
 1

System.IO.FileStream Class 1

 2

[ILAsm] 3
.class public FileStream extends System.IO.Stream 4

[C#] 5
public class FileStream: Stream 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Implements: 13

· System.IDisposable 14

Summary 15
 16

Exposes a System.IO.Stream around a file, supporting both synchronous and 17
asynchronous read and write operations. 18

Inherits From: System.IO.Stream 19
 20
Library: BCL 21
 22
Thread Safety: All public static members of this type are safe for multithreaded operations. 23
No instance members are guaranteed to be thread safe. 24
 25
Description 26

System.IO.FileStream is used for reading and writing files on a file system, as well as 27
other file-related operating system handles such as pipes, standard input, standard 28
output. System.IO.FileStream buffers input and output for better performance. 29
 30
The System.IO.FileStream class can open a file in one of two modes, either 31
synchronously or asynchronously, with significant performance consequences for the 32
synchronous methods (System.IO.FileStream.Read and 33
System.IO.FileStream.Write) and the asynchronous methods 34
(System.IO.FileStream.BeginRead and System.IO.FileStream.BeginWrite). Both 35
sets of methods will work in either mode; however, the mode will affect the performance 36
of these methods. System.IO.FileStream defaults to opening files synchronously, but 37
provides a constructor to open files asynchronously. 38

 2

 1
When accessing files, a security check is performed when the file is created or opened. 2
The security check is typically not done again unless the file is closed and reopened. 3
[Note: Checking permissions when the file is first accessed minimizes the impact of the 4
security check on application performance (since opening a file happens once, while 5
reading and writing can happen multiple times).] 6
 7
Note that if an opened file is passed to an untrusted caller, the security system can, but 8
is not required to prevent the caller from accessing the file. 9
 10
System.IO.FileStream objects support random access to files using the 11
System.IO.FileStream.Seek method, and the System.IO.Stream.CanSeek properties 12
of System.IO.FileStream instances encapsulating files are set to true. The 13
System.IO.FileStream.Seek method allows the read/write position to be moved to any 14
position within the file. This is done with byte offset reference point parameters. The 15
byte offset is relative to the seek reference point, which can be the beginning, the 16
current position, or the end of the underlying file, as represented by the three values of 17
the System.IO.SeekOrigin enumeration. 18
 19
If a System.IO.FileStream encapsulates a device that does not support seeking, its 20
System.IO.FileStream.CanSeek property is false. [Note: For additional information, 21
see System.IO.Stream.CanSeek.] 22
 23
 24
 25
[Note: The System.IO.File class provides methods for the creation of 26
System.IO.FileStream objects based on file paths. The System.IO.MemoryStream class 27
creates a stream from a byte array and functions similarly to a System.IO.FileStream.] 28
 29
 30

Example 31
 32

The following example demonstrates the use of a System.IO.FileStream object. 33
 34
[C#] 35

using System; 36
using System.IO; 37
 38
class Directory { 39
 public static void Main(String[] args) { 40
 FileStream fs = new FileStream("log.txt", FileMode.OpenOrCreate, 41
FileAccess.Write); 42
 StreamWriter w = new StreamWriter(fs); 43
 w.BaseStream.Seek(0, SeekOrigin.End); // Set the file pointer to the 44
end. 45
 46
 Log ("Test1", w); 47
 Log ("Test2", w); 48
 49

 3

 w.Close(); // Close the writer and underlying file. 1
 2
 fs = new FileStream("log.txt", FileMode.OpenOrCreate, FileAccess.Read); 3
 4
 StreamReader r = new StreamReader(fs); 5
 r.BaseStream.Seek(0, SeekOrigin.Begin); 6
 DumpLog (r); 7
 } 8
 9
 public static void Log (String logMessage, StreamWriter w) { 10
 w.Write("Log Entry: "); 11
 w.WriteLine("{0} {1}", DateTime.Now.ToLongTimeString(), 12
DateTime.Now.ToLongDateString()); 13
 w.WriteLine(":"); 14
 w.WriteLine(":{0}", logMessage); 15
 w.WriteLine ("-------------------------------"); 16
 w.Flush(); 17
 } 18
 19
 public static void DumpLog (StreamReader r) { 20
 while (r.Peek() > -1) { // While not at the end of the file, write to 21
standard output. 22
 Console.WriteLine(r.ReadLine()); 23
 } 24
 25
 r.Close(); 26
 } 27
} 28
Some example output is 29
 30
Log Entry: 9:26:21 AM Friday, July 06, 2001 31
 32
 33
: 34
 35
 36
:Test1 37
 38
 39
------------------------------- 40
 41
 42
Log Entry: 9:26:21 AM Friday, July 06, 2001 43
 44
 45
: 46
 47
 48
:Test2 49
 50
 51
------------------------------- 52
 53

 4

1

 5

 FileStream(System.String, 1

System.IO.FileMode, System.IO.FileAccess, 2

System.IO.FileShare, System.Int32, 3

System.Boolean) Constructor 4

[ILAsm] 5
public rtspecialname specialname instance void .ctor(string path, 6
valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access, 7
valuetype System.IO.FileShare share, int32 bufferSize, bool useAsync) 8

[C#] 9
public FileStream(string path, FileMode mode, FileAccess access, FileShare 10
share, int bufferSize, bool useAsync) 11

Summary 12

Constructs and initializes a new instance of the System.IO.FileStream class. 13

Parameters 14
 15
 16

Parameter Description

path
A System.String containing the relative or absolute path for the file that the
new System.IO.FileStream object will encapsulate.

mode A System.IO.FileMode value that determines how to open or create the file.

access

A System.IO.FileAccess value that determines how the file can be accessed
by the System.IO.FileStream object. This parameter is used to specify the
initial values of the System.IO.FileStream.CanRead and
System.IO.FileStream.CanWrite properties.

share
A System.IO.FileShare value that determines how the file will be shared by
processes.

bufferSize A System.Int32 containing the desired buffer size in bytes.

useAsync

A System.Boolean value that specifies whether to use asynchronous I/O or
synchronous I/O. If the underlying operating system does not support
asynchronous I/O, the System.IO.FileStream ignores this parameter and uses
synchronous I/O.

 6

 1
Description 2

This constructor sets read/write access to the file. 3
 4
[Note: path is not required to be a file stored on disk; it can be any part of a system 5
that supports access via streams. For example, depending on the system, this class 6
might be able to access a physical device.] 7
 8
 9
 10
System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that 11
encapsulate files. If path indicates a device that does not support seeking, the 12
System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is 13
required to be false. For additional information, see System.IO.Stream.CanSeek. 14

Exceptions 15
 16
 17

Exception Condition

System.ArgumentNullException path is null.

System.ArgumentException
path is a zero-length string, contains only
white space, or contains one or more
implementation-specific invalid characters.

System.ArgumentOutOfRangeException

bufferSize is less than or equal to zero.

-or-

mode, access, or share contain an invalid
value.

System.IO.FileNotFoundException

mode is System.IO.FileMode.Truncate or
System.IO.FileMode.Open, but the specified
file cannot be found. If a different mode is
specified and the file cannot be found, a new
one is created.

System.IO.IOException
An I/O error occurred, such as specifying
System.IO.FileMode.CreateNew and the file
specified by path already exists.

 7

System.Security.SecurityException The caller does not have the required
permission.

System.IO.DirectoryNotFoundException The directory information specified by path
does not exist.

System.UnauthorizedAccessException The access requested is not permitted by the
operating system for the specified path.

System.IO.PathTooLongException
The length of path or the absolute path
information for path exceeds the system-
defined maximum length.

 1
Permissions 2
 3
 4

Permission Description

System.Security.Permissions.
FileIOPermission

Requires permission to read, write, and append to files. See
System.Security.Permissions.FileIOPermissionAccess.

Read,
System.Security.Permissions.FileIOPermissionAccess.

Write, and
System.Security.Permissions.FileIOPermissionAccess.

Append.

 5
 6

7

 8

 FileStream(System.String, 1

System.IO.FileMode, System.IO.FileAccess, 2

System.IO.FileShare, System.Int32) 3

Constructor 4

[ILAsm] 5
public rtspecialname specialname instance void .ctor(string path, 6
valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access, 7
valuetype System.IO.FileShare share, int32 bufferSize) 8

[C#] 9
public FileStream(string path, FileMode mode, FileAccess access, FileShare 10
share, int bufferSize) 11

Summary 12

Constructs and initializes a new instance of the System.IO.FileStream class. 13

Parameters 14
 15
 16

Parameter Description

path
A System.String containing the relative or absolute path for the file that the
current System.IO.FileStream object will encapsulate.

mode
A System.IO.FileMode constant that determines how to open or create the
file.

access

A System.IO.FileAccess value that determines how the file can be accessed
by the System.IO.FileStream object. This parameter is used to specify the
initial values of the System.IO.FileStream.CanRead and
System.IO.FileStream.CanWrite properties. For additional information, see
System.IO.Stream.CanRead and System.IO.Stream.CanWrite.

share
A System.IO.FileShare constant that determines how the file will be shared
by processes.

bufferSize A System.Int32 containing the desired buffer size in bytes.

 17
Description 18

 9

[Note: path is not required to be a file stored on disk; it can be any part of a system 1
that supports access via streams. For example, depending on the system, this class 2
might be able to access a physical device.] 3
 4
 5
 6
System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that 7
encapsulate files. If path indicates a device that does not support seeking, the 8
System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is 9
required to be false. For additional information, see System.IO.Stream.CanSeek. 10

Exceptions 11
 12
 13

Exception Condition

System.ArgumentNullException The path parameter is null.

System.ArgumentException
path is a zero-length string, contains only
white space, or contains one or more
implementation-specific invalid characters.

System.ArgumentOutOfRangeException

bufferSize is less than or equal to zero.

-or-

mode, access, or share contain an invalid
value.

System.IO.FileNotFoundException

mode is System.IO.FileMode.Truncate or
System.IO.FileMode.Open, but the specified
file cannot be found. If a different mode is
specified and the file cannot be found, a new
one is created.

System.IO.IOException
An I/O error occurred, such as specifying
System.IO.FileMode.CreateNew and the file
specified by path already exists.

System.Security.SecurityException The caller does not have the required
permission.

System.IO.DirectoryNotFoundException The directory information specified in path
does not exist.

 10

System.UnauthorizedAccessException The access requested is not permitted by the
operating system for the specified path.

System.IO.PathTooLongException
The length of path or the absolute path
information for path exceeds the system-
defined maximum length.

 1
Permissions 2
 3
 4

Permission Description

System.Security.Permissions.
FileIOPermission

Requires permission to read, write, and append to files. See
System.Security.Permissions.FileIOPermissionAccess.

Read,
System.Security.Permissions.FileIOPermissionAccess.

Write, and
System.Security.Permissions.FileIOPermissionAccess.

Append.

 5
 6

7

 11

 FileStream(System.String, 1

System.IO.FileMode, System.IO.FileAccess, 2

System.IO.FileShare) Constructor 3

[ILAsm] 4
public rtspecialname specialname instance void .ctor(string path, 5
valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access, 6
valuetype System.IO.FileShare share) 7

[C#] 8
public FileStream(string path, FileMode mode, FileAccess access, FileShare 9
share) 10

Summary 11

Constructs and initializes a new instance of the System.IO.FileStream class with the 12
specified path, creation mode, access type, and sharing permission. 13

Parameters 14
 15
 16

Parameter Description

path
A System.String containing relative or absolute path for the file that the
current System.IO.FileStream object will encapsulate.

mode A System.IO.FileMode value that determines how to open or create the file.

access

A System.IO.FileAccess value that determines how the file can be accessed
by the System.IO.FileStream object. This parameter is used to specify the
initial values of the System.IO.FileStream.CanRead and
System.IO.FileStream.CanWrite properties. For additional information, see
System.IO.Stream.CanRead and System.IO.Stream.CanWrite.

share
A System.IO.FileShare value that determines how the file will be shared by
processes.

 17
Description 18

This constructor sets read/write access to the file. 19
 20
[Note: path is not required to be a file stored on disk; it can be any part of a system 21
that supports access via streams. For example, depending on the system, this class 22

 12

might be able to access a physical device.] 1
 2
 3
 4
System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that 5
encapsulate files. If path indicates a device that does not support seeking, the 6
System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is 7
required to be false. For additional information, see System.IO.Stream.CanSeek. 8

Exceptions 9
 10
 11

Exception Condition

System.ArgumentNullException path is null.

System.ArgumentException
path is a zero-length string, contains only
white space, or contains one or more
implementation-specific invalid characters.

System.IO.FileNotFoundException

mode is System.IO.FileMode.Truncate or
System.IO.FileMode.Open, but the specified
file cannot be found. If a different mode is
specified and the file cannot be found, a new
one is created.

System.IO.IOException
An I/O error occurred, such as specifying
System.IO.FileMode.CreateNew and the file
specified by path already exists.

System.Security.SecurityException The caller does not have the required
permission.

System.IO.DirectoryNotFoundException The directory information specified by path
does not exist.

System.UnauthorizedAccessException The access requested is not permitted by the
operating system for the specified path.

System.IO.PathTooLongException
The length of path or the absolute path
information for path exceeds the system-
defined maximum length.

System.ArgumentOutOfRangeException mode, access, or share contains an invalid

 13

value.

 1
Permissions 2
 3
 4

Permission Description

System.Security.Permissions.
FileIOPermission

Requires permission to read, write, and append to files. See
System.Security.Permissions.FileIOPermissionAccess.

Read,
System.Security.Permissions.FileIOPermissionAccess.

Write, and
System.Security.Permissions.FileIOPermissionAccess.

Append.

 5
 6

7

 14

 FileStream(System.String, 1

System.IO.FileMode, System.IO.FileAccess) 2

Constructor 3

[ILAsm] 4
public rtspecialname specialname instance void .ctor(string path, 5
valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access) 6

[C#] 7
public FileStream(string path, FileMode mode, FileAccess access) 8

Summary 9

Constructs and initializes a new instance of the System.IO.FileStream class with the 10
specified path, creation mode, and access type. 11

Parameters 12
 13
 14

Parameter Description

path
A System.String containing the relative or absolute path for the file that the
current System.IO.FileStream object will encapsulate.

mode A System.IO.FileMode value that determines how to open or create the file.

access

A System.IO.FileAccess value that determines how the file can be accessed
by the System.IO.FileStream object. This parameter is used to specify the
initial values of the System.IO.FileStream.CanRead and
System.IO.FileStream.CanWrite properties.

 15
Description 16

This constructor sets read/write access to the file. Requests to open the file for writing 17
by the current or another thread will fail until the System.IO.FileStream object has 18
been closed. Read attempts will succeed. 19
 20
[Note: path is not required to be a file stored on disk; it can be any part of a system 21
that supports access via streams. For example, depending on the system, this class 22
might be able to access a physical device.] 23
 24
 25
 26
System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that 27

 15

encapsulate files. If path indicates a device that does not support seeking, the 1
System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is 2
required to be false. For additional information, see System.IO.Stream.CanSeek. 3

Exceptions 4
 5
 6

Exception Condition

System.ArgumentNullException path is null.

System.ArgumentException

path is a zero-length string, contains only
white space, or contains one or more
implementation-specific invalid characters.

-or-

access specified Read and mode specified
Create, CreateNew, Truncate or Append.

System.IO.FileNotFoundException

mode is System.IO.FileMode.Truncate or
System.IO.FileMode.Open, but the specified
file was not found. If a different mode is
specified and the file was not found, a new one
is created.

System.IO.IOException
An I/O error occurred, such as specifying
System.IO.FileMode.CreateNew when the file
specified by path already exists.

System.Security.SecurityException The caller does not have the required
permission.

System.IO.DirectoryNotFoundException The directory information specified by path
does not exist.

System.UnauthorizedAccessException
path specified a read-only file and access is not
Read, or path specified a directory.

System.IO.PathTooLongException
The length of path or the absolute path
information for path exceeds the system-
defined maximum length.

 16

System.ArgumentOutOfRangeException mode or access contain an invalid value.

 1
Permissions 2
 3
 4

Permission Description

System.Security.Permissions.
FileIOPermission

Requires permission to read, write, and append to files. See
System.Security.Permissions.FileIOPermissionAccess.

Read,
System.Security.Permissions.FileIOPermissionAccess.

Write, and
System.Security.Permissions.FileIOPermissionAccess.

Append.

 5
 6

7

 17

 FileStream(System.String, 1

System.IO.FileMode) Constructor 2

[ILAsm] 3
public rtspecialname specialname instance void .ctor(string path, 4
valuetype System.IO.FileMode mode) 5

[C#] 6
public FileStream(string path, FileMode mode) 7

Summary 8

Constructs and initializes a new instance of the System.IO.FileStream class with the 9
specified path and creation mode. 10

Parameters 11
 12
 13

Parameter Description

path
A System.String containing the relative or absolute path for the file that the
current System.IO.FileStream object will encapsulate.

mode A System.IO.FileMode value that determines how to open or create the file.

 14
Description 15

This constructor sets System.IO.FileAccess.ReadWrite access to the file, and the 16
System.IO.Stream.CanRead and System.IO.Stream.CanWrite properties of the current 17
instance are set to true. 18
 19
[Note: path is not required to be a file stored on disk; it can be any part of a system 20
that supports access via streams. For example, depending on the system, this class 21
might be able to access a physical device.] 22
 23
 24
 25
System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that 26
encapsulate files. If path specifies a device that does not support seeking, the 27
System.IO.FileStream.CanSeek property of the resulting System.IO.FileStream is 28
required to be false. [Note: For additional information, see 29
System.IO.Stream.CanSeek.] 30
 31
 32
 33

 18

Requests to open the file for writing by the current or another thread will fail until the 1
System.IO.FileStream object has been closed. Read attempts will succeed. 2

Exceptions 3
 4
 5

Exception Condition

System.ArgumentException
path is a zero-length string, contains only
white space, or contains one or more
implementation-specific invalid characters.

System.ArgumentNullException path is null.

System.Security.SecurityException The caller does not have the required
permission.

System.IO.FileNotFoundException

mode is System.IO.FileMode.Truncate or
System.IO.FileMode.Open, but the specified
file cannot be found. If a different mode is
specified and the file cannot be found, a new
one is created.

System.IO.IOException
An I/O error occurred, such as specifying
System.IO.FileMode.CreateNew when the file
specified by path already exists.

System.IO.DirectoryNotFoundException The directory information specified in path
does not exist.

System.IO.PathTooLongException
The length of path or the absolute path
information for path exceeds the system-
defined maximum length.

System.ArgumentOutOfRangeException mode contains an invalid value.

 6
Permissions 7
 8
 9

Permission Description

System.Security.Permissions. Requires permission to read, write, and append to files. See

 19

FileIOPermission System.Security.Permissions.FileIOPermissionAccess.

Read,
System.Security.Permissions.FileIOPermissionAccess.

Write, and
System.Security.Permissions.FileIOPermissionAccess.

Append.

 1
 2

3

 20

 FileStream.BeginRead(System.Byte[], 1

System.Int32, System.Int32, 2

System.AsyncCallback, System.Object) 3

Method 4

[ILAsm] 5
.method public hidebysig virtual class System.IAsyncResult BeginRead(class 6
System.Byte[] array, int32 offset, int32 numBytes, class 7
System.AsyncCallback userCallback, object stateObject) 8

[C#] 9
public override IAsyncResult BeginRead(byte[] array, int offset, int 10
numBytes, AsyncCallback userCallback, object stateObject) 11

Summary 12

Begins an asynchronous read. 13

Parameters 14
 15
 16

Parameter Description

array A System.Byte array that specifies the buffer to read data into.

offset
A System.Int32 containing the zero based byte offset in array at which to
begin writing data read from the stream.

numBytes A System.Int32 containing the maximum number of bytes to read.

userCallback
A System.AsyncCallback delegate that references the method to be called
when the asynchronous read operation is completed.

stateObject An application-defined object containing the status of the asynchronous read.

 17
Return Value 18
 19

A System.IAsyncResult that references the asynchronous read. 20

Description 21

 21

To determine the number of bytes read, call System.IO.Stream.EndRead with the 1
returned System.IAsyncResult. 2
 3
Multiple simultaneous asynchronous requests render the request completion order 4
uncertain. 5
 6
[Note: Use the System.IO.FileStream.CanRead property to determine whether the 7
current instance supports reading. For additional information, see 8
System.IO.Stream.CanRead. 9
 10
This method overrides System.IO.Stream.BeginRead. 11
 12
] 13

Exceptions 14
 15
 16

Exception Condition

System.ArgumentException The sum of offset andnumBytes is greater than
the length of array.

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException offset or numBytes is negative.

System.IO.IOException The asynchronous read operation attempted to
read past the end of the file.

 17
 18

19

 22

 FileStream.BeginWrite(System.Byte[], 1

System.Int32, System.Int32, 2

System.AsyncCallback, System.Object) 3

Method 4

[ILAsm] 5
.method public hidebysig virtual class System.IAsyncResult 6
BeginWrite(class System.Byte[] array, int32 offset, int32 numBytes, class 7
System.AsyncCallback userCallback, object stateObject) 8

[C#] 9
public override IAsyncResult BeginWrite(byte[] array, int offset, int 10
numBytes, AsyncCallback userCallback, object stateObject) 11

Summary 12

Begins an asynchronous write operation. 13

Parameters 14
 15
 16

Parameter Description

array A System.Byte array buffer containing data to write to the current stream.

offset
A System.Int32 containing the zero-based byte offset in array, which marks
the beginning of the data to written to the current stream.

numBytes A System.Int32 containing the maximum number of bytes to write.

userCallback
A System.AsyncCallback delegate that references the method to be called
when the asynchronous write operation is completed.

stateObject An application-defined object containing the status of the asynchronous write.

 17
Return Value 18
 19

A System.IAsyncResult that references the asynchronous write. 20

Description 21

 23

Multiple simultaneous asynchronous requests render the request completion order 1
uncertain. 2
 3
[Note: Use the System.IO.FileStream.CanWrite property to determine whether the 4
current instance supports writing. For additional information, see 5
System.IO.Stream.CanWrite. 6
 7
This method overrides System.IO.Stream.BeginWrite. 8
 9
] 10

Exceptions 11
 12
 13

Exception Condition

System.ArgumentException The sum of offset and numBytes is greater
than the length of array.

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException offset or numBytes is negative.

System.SystemNotSupportedException The stream does not support writing.

System.IO.IOException An I/O error occurred.

 14
 15

16

 24

 FileStream.Close() Method 1

[ILAsm] 2
.method public hidebysig virtual void Close() 3

[C#] 4
public override void Close() 5

Summary 6

Closes the file and releases any resources associated with the current file stream. 7

Description 8

This method is equivalent to System.IO.FileStream.Dispose(true). 9
 10
Any data previously written to the buffer is copied to the file before the file stream is 11
closed, so it is not necessary to call System.IO.FileStream.Flush before invoking 12
Close. Following a call to Close, any operations on the file stream might raise 13
exceptions. Invoking this method on the same instance multiple times does not result in 14
an exception. 15

Usage 16

The System.IO.FileStream.Finalize method invokes Close so that the file stream is 17
closed before the garbage collector finalizes the object. However, objects writing to the 18
System.IO.FileStream, such as a System.IO.StreamWriter, might not have flushed 19
the data from their internal buffers to the System.IO.FileStream when the call to 20
Finalize closes the stream. To prevent data loss, always call Close on the highest-level 21
object. 22

 23
 24
[Note: This method overrides System.IO.Stream.Close.] 25
 26
 27

28

 25

 FileStream.Dispose(System.Boolean) Method 1

[ILAsm] 2
.method family hidebysig virtual void Dispose(bool disposing) 3

[C#] 4
protected virtual void Dispose(bool disposing) 5

Summary 6

Releases the unmanaged resources used by the System.IO.FileStream and optionally 7
releases the managed resources. 8

Parameters 9
 10
 11

Parameter Description

disposing
Specify true to release both managed and unmanaged resources, or specify
false to release only unmanaged resources.

 12
Description 13

When the disposing parameter is true, this method releases all resources held by any 14
managed objects that this System.IO.FileStream references. 15
 16
[Note: System.IO.FileStream.Dispose can be called multiple times by other objects. 17
When overriding System.IO.FileStream.Dispose(System.Boolean), be careful not to 18
reference objects that have been previously disposed in an earlier call to 19
System.IO.FileStream.Dispose. 20
 21
] 22

Exceptions 23
 24
 25

Exception Condition

System.IO.IOException An I/O error occurred.

 26
 27

28

 26

 FileStream.EndRead(System.IAsyncResult) 1

Method 2

[ILAsm] 3
.method public hidebysig virtual int32 EndRead(class System.IAsyncResult 4
asyncResult) 5

[C#] 6
public override int EndRead(IAsyncResult asyncResult) 7

Summary 8

Ends a pending asynchronous read request, and blocks until the read request has 9
completed. 10

Parameters 11
 12
 13

Parameter Description

asyncResult The System.IAsyncResult object for the pending asynchronous request.

 14
Return Value 15
 16

A System.Int32 containing the number of bytes read from the stream. Returns 0 only if 17
the end of the file has been reached, otherwise, this method blocks until at least one 18
byte is available. 19

Description 20

EndRead will block until the I/O operation has completed. 21
 22
[Note: This method overrides System.IO.Stream.EndRead.] 23
 24
 25

Exceptions 26
 27
 28

Exception Condition

System.ArgumentNullException asyncResult is null.

 27

System.ArgumentException asyncResult was not returned by a call to
System.IO.FileStream.BeginRead.

System.InvalidOperationException
System.IO.FileStream.EndRead was called multiple
times with asyncResult.

 1
 2

3

 28

 FileStream.EndWrite(System.IAsyncResult) 1

Method 2

[ILAsm] 3
.method public hidebysig virtual void EndWrite(class System.IAsyncResult 4
asyncResult) 5

[C#] 6
public override void EndWrite(IAsyncResult asyncResult) 7

Summary 8

Ends an asynchronous write, blocking until the I/O operation has completed. 9

Parameters 10
 11
 12

Parameter Description

asyncResult The System.IAsyncResult object for the pending asynchronous request.

 13
Description 14

System.IO.FileStream.EndWrite will block until the I/O operation has completed. 15
 16
[Note: This method overrides System.IO.Stream.EndWrite.] 17
 18
 19

Exceptions 20
 21
 22

Exception Condition

System.ArgumentNullException asyncResult is null.

System.ArgumentException
asyncResult was not returned by a call to
System.IO.FileStream.BeginWrite.

System.InvalidOperationException
System.IO.FileStream.EndWrite was called
multiple times with asyncResult.

 29

 1
 2

3

 30

 FileStream.Finalize() Method 1

[ILAsm] 2
.method family hidebysig virtual void Finalize() 3

[C#] 4
~FileStream() 5

Summary 6

Releases the resources held by the current instance. 7

Description 8

System.IO.FileStream.Finalize closes the System.IO.FileStream. 9
 10
[Note: Application code does not call this method; it is automatically invoked by during 11
garbage collection unless finalization by the garbage collector has been disabled. For 12
more information, see System.GC.SuppressFinalize, and System.Object.Finalize. 13
 14
This method overrides System.Object.Finalize. 15
 16
] 17

18

 31

 FileStream.Flush() Method 1

[ILAsm] 2
.method public hidebysig virtual void Flush() 3

[C#] 4
public override void Flush() 5

Summary 6

Updates the underlying file with the current state of the buffer and subsequently clears 7
the buffer. 8

Description 9

A System.IO.FileStream buffer can be used either for reading or writing. If data was 10
copied to the buffer for writing, it is written to the file and the buffer is cleared. 11
 12
If data was copied to the buffer for reading, and the System.IO.Stream.CanSeek 13
property is true, the current position within the file is decremented by the number of 14
unread bytes in the buffer. The buffer is then cleared. 15
 16
[Note: This method overrides System.IO.Stream.Flush.] 17
 18
 19

Exceptions 20
 21
 22

Exception Condition

System.IO.IOException An I/O error occurred.

System.ObjectDisposedException The current instance has already been closed.

 23
 24

25

 32

 FileStream.Read(System.Byte[], 1

System.Int32, System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual int32 Read(class System.Byte[] array, 4
int32 offset, int32 count) 5

[C#] 6
public override int Read(byte[] array, int offset, int count) 7

Summary 8

Reads a block of bytes from the stream and returns the data in the specified buffer. 9

Parameters 10
 11
 12

Parameter Description

array
A System.Byte array. When this method returns, the bytes between offset and
(offset + count - 1) in array are replaced by the bytes read from the current
stream.

offset
A System.Int32 containing the byte offset in array at which to begin writing
data read from the current stream.

count A System.Int32 containing maximum number of bytes to read.

 13
Return Value 14
 15

A System.Int32 containing the total number of bytes read into the buffer, or zero if the 16
end of the stream is reached. 17

Description 18

The System.IO.FileStream.Read method returns zero only after reaching the end of 19
the stream. Otherwise, System.IO.FileStream.Read always reads at least one byte 20
from the stream before returning. If no data is available from the stream, this method 21
blocks until at least one byte of data can be returned. 22
 23
If the read operation is successful, the current position of the stream is advanced by the 24
number of bytes read. If an exception occurs, the current position of the stream is 25
unchanged. 26
 27

 33

[Note: Use the System.IO.FileStream.CanRead property to determine whether the 1
current instance supports reading. For additional information, see 2
System.IO.Stream.CanRead.] 3
 4
 5
 6
[Note: This method overrides System.IO.Stream.Read.] 7
 8
 9

Exceptions 10
 11
 12

Exception Condition

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException offset or count is negative.

System.NotSupportedException The current stream does not support reading.

System.IO.IOException An I/O error occurred.

System.ArgumentException offset + count is greater than the length of
array.

System.ObjectDisposedException The current stream is closed.

 13
 14

15

 34

 FileStream.ReadByte() Method 1

[ILAsm] 2
.method public hidebysig virtual int32 ReadByte() 3

[C#] 4
public override int ReadByte() 5

Summary 6

Reads a byte from the file and advances the read position one byte. 7

Return Value 8
 9

The byte cast to a System.Int32, or -1 if the end of the stream has been reached. 10

Description 11

[Note: Use the System.IO.FileStream.CanRead property to determine whether the 12
current instance supports reading. For additional information, see 13
System.IO.Stream.CanRead. 14
 15
This method overrides System.IO.Stream.ReadByte. 16
 17
] 18

Exceptions 19
 20
 21

Exception Condition

System.ObjectDisposedException The current stream is closed.

System.NotSupportedException The current stream does not support reading.

 22
 23

24

 35

 FileStream.Seek(System.Int64, 1

System.IO.SeekOrigin) Method 2

[ILAsm] 3
.method public hidebysig virtual int64 Seek(int64 offset, valuetype 4
System.IO.SeekOrigin origin) 5

[C#] 6
public override long Seek(long offset, SeekOrigin origin) 7

Summary 8

Changes the position within the current stream by the given offset, which is relative to 9
the stated origin. 10

Parameters 11
 12
 13

Parameter Description

offset
A System.Int64 containing the position relative to origin from which to begin
seeking.

origin
A System.IO.SeekOrigin value specifying the beginning, the end, or the
current position as a reference point for offset.

 14
Return Value 15
 16

A System.Int64 containing the new position in the stream. 17

Description 18

[Note: Use the System.IO.FileStream.CanSeek property to determine whether the 19
current instance supports seeking. For additional information, see 20
System.IO.Stream.CanSeek.] 21
 22
 23

Usage 24

The position can be set beyond the end of the stream. 25

 26
 27

 36

[Note: This method overrides System.IO.Stream.Seek.] 1
 2
 3

Exceptions 4
 5
 6

Exception Condition

System.IO.IOException An I/O error occurred.

System.NotSupportedException The stream does not support seeking.

System.ArgumentException Attempted seeking before the beginning of the stream
or to more than one byte past the end of the stream.

System.ObjectDisposedException The current stream is closed.

 7
 8

9

 37

 FileStream.SetLength(System.Int64) Method 1

[ILAsm] 2
.method public hidebysig virtual void SetLength(int64 value) 3

[C#] 4
public override void SetLength(long value) 5

Summary 6

Sets the length of the current stream to the specified value. 7

Parameters 8
 9
 10

Parameter Description

value A System.Int64 that specifies the new length of the stream.

 11
Description 12

If value is less than the current length of the stream, the stream is truncated. If value is 13
greater than the current length of the stream, the stream is expanded, and the contents 14
of the stream between the old and the new length are undefined. A stream is required to 15
support both writing and seeking to implement System.IO.FileStream.SetLength. 16
 17
[Note: Use the System.IO.FileStream.CanWrite property to determine whether the 18
current instance supports writing, and the System.IO.FileStream.CanSeek property to 19
determine whether seeking is supported. For additional information, see 20
System.IO.Stream.CanWrite and System.IO.Stream.CanSeek. 21
 22
This method overrides System.IO.Stream.SetLength. 23
 24
] 25

Exceptions 26
 27
 28

Exception Condition

System.IO.IOException An I/O error occurred.

System.NotSupportedException The current stream does not support writing

 38

and seeking.

System.ArgumentOutOfRangeException value is less than zero.

 1
 2

3

 39

 FileStream.Write(System.Byte[], 1

System.Int32, System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual void Write(class System.Byte[] array, 4
int32 offset, int32 count) 5

[C#] 6
public override void Write(byte[] array, int offset, int count) 7

Summary 8

Writes a block of bytes from a specified byte array to the current stream. 9

Parameters 10
 11
 12

Parameter Description

array The System.Byte array to read.

offset
A System.Int32 that specifies the byte offset in array at which to begin
reading.

count
A System.Int32 that specifies the maximum number of bytes to write to the
current stream.

 13
Description 14

If the write operation is successful, the current position of the stream is advanced by the 15
number of bytes written. If an exception occurs, the current position of the stream is 16
unchanged. 17
 18
[Note: Use the System.IO.FileStream.CanWrite property to determine whether the 19
current instance supports writing. For additional information, see 20
System.IO.Stream.CanWrite. 21
 22
This method overrides System.IO.Stream.Write. 23
 24
] 25

Exceptions 26
 27
 28

 40

Exception Condition

System.ArgumentNullException array is null.

System.ArgumentException offset + count is greater than the length of
array.

System.ArgumentOutOfRangeException offset or count is negative.

System.ObjectDisposedException An I/O error occurred.

System.NotSupportedException The current stream does not support writing.

 1
 2

3

 41

 FileStream.WriteByte(System.Byte) Method 1

[ILAsm] 2
.method public hidebysig virtual void WriteByte(unsigned int8 value) 3

[C#] 4
public override void WriteByte(byte value) 5

Summary 6

Writes a byte to the current position in the file stream. 7

Parameters 8
 9
 10

Parameter Description

value A System.Byte to write to the stream.

 11
Description 12

Usage 13

Use System.IO.FileStream.WriteByte method to write a byte to a 14
System.IO.FileStream efficiently. 15

 16
 17
[Note: Use the System.IO.FileStream.CanWrite property to determine whether the 18
current instance supports writing. For additional information, see 19
System.IO.Stream.CanWrite. 20
 21
This method overrides System.IO.Stream.WriteByte. 22
 23
] 24

Exceptions 25
 26
 27

Exception Condition

System.ObjectDisposedException The current stream is closed.

 42

System.NotSupportedException The current stream does not support writing.

 1
 2

3

 43

 FileStream.CanRead Property 1

[ILAsm] 2
.property bool CanRead { public hidebysig virtual specialname bool 3
get_CanRead() } 4

[C#] 5
public override bool CanRead { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream supports reading. 8

Property Value 9
 10

true if the stream supports reading; false if the stream is closed or was opened with 11
write-only access. 12

Description 13

This property is read-only. 14
 15
[Note: This property overrides System.IO.Stream.CanRead. 16
 17
If a class derived from System.IO.Stream does not support reading, the Read method 18
throws a System.NotSupportedException. 19
 20
] 21

22

 44

 FileStream.CanSeek Property 1

[ILAsm] 2
.property bool CanSeek { public hidebysig virtual specialname bool 3
get_CanSeek() } 4

[C#] 5
public override bool CanSeek { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream supports seeking. 8

Property Value 9
 10

true if the stream supports seeking; false if the stream is closed or if the 11
System.IO.FileStream was constructed from an operating-system handle such as a 12
pipe or output to the console. 13

Description 14

[Note: If a class derived from System.IO.Stream does not support seeking, a call to 15
System.IO.FileStream.Length (both get and set), 16
System.IO.FileStream.Position, or System.IO.FileStream.Seek throws a 17
System.NotSupportedException. 18
 19
This property overrides System.IO.Stream.CanSeek. 20
 21
] 22

23

 45

 FileStream.CanWrite Property 1

[ILAsm] 2
.property bool CanWrite { public hidebysig virtual specialname bool 3
get_CanWrite() } 4

[C#] 5
public override bool CanWrite { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream supports writing. 8

Property Value 9
 10

true if the stream supports writing; false if the stream is closed or was opened with 11
read-only access. 12

Description 13

If a class derived from System.IO.Stream does not support writing, a call to 14
System.IO.FileStream.Write or System.IO.FileStream.BeginWrite will throw a 15
System.NotSupportedException. 16
 17
[Note: This property overrides System.IO.Stream.CanWrite.] 18
 19
 20

21

 46

 FileStream.IsAsync Property 1

[ILAsm] 2
.property bool IsAsync { public hidebysig virtual specialname bool 3
get_IsAsync() } 4

[C#] 5
public virtual bool IsAsync { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current instance was opened 8
asynchronously or synchronously. 9

Property Value 10
 11

true if the current System.IO.FileStream was opened asynchronously; otherwise, 12
false. 13

Behaviors 14

This property is read-only. 15

 16

17

 47

 FileStream.Length Property 1

[ILAsm] 2
.property int64 Length { public hidebysig virtual specialname int64 3
get_Length() } 4

[C#] 5
public override long Length { get; } 6

Summary 7

Gets the length in bytes of the stream. 8

Property Value 9
 10

A System.Int64 value containing the length of the stream in bytes. 11

Description 12

This property is read-only. 13

Exceptions 14
 15
 16

Exception Condition

System.NotSupportedException
System.IO.FileStream.CanSeek for this stream is
false.

System.IO.IOException An I/O error occurred, such as the file being closed.

 17
 18

19

 48

 FileStream.Position Property 1

[ILAsm] 2
.property int64 Position { public hidebysig virtual specialname int64 3
get_Position() public hidebysig virtual specialname void 4
set_Position(int64 value) } 5

[C#] 6
public override long Position { get; set; } 7

Summary 8

Gets or sets the current position of this stream. 9

Property Value 10
 11

A System.Int64 containing the current position of this stream. 12

Description 13

The position can be set beyond the end of the stream. 14

Exceptions 15
 16
 17

Exception Condition

System.NotSupportedException The current stream does not support seeking.

System.IO.IOException An I/O error occurred.

System.IO.EndOfStreamException Attempted seeking past the end of a stream
that does not support this.

System.ArgumentOutOfRangeException The value specified for a set operation is
negative.

 18
 19

	Usage
	Usage
	Usage
	Behaviors

