the caller with a standard code for a failed search.] 19
 20
 21

Description 22

Behaviors 23

As described above. 24

 25

Default 26

The ArrayList is searched backward starting at the last element and ending at the first 27
element. 28
 29
This method uses System.Array.LastIndexOf to search the current instance for value. 30

 50

 1
 2
[Note: For the default implementation, this method performs a linear search. On average, 3
this is an O(n/2) operation, where n is System.Collections.ArrayList.Count of the 4
current instance. The longest search is an O(n) operation.] 5
 6
 7

8

 51

 ArrayList.LastIndexOf(System.Object, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual int32 LastIndexOf(object value, int32 4
startIndex) 5

[C#] 6
public virtual int LastIndexOf(object value, int startIndex) 7

Summary 8

Searches the current instance, returning the index of the last occurrence of the specified 9
System.Object in the specified range of the current instance. 10

Parameters 11
 12
 13

Parameter Description

value The System.Object to locate in the current instance.

startIndex
A System.Int32 that specifies the index at which searching starts. This value is
between 0 and the System.Collections.ArrayList.Count of the current
instance - 1, inclusive.

 14
Return Value 15
 16

A System.Int32 that specifies the index of the last occurrence of value in the range of 17
startIndex through the first element of the current instance, if found; otherwise, -1. 18
 19
[Note: This provides the caller with a standard code for a failed search.] 20
 21
 22

Description 23

Behaviors 24

As described above. 25

 26

Default 27

 52

The ArrayList is searched backward starting at startIndex. 1
 2
This method uses System.Array.LastIndexOf to search the current instance for value. 3

 4
 5
[Note: For the default implementation, this method performs a linear search. On average, 6
this is an O(count/2) operation. The longest search is an O(count) operation.] 7
 8
 9

Exceptions 10
 11
 12

Exception Condition

System.ArgumentOutOfRangeException

startIndex < 0.

-or-

startIndex >=
System.Collections.ArrayList.Count of the
current instance.

 13
 14

15

 53

 ArrayList.LastIndexOf(System.Object, 1

System.Int32, System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual int32 LastIndexOf(object value, int32 4
startIndex, int32 count) 5

[C#] 6
public virtual int LastIndexOf(object value, int startIndex, int count) 7

Summary 8

Searches the current instance, returning the index of the last occurrence of the specified 9
System.Object in the specified range. 10

Parameters 11
 12
 13

Parameter Description

value The System.Object to locate in the current instance.

startIndex A System.Int32 that specifies the index at which searching starts.

count
A System.Int32 that specifies the number of elements to search, beginning
with startIndex.

 14
Return Value 15
 16

A System.Int32 that specifies the index of the last occurrence of value in the current 17
instance, within the range startIndex through startIndex - count + 1, if found; 18
otherwise, -1. 19
 20
[Note: This provides the caller with a standard code for a failed search.] 21
 22
 23

Description 24

Behaviors 25

As described above. 26

 27

 54

Default 1

The ArrayList is searched backward starting at startIndex and ending at startIndex - 2
count + 1. 3
 4
This method uses System.Array.LastIndexOf to search the current instance for value. 5

 6
 7
[Note: For the default implementation, this method performs a linear search. On average, 8
this is an O(count/2) operation. The longest search is an O(count) operation.] 9
 10
 11

Exceptions 12
 13
 14

Exception Condition

System.ArgumentOutOfRangeException

startIndex < 0.

-or-

count < 0.

-or-

startIndex >=
System.Collections.ArrayList.Count of the
current instance.

-or-

count >=
System.Collections.ArrayList.Count of the
current instance.

-or-

count > startIndex + 1.

 15
 16

17

 55

 1

ArrayList.ReadOnly(System.Collections.Array2

List) Method 3

[ILAsm] 4
.method public hidebysig static class System.Collections.ArrayList 5
ReadOnly(class System.Collections.ArrayList list) 6

[C#] 7
public static ArrayList ReadOnly(ArrayList list) 8

Summary 9

Returns a read-only System.Collections.ArrayList wrapper. 10

Parameters 11
 12
 13

Parameter Description

list The System.Collections.ArrayList to wrap.

 14
Return Value 15
 16

A read-only System.Collections.ArrayList wrapper around list. 17

Description 18

This method returns a read-only System.Collections.ArrayList that contains a 19
reference to list. Operations that attempt add to, delete from, or modify the elements of 20
this new list will throw System.NotSupportedException. Any modifications of the 21
elements list will be reflected in the new list. 22
 23
[Note: The System.Collections.ArrayList.IsReadOnly and 24
System.Collections.ArrayList.IsFixedSize properties of the new list are true. 25
Every other property value of the new list references the same property value of list. 26
 27
By performing operations on the new list, this wrapper can be used to prevent additions 28
to, deletions from, and modifications of the System.Collections.ArrayListlist. 29
 30
] 31

 56

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException list is null.

 4
 5

6

 57

 ArrayList.Remove(System.Object) Method 1

[ILAsm] 2
.method public hidebysig virtual void Remove(object obj) 3

[C#] 4
public virtual void Remove(object obj) 5

Summary 6

Removes the first occurrence of the specified System.Object from the current instance. 7

Parameters 8
 9
 10

Parameter Description

obj The System.Object to remove from the current instance.

 11
Description 12

[Note: This method is implemented to support the System.Collections.IList 13
interface.] 14
 15
 16

Behaviors 17

As described above. 18

 19

Default 20

This method determines equality by calling System.Object.Equals. 21
 22
If obj is found in the current instance, obj is removed from the current instance, the rest 23
of the elements are shifted down to fill the position vacated by obj, the 24
System.Collections.ArrayList.Count of the current instance is decreased by one, 25
and the position that was previously the last element in the current instance is set to 26
null. If obj is not found in the current instance, the current instance remains 27
unchanged. 28

[Note: For the default implementation, this method performs a linear search. On average, 29
this is an O(n/2) operation, where n is System.Collections.ArrayList.Count of the 30
current instance. The longest search is an O(n) operation.] 31

 58

 1
 2

Exceptions 3
 4
 5

Exception Condition

System.NotSupportedException The current instance is read-only or has a fixed size.

 6
 7

8

 59

 ArrayList.RemoveAt(System.Int32) Method 1

[ILAsm] 2
.method public hidebysig virtual void RemoveAt(int32 index) 3

[C#] 4
public virtual void RemoveAt(int index) 5

Summary 6

Removes the element at the specified index from the current instance. 7

Parameters 8
 9
 10

Parameter Description

index
A System.Int32 that specifies the zero-based index of the element to remove
from the current instance. This value is between 0 and the
System.Collections.ArrayList.Count of the current instance, inclusive.

 11
Description 12

[Note: This method is implemented to support the System.Collections.IList 13
interface.] 14
 15
 16

Behaviors 17

As described above. 18

 19

Default 20

The element at position index is removed from the current instance, the rest of the 21
elements are shifted down to fill the position vacated by that element, the 22
System.Collections.ArrayList.Count of the current instance is decreased by one, 23
and the position that was previously the last element in the current instance is set to 24
null. 25

 26

 60

Exceptions 1
 2
 3

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

index >=
System.Collections.ArrayList.Count of the
current instance.

System.NotSupportedException
The current instance is read-only or has a fixed
size.

 4
 5

6

 61

 ArrayList.RemoveRange(System.Int32, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual void RemoveRange(int32 index, int32 4
count) 5

[C#] 6
public virtual void RemoveRange(int index, int count) 7

Summary 8

Removes the specified range of elements from the current instance. 9

Parameters 10
 11
 12

Parameter Description

index

A System.Int32 that specifies the zero-based index of the first element of the
range of elements in the current instance to remove. This value is between 0
and the System.Collections.ArrayList.Count of the current instance minus
count, inclusive.

count
A System.Int32 that specifies the number of elements to remove. This value is
between 0 and the System.Collections.ArrayList.Count of the current
instance minus index, inclusive.

 13
 14

Behaviors 15

As described above. 16

 17

Default 18

The elements in the range of index to index + count - 1 are removed from the current 19
instance, the rest of the elements are shifted down to fill the position vacated by those 20
elements, the System.Collections.ArrayList.Count of the current instance is 21
decreased by count, and the count positions that were previously the last elements in 22
the current instance are set to null. 23

 62

 1

Exceptions 2
 3
 4

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

count < 0.

System.ArgumentException
System.Collections.ArrayList.Count of the
current instance - index < count.

System.NotSupportedException
The current instance is read-only or has a fixed
size.

 5
 6

7

 63

 ArrayList.Repeat(System.Object, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig static class System.Collections.ArrayList 4
Repeat(object value, int32 count) 5

[C#] 6
public static ArrayList Repeat(object value, int count) 7

Summary 8

Returns a new System.Collections.ArrayList whose elements are copies of the 9
specified System.Object. 10

Parameters 11
 12
 13

Parameter Description

value
The System.Object used to initialize the new System.Collections.ArrayList
instance.

count
A System.Int32 that specifies the number of times value is copied into the new
System.Collections.ArrayList instance.

 14
Return Value 15
 16

A new System.Collections.ArrayList with count number of elements, all of which are 17
copies of value. 18

Description 19

If count is less than the default initial capacity, 16, the 20
System.Collections.ArrayList.Capacity of the new 21
System.Collections.ArrayList instance is set to the default initial capacity. 22
Otherwise, the capacity is set to count. The System.Collections.ArrayList.Count of 23
the new instance is set to count. 24

Exceptions 25
 26
 27

 64

Exception Condition

System.ArgumentOutOfRangeException count < 0.

 1
 2

3

 65

 ArrayList.Reverse() Method 1

[ILAsm] 2
.method public hidebysig virtual void Reverse() 3

[C#] 4
public virtual void Reverse() 5

Summary 6

Reverses the sequence of the elements in the current instance. 7

Behaviors 8

As described above. 9

 10

Default 11

This method uses System.Array.Reverse to modify the ordering of the elements in the 12
current instance. 13

 14

Exceptions 15
 16
 17

Exception Condition

System.NotSupportedException The current instance is read-only.

 18
 19

20

 66

 ArrayList.Reverse(System.Int32, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual void Reverse(int32 index, int32 count) 4

[C#] 5
public virtual void Reverse(int index, int count) 6

Summary 7

Reverses the sequence of the elements in the specified range of the current instance. 8

Parameters 9
 10
 11

Parameter Description

index

A System.Int32 that specifies the zero-based index in the current instance at
which reversing starts. This value is between 0 and the
System.Collections.ArrayList.Count of the current instance minus count,
inclusive.

count
A System.Int32 that specifies the number of elements to reverse. This value is
between 0 and the System.Collections.ArrayList.Count of the current
instance minus index, inclusive.

 12
 13

Behaviors 14

As described above. 15

 16

Default 17

This method uses System.Array.Reverse to modify the ordering of the current 18
instance. 19

 20

 67

Exceptions 1
 2
 3

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

count < 0.

System.ArgumentException
System.Collections.ArrayList.Count of the
current instance - index < count.

System.NotSupportedException The current instance is read-only.

 4
 5

6

 68

 ArrayList.SetRange(System.Int32, 1

System.Collections.ICollection) Method 2

[ILAsm] 3
.method public hidebysig virtual void SetRange(int32 index, class 4
System.Collections.ICollection c) 5

[C#] 6
public virtual void SetRange(int index, ICollection c) 7

Summary 8

Copies the elements of the specified System.Collections.ICollection to a range in 9
the current instance. 10

Parameters 11
 12
 13

Parameter Description

index

A System.Int32 that specifies the zero-based index in the current instance at
which to start copying the elements of c. This value is between 0 and the
System.Collections.ArrayList.Count of the current instance minus c.Count,
inclusive.

c
The System.Collections.ICollection whose elements to copy to the current
instance.

 14
 15

Behaviors 16

As described above. 17

 18

Default 19

This method uses the System.Collections.ICollection.CopyTo implementation of 20
System.Collections.ICollectionc. 21

 22

 69

Exceptions 1
 2
 3

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

System.Collections.ArrayList.Count of the
current instance - index < c.Count.

System.ArgumentNullException c is null.

System.NotSupportedException The current instance is read-only.

 4
 5

6

 70

 ArrayList.Sort(System.Int32, System.Int32, 1

System.Collections.IComparer) Method 2

[ILAsm] 3
.method public hidebysig virtual void Sort(int32 index, int32 count, class 4
System.Collections.IComparer comparer) 5

[C#] 6
public virtual void Sort(int index, int count, IComparer comparer) 7

Summary 8

Sorts the elements in the specified range of the current instance using the specified 9
System.Collections.IComparer implementation. 10

Parameters 11
 12
 13

Parameter Description

index
A System.Int32 that specifies the zero-based index at which sorting starts.
This value is between 0 and the System.Collections.ArrayList.Count of the
current instance minus count, inclusive.

count
A System.Int32 that specifies the number of elements to sort. This value is
between 0 and the System.Collections.ArrayList.Count of the current
instance minus index, inclusive.

comparer
The System.Collections.IComparer implementation to use when comparing
elements. Specify null to use the System.IComparable implementation of
each element in the current instance.

 14
Description 15

Behaviors 16

As described above. 17

 18

Default 19

 71

If comparer is null, the System.IComparable implementation of each element in the 1
current instance is used to make the sorting comparisons. If the sort is not successfully 2
completed, the results are unspecified. 3

 4
 5
[Note: For the default implementation, this method uses System.Array.Sort, which uses 6
the Quicksort algorithm. This is an O(n log2

Exceptions 11
 12
 13

n) operation, where n is the number of elements 7
to sort.] 8
 9
 10

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

count < 0.

System.ArgumentException
System.Collections.ArrayList.Count of the
current instance - index < count.

System.InvalidOperationException
comparer is null, and one or more elements
in the current instance do not implement the
System.IComparable interface.

System.NotSupportedException The current instance is read-only.

 14
 15

16

 72

 1

ArrayList.Sort(System.Collections.IComparer) 2

Method 3

[ILAsm] 4
.method public hidebysig virtual void Sort(class 5
System.Collections.IComparer comparer) 6

[C#] 7
public virtual void Sort(IComparer comparer) 8

Summary 9

Sorts the elements of current instance using the specified 10
System.Collections.IComparer. 11

Parameters 12
 13
 14

Parameter Description

comparer
The System.Collections.IComparer implementation to use when comparing
elements. Specify null to use the System.IComparable implementation of
each element in the current instance.

 15
Description 16

Behaviors 17

As described above. 18

 19

Default 20

If comparer is null, the System.IComparable implementation of each element in the 21
current instance is used to make the sorting comparisons. If the sort is not successfully 22
completed, the results are unspecified. 23

 24
 25
[Note: For the default implementation, this method uses System.Array.Sort, which uses 26
the Quicksort algorithm. This is an O(n log2n) operation, where n is the number of elements 27
to sort.] 28

 73

 1
 2

Exceptions 3
 4
 5

Exception Condition

System.InvalidOperationException
comparer is null, and one or more elements in the
current instance do not implement the
System.IComparable interface.

System.NotSupportedException The current instance is read-only.

 6
 7

8

 74

 ArrayList.Sort() Method 1

[ILAsm] 2
.method public hidebysig virtual void Sort() 3

[C#] 4
public virtual void Sort() 5

Summary 6

Sorts the elements of the current instance. 7

Description 8

The System.IComparable implementation of each element in the current instance is 9
used to make the sorting comparisons. 10

Behaviors 11

As described above. 12

 13

Default 14

If the sort is not successfully completed, the results are unspecified. 15

 16
 17
[Note: For the default implementation, this method uses System.Array.Sort, which uses 18
the Quicksort algorithm. This is an O(n log2

Exceptions 23
 24
 25

n) operation, where n is the number of elements 19
to sort.] 20
 21
 22

Exception Condition

System.NotSupportedException The current instance is read-only.

 26
 27

28

 75

 1

ArrayList.Synchronized(System.Collections.Ar2

rayList) Method 3

[ILAsm] 4
.method public hidebysig static class System.Collections.ArrayList 5
Synchronized(class System.Collections.ArrayList list) 6

[C#] 7
public static ArrayList Synchronized(ArrayList list) 8

Summary 9

Returns a System.Collections.ArrayList wrapper around the specified 10
System.Collections.ArrayList that is synchronized (thread-safe). 11

Parameters 12
 13
 14

Parameter Description

list The System.Collections.ArrayList to synchronize.

 15
Return Value 16
 17

A System.Collections.ArrayList wrapper that is synchronized (thread-safe). 18

Description 19

This method returns a thread-safe System.Collections.ArrayList that contains a 20
reference to list. Any modifications of the elements in either the returned list or list will 21
be reflected in the other. 22
 23
[Note: The System.Collections.ArrayList.IsSynchronized property of the new list is 24
true. Every other property value of the new list references the same property value of 25
list. 26
 27
By performing operations on the new list, this wrapper can be used to guarantee thread-28
safe access to the System.Collections.ArrayListlist. 29
 30
] 31

 76

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException list is null.

 4
 5

6

 77

 ArrayList.ToArray() Method 1

[ILAsm] 2
.method public hidebysig virtual object[] ToArray() 3

[C#] 4
public virtual object[] ToArray() 5

Summary 6

Copies the elements of the current instance to a new System.Object array. 7

Return Value 8
 9

A System.Object array containing copies of the elements of the current instance. 10

Description 11

Behaviors 12

As described above. 13

 14

Default 15

The elements are copied using System.Array.Copy. 16

 17
 18
[Note: For the default implementation, this method is an O(n) operation, where n is the 19
System.Collections.ArrayList.Count of the current instance.] 20
 21
 22

23

 78

 ArrayList.ToArray(System.Type) Method 1

[ILAsm] 2
.method public hidebysig virtual class System.Array ToArray(class 3
System.Type type) 4

[C#] 5
public virtual Array ToArray(Type type) 6

Summary 7

Copies the elements of the current instance to a new array of the specified 8
System.Type. 9

Parameters 10
 11
 12

Parameter Description

type
The System.Type of the System.Array to create and copy the elements of the
current instance.

 13
Return Value 14
 15

An array of System.Typetype containing copies of the elements of the current instance. 16

Description 17

Behaviors 18

As described above. 19

 20

Default 21

The elements are copied using System.Array.Copy. 22

 23
 24
[Note: For the default implementation, this method is an O(n) operation, where n is the 25
System.Collections.ArrayList.Count of the current instance.] 26
 27
 28

 79

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException type is null.

System.InvalidCastException
At least one element of the current instance cannot be
cast to the System.Typetype.

 4
 5

6

 80

 ArrayList.TrimToSize() Method 1

[ILAsm] 2
.method public hidebysig virtual void TrimToSize() 3

[C#] 4
public virtual void TrimToSize() 5

Summary 6

Sets the System.Collections.ArrayList.Capacity of the current instance to the 7
System.Collections.ArrayList.Count of the current instance. 8

Description 9

[Note: This method can be used to minimize the memory overhead of the current 10
instance if no new elements will be added to it. 11
 12
To completely clear all elements from the current instance, call the 13
System.Collections.ArrayList.Clear method before calling 14
System.Collections.ArrayList.TrimToSize. 15
 16
] 17

Behaviors 18

As described above. 19

 20

Default 21

If the System.Collections.ArrayList.Count of the current instance is zero, the 22
System.Collections.ArrayList.Capacity of the current instance is set to the default 23
initial capacity of 16. 24

 25

Exceptions 26
 27
 28

Exception Condition

System.NotSupportedException The current instance is read-only or has a fixed size.

 29
 30

 81

1

 82

 ArrayList.Capacity Property 1

[ILAsm] 2
.property int32 Capacity { public hidebysig virtual specialname int32 3
get_Capacity() public hidebysig virtual specialname void 4
set_Capacity(int32 value) } 5

[C#] 6
public virtual int Capacity { get; set; } 7

Summary 8

Gets or sets the number of elements that the current instance is capable of storing. 9

Property Value 10
 11

A System.Int32 that specifies the number of elements that the current instance is 12
capable of storing. 13

Description 14

[Note: The System.Collections.ArrayList.Capacity of a 15
System.Collections.ArrayList is the size of the internal array used to hold the 16
elements of that list. When it is set, the internal array is reallocated to the specified 17
value.] 18
 19
 20

Behaviors 21

As described above. 22

 23

Default 24

If an attempt is made to set System.Collections.ArrayList.Capacity to a value less 25
or equal to 0, it is set to the default capacity of 16. 26
 27
If the System.Collections.ArrayList.Count of the current instance exceeds the 28
System.Collections.ArrayList.Capacity of the current instance while adding 29
elements to the current instance, the capacity of the list is doubled by automatically 30
reallocating the internal array before copying the old elements and adding the new 31
elements. 32

Exceptions 33
 34
 35

 83

Exception Condition

System.ArgumentOutOfRangeException

System.Collections.ArrayList.Capacity is
set to a value that is less than the
System.Collections.ArrayList.Count of the
current instance.

 1
 2

3

 84

 ArrayList.Count Property 1

[ILAsm] 2
.property int32 ICollection.Count { public hidebysig virtual abstract 3
specialname int32 get_ICollection.Count() } 4

[C#] 5
int ICollection.Count { get; } 6

Summary 7

Implemented to support the System.Collections.ICollection interface. [Note: For 8
more information, see System.Collections.ICollection.Count.] 9

10

 85

 ArrayList.Count Property 1

[ILAsm] 2
.property int32 Count { public hidebysig virtual specialname int32 3
get_Count() } 4

[C#] 5
public virtual int Count { get; } 6

Summary 7

Gets the number of elements contained in the current instance. 8

Property Value 9
 10

A System.Int32 that specifies the number of elements contained in the current 11
instance. 12

Description 13

This property is read-only. 14
 15
System.Collections.ArrayList.Count is the number of elements that are contained 16
by the System.Collections.ArrayList. The count of a list is always less than or equal 17
to System.Collections.ArrayList.Capacity of that list. 18
 19
[Note: This property is implemented to support the System.Collections.IList 20
interface.] 21
 22
 23

Behaviors 24

As described above. 25

 26

Default 27

If the System.Collections.ArrayList.Count exceeds the 28
System.Collections.ArrayList.Capacity of the current instance while adding 29
elements to the current instance, the capacity of the list is doubled by automatically 30
reallocating the internal array before copying the old elements and adding the new 31
elements. 32

33

 86

 ArrayList.IsFixedSize Property 1

[ILAsm] 2
.property bool IsFixedSize { public hidebysig virtual specialname bool 3
get_IsFixedSize() } 4

[C#] 5
public virtual bool IsFixedSize { get; } 6

Summary 7

Gets a System.Boolean indicating whether the 8
System.Collections.ArrayList.Capacity of the current instance cannot be changed. 9

Property Value 10
 11

true if the System.Collections.ArrayList.Capacity of the current instance cannot 12
be changed; otherwise, false. 13

Description 14

This property is read-only. 15
 16
[Note: Elements cannot be added or removed from a System.Collections.ArrayList 17
with a fixed size, while existing elements can be modified. 18
 19
An attempt to add to or remove from a fixed size ArrayList will throw 20
System.NotSupportedException. However, the size of a fixed size ArrayList will change 21
to reflect the additions or removals from the ArrayList that was used to create the fixed 22
size ArrayList. 23
 24
This property is implemented to support the System.Collections.IList interface. 25
 26
] 27

Behaviors 28

As described above. 29

 30

Default 31

The default value for this property is false. 32

 33

34

 87

 ArrayList.IsFixedSize Property 1

[ILAsm] 2
.property bool IList.IsFixedSize { public hidebysig virtual abstract 3
specialname bool get_IList.IsFixedSize() } 4

[C#] 5
bool IList.IsFixedSize { get; } 6

Summary 7

Implemented to support the System.Collections.IList interface. [Note: For more 8
information, see System.Collections.IList.IsFixedSize.] 9

10

 88

 ArrayList.IsReadOnly Property 1

[ILAsm] 2
.property bool IsReadOnly { public hidebysig virtual specialname bool 3
get_IsReadOnly() } 4

[C#] 5
public virtual bool IsReadOnly { get; } 6

Summary 7

Gets a value indicating whether the current instance is read-only. 8

Property Value 9
 10

true if the current instance is read-only; otherwise, false. 11

Description 12

This property is read-only. 13
 14
[Note: The elements of a System.Collections.ArrayList that is read-only cannot be 15
modified, nor can elements be added to or removed from that list. 16
 17
An attempt to add to, remove from, or modify a read-only ArrayList will throw 18
System.NotSupportedException. However, changes to the ArrayList that was used to 19
create the read-only ArrayList are reflected in the read-only ArrayList. 20
 21
This property is implemented to support the System.Collections.IList interface. 22
 23
] 24

Behaviors 25

As described above. 26

 27

Default 28

The default value of this property is false. 29

 30

31

 89

 ArrayList.IsReadOnly Property 1

[ILAsm] 2
.property bool IList.IsReadOnly { public hidebysig virtual abstract 3
specialname bool get_IList.IsReadOnly() } 4

[C#] 5
bool IList.IsReadOnly { get; } 6

Summary 7

Implemented to support the System.Collections.IList interface. [Note: For more 8
information, see System.Collections.IList.IsReadOnly.] 9

10

 90

 ArrayList.IsSynchronized Property 1

[ILAsm] 2
.property bool IsSynchronized { public hidebysig virtual specialname bool 3
get_IsSynchronized() } 4

[C#] 5
public virtual bool IsSynchronized { get; } 6

Summary 7

Gets a value indicating whether access to the current instance is synchronized (thread-8
safe). 9

Property Value 10
 11

true if access to the current instance is synchronized (thread-safe); otherwise, false. 12

Description 13

This property is read-only. 14
 15
To guarantee the thread safety of the System.Collections.ArrayList, all operations 16
must be done through the wrapper returned by the 17
System.Collections.ArrayList.Synchronized method. 18
 19
[Note: This property is implemented to support the System.Collections.IList 20
interface.] 21
 22
 23

Behaviors 24

As described above. 25

 26

Default 27

The default value of this property is false. 28

 29

30

 91

 ArrayList.IsSynchronized Property 1

[ILAsm] 2
.property bool ICollection.IsSynchronized { public hidebysig virtual 3
abstract specialname bool get_ICollection.IsSynchronized() } 4

[C#] 5
bool ICollection.IsSynchronized { get; } 6

Summary 7

Implemented to support the System.Collections.ICollection interface. [Note: For 8
more information, see System.Collections.ICollection.IsSynchronized.] 9

10

 92

 ArrayList.Item Property 1

[ILAsm] 2
.property object Item[int32 index] { public hidebysig virtual specialname 3
object get_Item(int32 index) public hidebysig virtual specialname void 4
set_Item(int32 index, object value) } 5

[C#] 6
public virtual object this[int index] { get; set; } 7

Summary 8

Gets or sets the element at the specified index of the current instance. 9

Parameters 10
 11
 12

Parameter Description

index
A System.Int32 that specifies the zero-based index of the element in the
current instance to get or set. This value is greater than or equal to 0, and less
than the System.Collections.ArrayList.Count of the current instance.

 13
Property Value 14
 15

The element at the specified index of the current instance. 16

Description 17

[Note: This property provides the ability to access a specific element in the collection by 18
using the following syntax: myCollection[index]. 19
 20
This property is implemented to support the System.Collections.IList interface. 21
 22
] 23

Behaviors 24

As described above. 25

 26

Exceptions 27
 28
 29

 93

Exception Condition

System.ArgumentOutOfRangeException

index < 0.

-or-

index >=
System.Collections.ArrayList.Count of the
current instance.

 1
 2

3

 94

 ArrayList.SyncRoot Property 1

[ILAsm] 2
.property object SyncRoot { public hidebysig virtual specialname object 3
get_SyncRoot() } 4

[C#] 5
public virtual object SyncRoot { get; } 6

Summary 7

Gets an object that can be used to synchronize access to the current instance. 8

Property Value 9
 10

A System.Object that can be used to synchronize access to the current instance. 11

Description 12

This property is read-only. 13
 14
Program code must perform synchronized operations on the 15
System.Collections.ArrayList.SyncRoot of the current instance, not directly on the 16
current instance. This ensures proper operation of collections that are derived from 17
other objects. Specifically, it maintains proper synchronization with other threads that 18
might be simultaneously modifying the current instance. 19

Behaviors 20

As described above. 21

 22

Default 23

This method returns a reference to the current instance. 24

 25
 26
[Note: This property is implemented to support the System.Collections.IList interface.] 27
 28
 29

30

 95

 ArrayList.SyncRoot Property 1

[ILAsm] 2
.property object ICollection.SyncRoot { public hidebysig virtual abstract 3
specialname object get_ICollection.SyncRoot() } 4

[C#] 5
object ICollection.SyncRoot { get; } 6

Summary 7

Implemented to support the System.Collections.ICollection interface. [Note: For 8
more information, see System.Collections.ICollection.SyncRoot.] 9

 10

	Behaviors
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Usage
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Default
	Behaviors
	Behaviors
	Default

