
System.IO.FileStream Class

[ILAsm]
.class public FileStream extends System.IO.Stream
[C#]
public class FileStream: Stream
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Implements:
· System.IDisposable

Summary

Exposes a System.IO.Stream around a file, supporting both synchronous and asynchronous read and write operations.

Inherits From: System.IO.Stream

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.

Description
System.IO.FileStream is used for reading and writing files on a file system, as well as other file-related operating system handles such as pipes, standard input, standard output. System.IO.FileStream buffers input and output for better performance.

The System.IO.FileStream class can open a file in one of two modes, either synchronously or asynchronously, with significant performance consequences for the synchronous methods (System.IO.FileStream.Read and System.IO.FileStream.Write) and the asynchronous methods (System.IO.FileStream.BeginRead and System.IO.FileStream.BeginWrite). Both sets of methods will work in either mode; however, the mode will affect the performance of these methods. System.IO.FileStream defaults to opening files synchronously, but provides a constructor to open files asynchronously.

When accessing files, a security check is performed when the file is created or opened. The security check is typically not done again unless the file is closed and reopened. [Note: Checking permissions when the file is first accessed minimizes the impact of the security check on application performance (since opening a file happens once, while reading and writing can happen multiple times).]

Note that if an opened file is passed to an untrusted caller, the security system can, but is not required to prevent the caller from accessing the file.

System.IO.FileStream objects support random access to files using the System.IO.FileStream.Seek method, and the System.IO.Stream.CanSeek properties of System.IO.FileStream instances encapsulating files are set to true. The System.IO.FileStream.Seek method allows the read/write position to be moved to any position within the file. This is done with byte offset reference point parameters. The byte offset is relative to the seek reference point, which can be the beginning, the current position, or the end of the underlying file, as represented by the three values of the System.IO.SeekOrigin enumeration.

If a System.IO.FileStream encapsulates a device that does not support seeking, its System.IO.FileStream.CanSeek property is false. [Note: For additional information, see System.IO.Stream.CanSeek.]

[Note: The System.IO.File class provides methods for the creation of System.IO.FileStream objects based on file paths. The System.IO.MemoryStream class creates a stream from a byte array and functions similarly to a System.IO.FileStream.]

Example

The following example demonstrates the use of a System.IO.FileStream object.

[C#]
using System;

using System.IO;

class Directory {

 public static void Main(String[] args) {

 FileStream fs = new FileStream("log.txt", FileMode.OpenOrCreate, FileAccess.Write);

 StreamWriter w = new StreamWriter(fs);

 w.BaseStream.Seek(0, SeekOrigin.End); // Set the file pointer to the end.

 Log ("Test1", w);

 Log ("Test2", w);

 w.Close(); // Close the writer and underlying file.

 fs = new FileStream("log.txt", FileMode.OpenOrCreate, FileAccess.Read);

 StreamReader r = new StreamReader(fs);

 r.BaseStream.Seek(0, SeekOrigin.Begin);

 DumpLog (r);

 }

 public static void Log (String logMessage, StreamWriter w) {

 w.Write("Log Entry: ");

 w.WriteLine("{0} {1}", DateTime.Now.ToLongTimeString(), DateTime.Now.ToLongDateString());

 w.WriteLine(":");

 w.WriteLine(":{0}", logMessage);

 w.WriteLine ("-------------------------------");

 w.Flush();

 }

 public static void DumpLog (StreamReader r) {

 while (r.Peek() > -1) { // While not at the end of the file, write to standard output.

 Console.WriteLine(r.ReadLine());

 }

 r.Close();

 }

}

Some example output is

Log Entry: 9:26:21 AM Friday, July 06, 2001

:

:Test1

Log Entry: 9:26:21 AM Friday, July 06, 2001

:

:Test2

 FileStream(System.String, System.IO.FileMode, System.IO.FileAccess, System.IO.FileShare, System.Int32, System.Boolean) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(string path, valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access, valuetype System.IO.FileShare share, int32 bufferSize, bool useAsync)
[C#]
public FileStream(string path, FileMode mode, FileAccess access, FileShare share, int bufferSize, bool useAsync)
Summary
Constructs and initializes a new instance of the System.IO.FileStream class.

Parameters

	Parameter
	Description

	path
	A System.String containing the relative or absolute path for the file that the new System.IO.FileStream object will encapsulate.

	mode
	A System.IO.FileMode value that determines how to open or create the file.

	access
	A System.IO.FileAccess value that determines how the file can be accessed by the System.IO.FileStream object. This parameter is used to specify the initial values of the System.IO.FileStream.CanRead and System.IO.FileStream.CanWrite properties.

	share
	A System.IO.FileShare value that determines how the file will be shared by processes.

	bufferSize
	A System.Int32 containing the desired buffer size in bytes.

	useAsync
	A System.Boolean value that specifies whether to use asynchronous I/O or synchronous I/O. If the underlying operating system does not support asynchronous I/O, the System.IO.FileStream ignores this parameter and uses synchronous I/O.

Description
This constructor sets read/write access to the file.

[Note: path is not required to be a file stored on disk; it can be any part of a system that supports access via streams. For example, depending on the system, this class might be able to access a physical device.]

System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that encapsulate files. If path indicates a device that does not support seeking, the System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is required to be false. For additional information, see System.IO.Stream.CanSeek.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	path is null.

	System.ArgumentException
	path is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.

	System.ArgumentOutOfRangeException
	bufferSize is less than or equal to zero.

-or-

mode, access, or share contain an invalid value.

	System.IO.FileNotFoundException
	mode is System.IO.FileMode.Truncate or System.IO.FileMode.Open, but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.

	System.IO.IOException
	An I/O error occurred, such as specifying System.IO.FileMode.CreateNew and the file specified by path already exists.

	System.Security.SecurityException
	The caller does not have the required permission.

	System.IO.DirectoryNotFoundException
	The directory information specified by path does not exist.

	System.UnauthorizedAccessException
	The access requested is not permitted by the operating system for the specified path.

	System.IO.PathTooLongException
	The length of path or the absolute path information for path exceeds the system-defined maximum length.

Permissions

	Permission
	Description

	System.Security.Permissions. FileIOPermission
	Requires permission to read, write, and append to files. See System.Security.Permissions.FileIOPermissionAccess. Read, System.Security.Permissions.FileIOPermissionAccess. Write, and System.Security.Permissions.FileIOPermissionAccess. Append.

 FileStream(System.String, System.IO.FileMode, System.IO.FileAccess, System.IO.FileShare, System.Int32) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(string path, valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access, valuetype System.IO.FileShare share, int32 bufferSize)
[C#]
public FileStream(string path, FileMode mode, FileAccess access, FileShare share, int bufferSize)
Summary
Constructs and initializes a new instance of the System.IO.FileStream class.

Parameters

	Parameter
	Description

	path
	A System.String containing the relative or absolute path for the file that the current System.IO.FileStream object will encapsulate.

	mode
	A System.IO.FileMode constant that determines how to open or create the file.

	access
	A System.IO.FileAccess value that determines how the file can be accessed by the System.IO.FileStream object. This parameter is used to specify the initial values of the System.IO.FileStream.CanRead and System.IO.FileStream.CanWrite properties. For additional information, see System.IO.Stream.CanRead and System.IO.Stream.CanWrite.

	share
	A System.IO.FileShare constant that determines how the file will be shared by processes.

	bufferSize
	A System.Int32 containing the desired buffer size in bytes.

Description
[Note: path is not required to be a file stored on disk; it can be any part of a system that supports access via streams. For example, depending on the system, this class might be able to access a physical device.]

System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that encapsulate files. If path indicates a device that does not support seeking, the System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is required to be false. For additional information, see System.IO.Stream.CanSeek.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	The path parameter is null.

	System.ArgumentException
	path is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.

	System.ArgumentOutOfRangeException
	bufferSize is less than or equal to zero.

-or-

mode, access, or share contain an invalid value.

	System.IO.FileNotFoundException
	mode is System.IO.FileMode.Truncate or System.IO.FileMode.Open, but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.

	System.IO.IOException
	An I/O error occurred, such as specifying System.IO.FileMode.CreateNew and the file specified by path already exists.

	System.Security.SecurityException
	The caller does not have the required permission.

	System.IO.DirectoryNotFoundException
	The directory information specified in path does not exist.

	System.UnauthorizedAccessException
	The access requested is not permitted by the operating system for the specified path.

	System.IO.PathTooLongException
	The length of path or the absolute path information for path exceeds the system-defined maximum length.

Permissions

	Permission
	Description

	System.Security.Permissions. FileIOPermission
	Requires permission to read, write, and append to files. See System.Security.Permissions.FileIOPermissionAccess. Read, System.Security.Permissions.FileIOPermissionAccess. Write, and System.Security.Permissions.FileIOPermissionAccess. Append.

 FileStream(System.String, System.IO.FileMode, System.IO.FileAccess, System.IO.FileShare) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(string path, valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access, valuetype System.IO.FileShare share)
[C#]
public FileStream(string path, FileMode mode, FileAccess access, FileShare share)
Summary
Constructs and initializes a new instance of the System.IO.FileStream class with the specified path, creation mode, access type, and sharing permission.

Parameters

	Parameter
	Description

	path
	A System.String containing relative or absolute path for the file that the current System.IO.FileStream object will encapsulate.

	mode
	A System.IO.FileMode value that determines how to open or create the file.

	access
	A System.IO.FileAccess value that determines how the file can be accessed by the System.IO.FileStream object. This parameter is used to specify the initial values of the System.IO.FileStream.CanRead and System.IO.FileStream.CanWrite properties. For additional information, see System.IO.Stream.CanRead and System.IO.Stream.CanWrite.

	share
	A System.IO.FileShare value that determines how the file will be shared by processes.

Description
This constructor sets read/write access to the file.

[Note: path is not required to be a file stored on disk; it can be any part of a system that supports access via streams. For example, depending on the system, this class might be able to access a physical device.]

System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that encapsulate files. If path indicates a device that does not support seeking, the System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is required to be false. For additional information, see System.IO.Stream.CanSeek.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	path is null.

	System.ArgumentException
	path is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.

	System.IO.FileNotFoundException
	mode is System.IO.FileMode.Truncate or System.IO.FileMode.Open, but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.

	System.IO.IOException
	An I/O error occurred, such as specifying System.IO.FileMode.CreateNew and the file specified by path already exists.

	System.Security.SecurityException
	The caller does not have the required permission.

	System.IO.DirectoryNotFoundException
	The directory information specified by path does not exist.

	System.UnauthorizedAccessException
	The access requested is not permitted by the operating system for the specified path.

	System.IO.PathTooLongException
	The length of path or the absolute path information for path exceeds the system-defined maximum length.

	System.ArgumentOutOfRangeException
	mode, access, or share contains an invalid value.

Permissions

	Permission
	Description

	System.Security.Permissions. FileIOPermission
	Requires permission to read, write, and append to files. See System.Security.Permissions.FileIOPermissionAccess. Read, System.Security.Permissions.FileIOPermissionAccess. Write, and System.Security.Permissions.FileIOPermissionAccess. Append.

 FileStream(System.String, System.IO.FileMode, System.IO.FileAccess) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(string path, valuetype System.IO.FileMode mode, valuetype System.IO.FileAccess access)
[C#]
public FileStream(string path, FileMode mode, FileAccess access)
Summary
Constructs and initializes a new instance of the System.IO.FileStream class with the specified path, creation mode, and access type.

Parameters

	Parameter
	Description

	path
	A System.String containing the relative or absolute path for the file that the current System.IO.FileStream object will encapsulate.

	mode
	A System.IO.FileMode value that determines how to open or create the file.

	access
	A System.IO.FileAccess value that determines how the file can be accessed by the System.IO.FileStream object. This parameter is used to specify the initial values of the System.IO.FileStream.CanRead and System.IO.FileStream.CanWrite properties.

Description
This constructor sets read/write access to the file. Requests to open the file for writing by the current or another thread will fail until the System.IO.FileStream object has been closed. Read attempts will succeed.

[Note: path is not required to be a file stored on disk; it can be any part of a system that supports access via streams. For example, depending on the system, this class might be able to access a physical device.]

System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that encapsulate files. If path indicates a device that does not support seeking, the System.IO.FileStream.CanSeek property on the resulting System.IO.FileStream is required to be false. For additional information, see System.IO.Stream.CanSeek.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	path is null.

	System.ArgumentException
	path is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.

-or-

access specified Read and mode specified Create, CreateNew, Truncate or Append.

	System.IO.FileNotFoundException
	mode is System.IO.FileMode.Truncate or System.IO.FileMode.Open, but the specified file was not found. If a different mode is specified and the file was not found, a new one is created.

	System.IO.IOException
	An I/O error occurred, such as specifying System.IO.FileMode.CreateNew when the file specified by path already exists.

	System.Security.SecurityException
	The caller does not have the required permission.

	System.IO.DirectoryNotFoundException
	The directory information specified by path does not exist.

	System.UnauthorizedAccessException
	path specified a read-only file and access is not Read, or path specified a directory.

	System.IO.PathTooLongException
	The length of path or the absolute path information for path exceeds the system-defined maximum length.

	System.ArgumentOutOfRangeException
	mode or access contain an invalid value.

Permissions

	Permission
	Description

	System.Security.Permissions. FileIOPermission
	Requires permission to read, write, and append to files. See System.Security.Permissions.FileIOPermissionAccess. Read, System.Security.Permissions.FileIOPermissionAccess. Write, and System.Security.Permissions.FileIOPermissionAccess. Append.

 FileStream(System.String, System.IO.FileMode) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(string path, valuetype System.IO.FileMode mode)
[C#]
public FileStream(string path, FileMode mode)
Summary
Constructs and initializes a new instance of the System.IO.FileStream class with the specified path and creation mode.

Parameters

	Parameter
	Description

	path
	A System.String containing the relative or absolute path for the file that the current System.IO.FileStream object will encapsulate.

	mode
	A System.IO.FileMode value that determines how to open or create the file.

Description
This constructor sets System.IO.FileAccess.ReadWrite access to the file, and the System.IO.Stream.CanRead and System.IO.Stream.CanWrite properties of the current instance are set to true.

[Note: path is not required to be a file stored on disk; it can be any part of a system that supports access via streams. For example, depending on the system, this class might be able to access a physical device.]

System.IO.Stream.CanSeek is true for all System.IO.FileStream objects that encapsulate files. If path specifies a device that does not support seeking, the System.IO.FileStream.CanSeek property of the resulting System.IO.FileStream is required to be false. [Note: For additional information, see System.IO.Stream.CanSeek.]

Requests to open the file for writing by the current or another thread will fail until the System.IO.FileStream object has been closed. Read attempts will succeed.

Exceptions

	Exception
	Condition

	System.ArgumentException
	path is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.

	System.ArgumentNullException
	path is null.

	System.Security.SecurityException
	The caller does not have the required permission.

	System.IO.FileNotFoundException
	mode is System.IO.FileMode.Truncate or System.IO.FileMode.Open, but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.

	System.IO.IOException
	An I/O error occurred, such as specifying System.IO.FileMode.CreateNew when the file specified by path already exists.

	System.IO.DirectoryNotFoundException
	The directory information specified in path does not exist.

	System.IO.PathTooLongException
	The length of path or the absolute path information for path exceeds the system-defined maximum length.

	System.ArgumentOutOfRangeException
	mode contains an invalid value.

Permissions

	Permission
	Description

	System.Security.Permissions. FileIOPermission
	Requires permission to read, write, and append to files. See System.Security.Permissions.FileIOPermissionAccess. Read, System.Security.Permissions.FileIOPermissionAccess. Write, and System.Security.Permissions.FileIOPermissionAccess. Append.

 FileStream.BeginRead(System.Byte[], System.Int32, System.Int32, System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig virtual class System.IAsyncResult BeginRead(class System.Byte[] array, int32 offset, int32 numBytes, class System.AsyncCallback userCallback, object stateObject)
[C#]
public override IAsyncResult BeginRead(byte[] array, int offset, int numBytes, AsyncCallback userCallback, object stateObject)
Summary
Begins an asynchronous read.

Parameters

	Parameter
	Description

	array
	A System.Byte array that specifies the buffer to read data into.

	offset
	A System.Int32 containing the zero based byte offset in array at which to begin writing data read from the stream.

	numBytes
	A System.Int32 containing the maximum number of bytes to read.

	userCallback
	A System.AsyncCallback delegate that references the method to be called when the asynchronous read operation is completed.

	stateObject
	An application-defined object containing the status of the asynchronous read.

Return Value

A System.IAsyncResult that references the asynchronous read.
Description
To determine the number of bytes read, call System.IO.Stream.EndRead with the returned System.IAsyncResult.

Multiple simultaneous asynchronous requests render the request completion order uncertain.

[Note: Use the System.IO.FileStream.CanRead property to determine whether the current instance supports reading. For additional information, see System.IO.Stream.CanRead.

This method overrides System.IO.Stream.BeginRead.

]

Exceptions

	Exception
	Condition

	System.ArgumentException
	The sum of offset andnumBytes is greater than the length of array.

	System.ArgumentNullException
	array is null.

	System.ArgumentOutOfRangeException
	offset or numBytes is negative.

	System.IO.IOException
	The asynchronous read operation attempted to read past the end of the file.

 FileStream.BeginWrite(System.Byte[], System.Int32, System.Int32, System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig virtual class System.IAsyncResult BeginWrite(class System.Byte[] array, int32 offset, int32 numBytes, class System.AsyncCallback userCallback, object stateObject)
[C#]
public override IAsyncResult BeginWrite(byte[] array, int offset, int numBytes, AsyncCallback userCallback, object stateObject)
Summary
Begins an asynchronous write operation.

Parameters

	Parameter
	Description

	array
	A System.Byte array buffer containing data to write to the current stream.

	offset
	A System.Int32 containing the zero-based byte offset in array, which marks the beginning of the data to written to the current stream.

	numBytes
	A System.Int32 containing the maximum number of bytes to write.

	userCallback
	A System.AsyncCallback delegate that references the method to be called when the asynchronous write operation is completed.

	stateObject
	An application-defined object containing the status of the asynchronous write.

Return Value

A System.IAsyncResult that references the asynchronous write.
Description
Multiple simultaneous asynchronous requests render the request completion order uncertain.

[Note: Use the System.IO.FileStream.CanWrite property to determine whether the current instance supports writing. For additional information, see System.IO.Stream.CanWrite.

This method overrides System.IO.Stream.BeginWrite.

]

Exceptions

	Exception
	Condition

	System.ArgumentException
	The sum of offset and numBytes is greater than the length of array.

	System.ArgumentNullException
	array is null.

	System.ArgumentOutOfRangeException
	offset or numBytes is negative.

	System.SystemNotSupportedException
	The stream does not support writing.

	System.IO.IOException
	An I/O error occurred.

 FileStream.Close() Method
[ILAsm]
.method public hidebysig virtual void Close()
[C#]
public override void Close()
Summary
Closes the file and releases any resources associated with the current file stream.

Description
This method is equivalent to System.IO.FileStream.Dispose(true).

Any data previously written to the buffer is copied to the file before the file stream is closed, so it is not necessary to call System.IO.FileStream.Flush before invoking Close. Following a call to Close, any operations on the file stream might raise exceptions. Invoking this method on the same instance multiple times does not result in an exception.

Usage

The System.IO.FileStream.Finalize method invokes Close so that the file stream is closed before the garbage collector finalizes the object. However, objects writing to the System.IO.FileStream, such as a System.IO.StreamWriter, might not have flushed the data from their internal buffers to the System.IO.FileStream when the call to Finalize closes the stream. To prevent data loss, always call Close on the highest-level object.

[Note: This method overrides System.IO.Stream.Close.]

 FileStream.Dispose(System.Boolean) Method
[ILAsm]
.method family hidebysig virtual void Dispose(bool disposing)
[C#]
protected virtual void Dispose(bool disposing)
Summary
Releases the unmanaged resources used by the System.IO.FileStream and optionally releases the managed resources.

Parameters

	Parameter
	Description

	disposing
	Specify true to release both managed and unmanaged resources, or specify false to release only unmanaged resources.

Description
When the disposing parameter is true, this method releases all resources held by any managed objects that this System.IO.FileStream references.

[Note: System.IO.FileStream.Dispose can be called multiple times by other objects. When overriding System.IO.FileStream.Dispose(System.Boolean), be careful not to reference objects that have been previously disposed in an earlier call to System.IO.FileStream.Dispose.

]

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error occurred.

 FileStream.EndRead(System.IAsyncResult) Method
[ILAsm]
.method public hidebysig virtual int32 EndRead(class System.IAsyncResult asyncResult)
[C#]
public override int EndRead(IAsyncResult asyncResult)
Summary
Ends a pending asynchronous read request, and blocks until the read request has completed.

Parameters

	Parameter
	Description

	asyncResult
	The System.IAsyncResult object for the pending asynchronous request.

Return Value

A System.Int32 containing the number of bytes read from the stream. Returns 0 only if the end of the file has been reached, otherwise, this method blocks until at least one byte is available.
Description
EndRead will block until the I/O operation has completed.

[Note: This method overrides System.IO.Stream.EndRead.]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by a call to System.IO.FileStream.BeginRead.

	System.InvalidOperationException
	System.IO.FileStream.EndRead was called multiple times with asyncResult.

 FileStream.EndWrite(System.IAsyncResult) Method
[ILAsm]
.method public hidebysig virtual void EndWrite(class System.IAsyncResult asyncResult)
[C#]
public override void EndWrite(IAsyncResult asyncResult)
Summary
Ends an asynchronous write, blocking until the I/O operation has completed.

Parameters

	Parameter
	Description

	asyncResult
	The System.IAsyncResult object for the pending asynchronous request.

Description
System.IO.FileStream.EndWrite will block until the I/O operation has completed.

[Note: This method overrides System.IO.Stream.EndWrite.]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by a call to System.IO.FileStream.BeginWrite.

	System.InvalidOperationException
	System.IO.FileStream.EndWrite was called multiple times with asyncResult.

 FileStream.Finalize() Method
[ILAsm]
.method family hidebysig virtual void Finalize()
[C#]
~FileStream()
Summary
Releases the resources held by the current instance.

Description
System.IO.FileStream.Finalize closes the System.IO.FileStream.

[Note: Application code does not call this method; it is automatically invoked by during garbage collection unless finalization by the garbage collector has been disabled. For more information, see System.GC.SuppressFinalize, and System.Object.Finalize.

This method overrides System.Object.Finalize.

]

 FileStream.Flush() Method
[ILAsm]
.method public hidebysig virtual void Flush()
[C#]
public override void Flush()
Summary
Updates the underlying file with the current state of the buffer and subsequently clears the buffer.

Description
A System.IO.FileStream buffer can be used either for reading or writing. If data was copied to the buffer for writing, it is written to the file and the buffer is cleared.

If data was copied to the buffer for reading, and the System.IO.Stream.CanSeek property is true, the current position within the file is decremented by the number of unread bytes in the buffer. The buffer is then cleared.

[Note: This method overrides System.IO.Stream.Flush.]

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error occurred.

	System.ObjectDisposedException
	The current instance has already been closed.

 FileStream.Read(System.Byte[], System.Int32, System.Int32) Method
[ILAsm]
.method public hidebysig virtual int32 Read(class System.Byte[] array, int32 offset, int32 count)
[C#]
public override int Read(byte[] array, int offset, int count)
Summary
Reads a block of bytes from the stream and returns the data in the specified buffer.

Parameters

	Parameter
	Description

	array
	A System.Byte array. When this method returns, the bytes between offset and (offset + count - 1) in array are replaced by the bytes read from the current stream.

	offset
	A System.Int32 containing the byte offset in array at which to begin writing data read from the current stream.

	count
	A System.Int32 containing maximum number of bytes to read.

Return Value

A System.Int32 containing the total number of bytes read into the buffer, or zero if the end of the stream is reached.
Description
The System.IO.FileStream.Read method returns zero only after reaching the end of the stream. Otherwise, System.IO.FileStream.Read always reads at least one byte from the stream before returning. If no data is available from the stream, this method blocks until at least one byte of data can be returned.

If the read operation is successful, the current position of the stream is advanced by the number of bytes read. If an exception occurs, the current position of the stream is unchanged.

[Note: Use the System.IO.FileStream.CanRead property to determine whether the current instance supports reading. For additional information, see System.IO.Stream.CanRead.]

[Note: This method overrides System.IO.Stream.Read.]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	array is null.

	System.ArgumentOutOfRangeException
	offset or count is negative.

	System.NotSupportedException
	The current stream does not support reading.

	System.IO.IOException
	An I/O error occurred.

	System.ArgumentException
	offset + count is greater than the length of array.

	System.ObjectDisposedException
	The current stream is closed.

 FileStream.ReadByte() Method
[ILAsm]
.method public hidebysig virtual int32 ReadByte()
[C#]
public override int ReadByte()
Summary
Reads a byte from the file and advances the read position one byte.

Return Value

The byte cast to a System.Int32, or -1 if the end of the stream has been reached.
Description
[Note: Use the System.IO.FileStream.CanRead property to determine whether the current instance supports reading. For additional information, see System.IO.Stream.CanRead.

This method overrides System.IO.Stream.ReadByte.

]

Exceptions

	Exception
	Condition

	System.ObjectDisposedException
	The current stream is closed.

	System.NotSupportedException
	The current stream does not support reading.

 FileStream.Seek(System.Int64, System.IO.SeekOrigin) Method
[ILAsm]
.method public hidebysig virtual int64 Seek(int64 offset, valuetype System.IO.SeekOrigin origin)
[C#]
public override long Seek(long offset, SeekOrigin origin)
Summary
Changes the position within the current stream by the given offset, which is relative to the stated origin.

Parameters

	Parameter
	Description

	offset
	A System.Int64 containing the position relative to origin from which to begin seeking.

	origin
	A System.IO.SeekOrigin value specifying the beginning, the end, or the current position as a reference point for offset.

Return Value

A System.Int64 containing the new position in the stream.
Description
[Note: Use the System.IO.FileStream.CanSeek property to determine whether the current instance supports seeking. For additional information, see System.IO.Stream.CanSeek.]

Usage

The position can be set beyond the end of the stream.

[Note: This method overrides System.IO.Stream.Seek.]

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error occurred.

	System.NotSupportedException
	The stream does not support seeking.

	System.ArgumentException
	Attempted seeking before the beginning of the stream or to more than one byte past the end of the stream.

	System.ObjectDisposedException
	The current stream is closed.

 FileStream.SetLength(System.Int64) Method
[ILAsm]
.method public hidebysig virtual void SetLength(int64 value)
[C#]
public override void SetLength(long value)
Summary
Sets the length of the current stream to the specified value.

Parameters

	Parameter
	Description

	value
	A System.Int64 that specifies the new length of the stream.

Description
If value is less than the current length of the stream, the stream is truncated. If value is greater than the current length of the stream, the stream is expanded, and the contents of the stream between the old and the new length are undefined. A stream is required to support both writing and seeking to implement System.IO.FileStream.SetLength.

[Note: Use the System.IO.FileStream.CanWrite property to determine whether the current instance supports writing, and the System.IO.FileStream.CanSeek property to determine whether seeking is supported. For additional information, see System.IO.Stream.CanWrite and System.IO.Stream.CanSeek.

This method overrides System.IO.Stream.SetLength.

]

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error occurred.

	System.NotSupportedException
	The current stream does not support writing and seeking.

	System.ArgumentOutOfRangeException
	value is less than zero.

 FileStream.Write(System.Byte[], System.Int32, System.Int32) Method
[ILAsm]
.method public hidebysig virtual void Write(class System.Byte[] array, int32 offset, int32 count)
[C#]
public override void Write(byte[] array, int offset, int count)
Summary
Writes a block of bytes from a specified byte array to the current stream.

Parameters

	Parameter
	Description

	array
	The System.Byte array to read.

	offset
	A System.Int32 that specifies the byte offset in array at which to begin reading.

	count
	A System.Int32 that specifies the maximum number of bytes to write to the current stream.

Description
If the write operation is successful, the current position of the stream is advanced by the number of bytes written. If an exception occurs, the current position of the stream is unchanged.

[Note: Use the System.IO.FileStream.CanWrite property to determine whether the current instance supports writing. For additional information, see System.IO.Stream.CanWrite.

This method overrides System.IO.Stream.Write.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	array is null.

	System.ArgumentException
	offset + count is greater than the length of array.

	System.ArgumentOutOfRangeException
	offset or count is negative.

	System.ObjectDisposedException
	An I/O error occurred.

	System.NotSupportedException
	The current stream does not support writing.

 FileStream.WriteByte(System.Byte) Method
[ILAsm]
.method public hidebysig virtual void WriteByte(unsigned int8 value)
[C#]
public override void WriteByte(byte value)
Summary
Writes a byte to the current position in the file stream.

Parameters

	Parameter
	Description

	value
	A System.Byte to write to the stream.

Description
Usage

Use System.IO.FileStream.WriteByte method to write a byte to a System.IO.FileStream efficiently.

[Note: Use the System.IO.FileStream.CanWrite property to determine whether the current instance supports writing. For additional information, see System.IO.Stream.CanWrite.

This method overrides System.IO.Stream.WriteByte.

]

Exceptions

	Exception
	Condition

	System.ObjectDisposedException
	The current stream is closed.

	System.NotSupportedException
	The current stream does not support writing.

 FileStream.CanRead Property
[ILAsm]
.property bool CanRead { public hidebysig virtual specialname bool get_CanRead() }
[C#]
public override bool CanRead { get; }
Summary
Gets a System.Boolean value indicating whether the current stream supports reading.

Property Value

true if the stream supports reading; false if the stream is closed or was opened with write-only access.
Description
This property is read-only.

[Note: This property overrides System.IO.Stream.CanRead.

If a class derived from System.IO.Stream does not support reading, the Read method throws a System.NotSupportedException.

]

 FileStream.CanSeek Property
[ILAsm]
.property bool CanSeek { public hidebysig virtual specialname bool get_CanSeek() }
[C#]
public override bool CanSeek { get; }
Summary
Gets a System.Boolean value indicating whether the current stream supports seeking.

Property Value

true if the stream supports seeking; false if the stream is closed or if the System.IO.FileStream was constructed from an operating-system handle such as a pipe or output to the console.
Description
[Note: If a class derived from System.IO.Stream does not support seeking, a call to System.IO.FileStream.Length (both get and set), System.IO.FileStream.Position, or System.IO.FileStream.Seek throws a System.NotSupportedException.

This property overrides System.IO.Stream.CanSeek.

]

 FileStream.CanWrite Property
[ILAsm]
.property bool CanWrite { public hidebysig virtual specialname bool get_CanWrite() }
[C#]
public override bool CanWrite { get; }
Summary
Gets a System.Boolean value indicating whether the current stream supports writing.

Property Value

true if the stream supports writing; false if the stream is closed or was opened with read-only access.
Description
If a class derived from System.IO.Stream does not support writing, a call to System.IO.FileStream.Write or System.IO.FileStream.BeginWrite will throw a System.NotSupportedException.

[Note: This property overrides System.IO.Stream.CanWrite.]

 FileStream.IsAsync Property
[ILAsm]
.property bool IsAsync { public hidebysig virtual specialname bool get_IsAsync() }
[C#]
public virtual bool IsAsync { get; }
Summary
Gets a System.Boolean value indicating whether the current instance was opened asynchronously or synchronously.

Property Value

true if the current System.IO.FileStream was opened asynchronously; otherwise, false.
Behaviors

This property is read-only.

 FileStream.Length Property
[ILAsm]
.property int64 Length { public hidebysig virtual specialname int64 get_Length() }
[C#]
public override long Length { get; }
Summary
Gets the length in bytes of the stream.

Property Value

A System.Int64 value containing the length of the stream in bytes.
Description
This property is read-only.

Exceptions

	Exception
	Condition

	System.NotSupportedException
	System.IO.FileStream.CanSeek for this stream is false.

	System.IO.IOException
	An I/O error occurred, such as the file being closed.

 FileStream.Position Property
[ILAsm]
.property int64 Position { public hidebysig virtual specialname int64 get_Position() public hidebysig virtual specialname void set_Position(int64 value) }
[C#]
public override long Position { get; set; }
Summary
Gets or sets the current position of this stream.

Property Value

A System.Int64 containing the current position of this stream.
Description
The position can be set beyond the end of the stream.

Exceptions

	Exception
	Condition

	System.NotSupportedException
	The current stream does not support seeking.

	System.IO.IOException
	An I/O error occurred.

	System.IO.EndOfStreamException
	Attempted seeking past the end of a stream that does not support this.

	System.ArgumentOutOfRangeException
	The value specified for a set operation is negative.

PAGE
1

