
 1

System.Object Class 1

 2

[ILAsm] 3
.class public serializable Object 4

[C#] 5
public class Object 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Provides support for classes. This class is the root of the object hierarchy. 15

Library: BCL 16
 17
Thread Safety: All public static members of this type are safe for multithreaded operations. 18
No instance members are guaranteed to be thread safe. 19
 20
Description 21

[Note: Classes derived from System.Object can override the following methods of the 22
System.Object class: 23

· System.Object.Equals - Enables comparisons between objects. 24

· System.Object.Finalize - Performs clean up operations before an object is 25
automatically reclaimed. 26

· System.Object.GetHashCode - Generates a number corresponding to the value of 27
the object (to support the use of a hashtable). 28

· System.Object.ToString - Manufactures a human-readable text string that 29
describes an instance of the class. 30

] 31

32

 2

 Object() Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor() 3

[C#] 4
public Object() 5

Summary 6

Constructs a new instance of the System.Object class. 7

Usage 8

This constructor is called by constructors in derived classes, but it can also be used to 9
directly create an instance of the Object class. This might be useful, for example, if you 10
need to obtain a reference to an object so that you can synchronize on it, as might be 11
the case when using the C# lock statement. 12

 13

14

 3

 Object.Equals(System.Object) Method 1

[ILAsm] 2
.method public hidebysig virtual bool Equals(object obj) 3

[C#] 4
public virtual bool Equals(object obj) 5

Summary 6

Determines whether the specified System.Object is equal to the current instance. 7

Parameters 8
 9
 10

Parameter Description

obj The System.Object to compare with the current instance.

 11
Return Value 12
 13

true if obj is equal to the current instance; otherwise, false. 14

Behaviors 15

The statements listed below are required to be true for all implementations of the 16
System.Object.Equals method. In the list, x, y, and z represent non-null object 17
references. 18

· x.Equals(x) returns true. 19

· x.Equals(y) returns the same value as y.Equals(x). 20

· If (x.Equals(y) && y.Equals(z)) returns true, then x.Equals(z) returns true. 21

· Successive invocations of x.Equals(y) return the same value as long as the objects 22
referenced by x and y are not modified. 23

· x.Equals(null) returns false for non-null x. 24

See System.Object.GetHashCode for additional required behaviors pertaining to the 25
System.Object.Equals method. 26
 27
[Note: Implementations of System.Object.Equals should not throw exceptions.] 28

 4

 1
 2

Default 3

The System.Object.Equals method tests for referential equality, which means that 4
System.Object.Equals returns true if the specified instance of Object and the current 5
instance are the same instance; otherwise, it returns false. 6
 7
[Note: An implementation of the System.Object.Equals method is shown in the 8
following C# code: 9
 10
public virtual bool Equals(Object obj) { 11
 12
 13
return this == obj; 14
 15
 16
} 17
 18
 19
] 20

How and When to Override 21

For some kinds of objects, it is desirable to have System.Object.Equals test for value 22
equality instead of referential equality. Such implementations of Equals return true if 23
the two objects have the same "value", even if they are not the same instance. The 24
definition of what constitutes an object's "value" is up to the implementer of the type, 25
but it is typically some or all of the data stored in the instance variables of the object. 26
For example, the value of a System.String is based on the characters of the string; the 27
Equals method of the System.String class returns true for any two string instances 28
that contain exactly the same characters in the same order. 29
 30
When the Equals method of a base class provides value equality, an override of Equals 31
in a class derived from that base class should invoke the inherited implementation of 32
Equals. 33
 34
All implementations of System.Object.GetHashCode are required to ensure that for any 35
two object references x and y, if x.Equals(y) == true, then x.GetHashCode() == 36
y.GetHashCode(). 37
 38
If your programming language supports operator overloading, and if you choose to 39
overload the equality operator for a given type, that type should override the Equals 40
method. Such implementations of the Equals method should return the same results as 41
the equality operator. Following this guideline will help ensure that class library code 42
using Equals (such as System.Collections.ArrayList and 43
System.Collections.Hashtable) behaves in a manner that is consistent with the way 44
the equality operator is used by application code. 45
 46
If you are implementing a value type, you should follow these guidelines: 47

 5

· Consider overriding Equals to gain increased performance over that provided by the 1
default implementation of Equals on System.ValueType. 2

· If you override Equals and the language supports operator overloading, you should 3
overload the equality operator for your value type. 4

For reference types, the guidelines are as follows: 5

· Consider overriding Equals on a reference type if the semantics of the type are 6
based on the fact that the type represents some value(s). For example, reference 7
types such as Point and BigNumber should override Equals. 8

· Most reference types should not overload the equality operator, even if they override 9
Equals. However, if you are implementing a reference type that is intended to have 10
value semantics, such as a complex number type, you should override the equality 11
operator. 12

If you implement System.IComparable on a given type, you should override Equals on that 13
type. 14

Usage 15

The System.Object.Equals method is called by methods in collections classes that 16
perform search operations, including the System.Array.IndexOf method and the 17
System.Collections.ArrayList.Contains method. 18

 19

Example 20
 21

Example 1: 22
 23
The following example contains two calls to the default implementation of 24
System.Object.Equals. 25
 26
[C#] 27

using System; 28
class MyClass { 29
 static void Main() { 30
 Object obj1 = new Object(); 31
 Object obj2 = new Object(); 32
 Console.WriteLine(obj1.Equals(obj2)); 33
 obj1 = obj2; 34
 Console.WriteLine(obj1.Equals(obj2)); 35
 } 36
} 37
The output is 38
 39

 6

False 1
 2
 3
True 4
 5
 6
Example 2: 7
 8
The following example shows a Point class that overrides the System.Object.Equals 9
method to provide value equality and a class Point3D, which is derived from Point. 10
Because Point's override of System.Object.Equals is the first in the inheritance chain to 11
introduce value equality, the Equals method of the base class (which is inherited from 12
System.Object and checks for referential equality) is not invoked. However, 13
Point3D.Equals invokes Point.Equals because Point implements Equals in a manner 14
that provides value equality. 15
 16
[C#] 17

using System; 18
public class Point: object { 19
 int x, y; 20
 public override bool Equals(Object obj) { 21
 //Check for null and compare run-time types. 22
 if (obj == null || GetType() != obj.GetType()) return false; 23
 Point p = (Point)obj; 24
 return (x == p.x) && (y == p.y); 25
 } 26
 public override int GetHashCode() { 27
 return x ^ y; 28
 } 29
} 30
 31
class Point3D: Point { 32
 int z; 33
 public override bool Equals(Object obj) { 34
 return base.Equals(obj) && z == ((Point3D)obj).z; 35
 } 36
 public override int GetHashCode() { 37
 return base.GetHashCode() ^ z; 38
 } 39
} 40
The Point.Equals method checks that the obj argument is non-null and that it references 41
an instance of the same type as this object. If either of those checks fail, the method 42
returns false. The System.Object.Equals method uses System.Object.GetType to 43
determine whether the run-time types of the two objects are identical. (Note that typeof is 44
not used here because it returns the static type.) If instead the method had used a check of 45
the form obj is Point, the check would return true in cases where obj is an instance of a 46
subclass of Point, even though obj and the current instance are not of the same runtime 47
type. Having verified that both objects are of the same type, the method casts obj to type 48
Point and returns the result of comparing the instance variables of the two objects. 49
 50

 7

In Point3D.Equals, the inherited Equals method is invoked before anything else is done; 1
the inherited Equals method checks to see that obj is non-null, that obj is an instance of 2
the same class as this object, and that the inherited instance variables match. Only when 3
the inherited Equals returns true does the method compare the instance variables 4
introduced in the subclass. Specifically, the cast to Point3D is not executed unless obj has 5
been determined to be of type Point3D or a subclass of Point3D. 6
 7
Example 3: 8
 9
In the previous example, operator == (the equality operator) is used to compare the 10
individual instance variables. In some cases, it is appropriate to use the 11
System.Object.Equals method to compare instance variables in an Equals 12
implementation, as shown in the following example: 13
 14
[C#] 15

using System; 16
class Rectangle { 17
 Point a, b; 18
 public override bool Equals(Object obj) { 19
 if (obj == null || GetType() != obj.GetType()) return false; 20
 Rectangle r = (Rectangle)obj; 21
 //Use Equals to compare instance variables 22
 return a.Equals(r.a) && b.Equals(r.b); 23
 } 24
 public override int GetHashCode() { 25
 return a.GetHashCode() ^ b.GetHashCode(); 26
 } 27
} 28
Example 4: 29
 30
In some languages, such as C#, operator overloading is supported. When a type overloads 31
operator ==, it should also override the System.Object.Equals method to provide the 32
same functionality. This is typically accomplished by writing the Equals method in terms of 33
the overloaded operator ==. For example: 34
 35
[C#] 36

using System; 37
public struct Complex { 38
 double re, im; 39
 public override bool Equals(Object obj) { 40
 return obj is Complex && this == (Complex)obj; 41
 } 42
 public override int GetHashCode() { 43
 return re.GetHashCode() ^ im.GetHashCode(); 44
 } 45
 public static bool operator ==(Complex x, Complex y) { 46
 return x.re == y.re && x.im == y.im; 47
 } 48
 public static bool operator !=(Complex x, Complex y) { 49
 return !(x == y); 50

 8

 } 1
} 2
Because Complex is a C# struct (a value type), it is known that there will be no subclasses 3
of Complex. Therefore, the System.Object.Equals method need not compare the 4
GetType() results for each object, but can instead use the is operator to check the type of 5
the obj parameter. 6

7

 9

 Object.Equals(System.Object, System.Object) 1

Method 2

[ILAsm] 3
.method public hidebysig static bool Equals(object objA, object objB) 4

[C#] 5
public static bool Equals(object objA, object objB) 6

Summary 7

Determines whether two object references are equal. 8

Parameters 9
 10
 11

Parameter Description

objA First object to compare.

objB Second object to compare.

 12
Return Value 13
 14

true if one or more of the following statements is true: 15

· objA and objB refer to the same object, 16

· objA and objB are both null references, 17

· objA is not null and objA.Equals(objB) returns true; 18

otherwise returns false. 19

Description 20

This static method checks for null references before it calls objA.Equals(objB) and 21
returns false if either objA or objB is null. If the Equals(object obj) implementation 22
throws an exception, this method throws an exception. 23

Example 24
 25

 10

The following example demonstrates the System.Object.Equals method. 1
 2
[C#] 3

using System; 4
 5
public class MyClass { 6
 public static void Main() { 7
 string s1 = "Tom"; 8
 string s2 = "Carol"; 9
 Console.WriteLine("Object.Equals(\"{0}\", \"{1}\") => {2}", 10
 s1, s2, Object.Equals(s1, s2)); 11
 12
 s1 = "Tom"; 13
 s2 = "Tom"; 14
 Console.WriteLine("Object.Equals(\"{0}\", \"{1}\") => {2}", 15
 s1, s2, Object.Equals(s1, s2)); 16
 17
 s1 = null; 18
 s2 = "Tom"; 19
 Console.WriteLine("Object.Equals(null, \"{1}\") => {2}", 20
 s1, s2, Object.Equals(s1, s2)); 21
 22
 s1 = "Carol"; 23
 s2 = null; 24
 Console.WriteLine("Object.Equals(\"{0}\", null) => {2}", 25
 s1, s2, Object.Equals(s1, s2)); 26
 27
 s1 = null; 28
 s2 = null; 29
 Console.WriteLine("Object.Equals(null, null) => {2}", 30
 s1, s2, Object.Equals(s1, s2)); 31
 } 32
} 33
 34
The output is 35
 36
Object.Equals("Tom", "Carol") => False 37
 38
 39
Object.Equals("Tom", "Tom") => True 40
 41
 42
Object.Equals(null, "Tom") => False 43
 44
 45
Object.Equals("Carol", null) => False 46
 47
 48
Object.Equals(null, null) => True 49
 50

51

 11

 Object.Finalize() Method 1

[ILAsm] 2
.method family hidebysig virtual void Finalize() 3

[C#] 4
~Object() 5

Summary 6

Allows a System.Object to perform cleanup operations before the memory allocated for 7
the System.Object is automatically reclaimed. 8

Behaviors 9

During execution, System.Object.Finalize is automatically called after an object 10
becomes inaccessible, unless the object has been exempted from finalization by a call to 11
System.GC.SuppressFinalize. During shutdown of an application domain, 12
System.Object.Finalize is automatically called on objects that are not exempt from 13
finalization, even those that are still accessible. System.Object.Finalize is 14
automatically called only once on a given instance, unless the object is re-registered 15
using a mechanism such as System.GC.ReRegisterForFinalize and 16
System.GC.SuppressFinalize has not been subsequently called. 17
 18
Conforming implementations of the CLI are required to make every effort to ensure that 19
for every object that has not been exempted from finalization, the 20
System.Object.Finalize method is called after the object becomes inaccessible. 21
However, there might be some circumstances under which Finalize is not called. 22
Conforming CLI implementations are required to explicitly specify the conditions under 23
which Finalize is not guaranteed to be called. [Note: For example, Finalize might not 24
be guaranteed to be called in the event of equipment failure, power failure, or other 25
catastrophic system failures.] 26
 27
 28
 29
In addition to System.GC.ReRegisterForFinalize and System.GC.SuppressFinalize, 30
conforming implementations of the CLI are allowed to provide other mechanisms that 31
affect the behavior of System.Object.Finalize. Any mechanisms provided are required 32
to be specified by the CLI implementation. 33
 34
The order in which the Finalize methods of two objects are run is unspecified, even if 35
one object refers to the other. 36
 37
The thread on which Finalize is run is unspecified. 38
 39
Every implementation of System.Object.Finalize in a derived type is required to call 40
its base type's implementation of Finalize. This is the only case in which application 41
code calls System.Object.Finalize. 42

Default 43

 12

The System.Object.Finalize implementation does nothing. 1

How and When to Override 2

A type should implement Finalize when it uses unmanaged resources such as file 3
handles or database connections that must be released when the managed object that 4
uses them is reclaimed. Because Finalize methods can be invoked in any order 5
(including from multiple threads), synchronization can be necessary if the Finalize 6
method can interact with other objects, whether accessible or not. Furthermore, since 7
the order in which Finalize is called is unspecified, implementers of Finalize (or of 8
destructors implemented through overriding Finalize) must take care to correctly handle 9
references to other objects, as their Finalize method might already have been 10
invoked. In general, referenced objects should not be considered valid during 11
finalization. 12
 13
See the System.IDisposable interface for an alternate means of disposing of resources. 14

Usage 15

For C# developers: Destructors are the C# mechanism for performing cleanup 16
operations. Destructors provide appropriate safeguards, such as automatically calling 17
the base type's destructor. In C# code, System.Object.Finalize cannot be called or 18
overridden. 19

 20

21

 13

 Object.GetHashCode() Method 1

[ILAsm] 2
.method public hidebysig virtual int32 GetHashCode() 3

[C#] 4
public virtual int GetHashCode() 5

Summary 6

Generates a hash code for the current instance. 7

Return Value 8
 9

A System.Int32 containing the hash code for the current instance. 10

Description 11

System.Object.GetHashCode serves as a hash function for a specific type. [Note: A 12
hash function is used to quickly generate a number (a hash code) corresponding to the 13
value of an object. Hash functions are used with hashtables. A good hash function 14
algorithm rarely generates hash codes that collide. For more information about hash 15
functions, see The Art of Computer Programming, Vol. 3, by Donald E. Knuth.] 16
 17
 18

Behaviors 19

All implementations of System.Object.GetHashCode are required to ensure that for any 20
two object references x and y, if x.Equals(y) == true, then x.GetHashCode() == 21
y.GetHashCode(). 22
 23
Hash codes generated by System.Object.GetHashCode need not be unique. 24
 25
Implementations of System.Object.GetHashCode are not permitted to throw 26
exceptions. 27

Default 28

The System.Object.GetHashCode implementation attempts to produce a unique hash 29
code for every object, but the hash codes generated by this method are not guaranteed 30
to be unique. Therefore, System.Object.GetHashCode can generate the same hash 31
code for two different instances. 32

 33

How and When to Override 34

 14

It is recommended (but not required) that types overriding 1
System.Object.GetHashCode also override System.Object.Equals. Hashtables cannot 2
be relied on to work correctly if this recommendation is not followed. 3

 4

Usage 5

Use this method to obtain the hash code of an object. Hash codes should not be 6
persisted (i.e. in a database or file) as they are allowed to change from run to run. 7

 8

Example 9
 10

Example 1 11
 12
In some cases, System.Object.GetHashCode is implemented to simply return an integer 13
value. The following example illustrates an implementation of 14
System.Int32.GetHashCode, which returns an integer value: 15
 16
[C#] 17

using System; 18
public struct Int32 { 19
 int value; 20
 //other methods... 21
 22
 public override int GetHashCode() { 23
 return value; 24
 } 25
} 26
Example 2 27
 28
Frequently, a type has multiple data members that can participate in generating the hash 29
code. One way to generate a hash code is to combine these fields using an xor (exclusive 30
or) operation, as shown in the following example: 31
 32
[C#] 33

using System; 34
public struct Point { 35
 int x; 36
 int y; 37
 //other methods 38
 39
 public override int GetHashCode() { 40
 return x ^ y; 41
 } 42
} 43

 15

Example 3 1
 2
The following example illustrates another case where the type's fields are combined using 3
xor (exclusive or) to generate the hash code. Notice that in this example, the fields 4
represent user-defined types, each of which implements System.Object.GetHashCode (and 5
should implement System.Object.Equals as well): 6
 7
[C#] 8

using System; 9
public class SomeType { 10
 public override int GetHashCode() { 11
 return 0; 12
 } 13
} 14
 15
public class AnotherType { 16
 public override int GetHashCode() { 17
 return 1; 18
 } 19
} 20
 21
public class LastType { 22
 public override int GetHashCode() { 23
 return 2; 24
 } 25
} 26
public class MyClass { 27
 SomeType a = new SomeType(); 28
 AnotherType b = new AnotherType(); 29
 LastType c = new LastType(); 30
 31
 public override int GetHashCode () { 32
 return a.GetHashCode() ^ b.GetHashCode() ^ c.GetHashCode(); 33
 } 34
} 35
Avoid implementing System.Object.GetHashCode in a manner that results in circular 36
references. In other words, if AClass.GetHashCode calls BClass.GetHashCode, it should not 37
be the case that BClass.GetHashCode calls AClass.GetHashCode. 38
 39
Example 4 40
 41
In some cases, the data member of the class in which you are implementing 42
System.Object.GetHashCode is bigger than a System.Int32. In such cases, you could 43
combine the high order bits of the value with the low order bits using an XOR operation, as 44
shown in the following example: 45
 46
[C#] 47

using System; 48
public struct Int64 { 49
 long value; 50
 //other methods... 51

 16

 1
 public override int GetHashCode() { 2
 return ((int)value ^ (int)(value >> 32)); 3
 } 4
} 5

6

 17

 Object.GetType() Method 1

[ILAsm] 2
.method public hidebysig instance class System.Type GetType() 3

[C#] 4
public Type GetType() 5

Summary 6

Gets the type of the current instance. 7

Return Value 8
 9

The instance of System.Type that represents the run-time type (the exact type) of the 10
current instance. 11

Description 12

For two objects x and y that have identical run-time types, 13
System.Object.ReferenceEquals(x.GetType(),y.GetType()) returns true. 14

Example 15
 16

The following example demonstrates the fact that System.Object.GetType returns the 17
run-time type of the current instance: 18
 19
[C#] 20

using System; 21
public class MyBaseClass: Object { 22
} 23
public class MyDerivedClass: MyBaseClass { 24
} 25
public class Test { 26
 public static void Main() { 27
 MyBaseClass myBase = new MyBaseClass(); 28
 MyDerivedClass myDerived = new MyDerivedClass(); 29
 30
 object o = myDerived; 31
 MyBaseClass b = myDerived; 32
 33
 Console.WriteLine("mybase: Type is {0}", myBase.GetType()); 34
 Console.WriteLine("myDerived: Type is {0}", myDerived.GetType()); 35
 Console.WriteLine("object o = myDerived: Type is {0}", o.GetType()); 36
 Console.WriteLine("MyBaseClass b = myDerived: Type is {0}", b.GetType()); 37
 } 38
} 39

 18

The output is 1
 2
mybase: Type is MyBaseClass 3
 4
 5
myDerived: Type is MyDerivedClass 6
 7
 8
object o = myDerived: Type is MyDerivedClass 9
 10
 11
MyBaseClass b = myDerived: Type is MyDerivedClass 12
 13

14

 19

 Object.MemberwiseClone() Method 1

[ILAsm] 2
.method family hidebysig instance object MemberwiseClone() 3

[C#] 4
protected object MemberwiseClone() 5

Summary 6

Creates a shallow copy of the current instance. 7

Return Value 8
 9

A shallow copy of the current instance. The run-time type (the exact type) of the 10
returned object is the same as the run-time type of the object that was copied. 11

Description 12

System.Object.MemberwiseClone creates a new instance of the same type as the 13
current instance and then copies each of the object's non-static fields in a manner that 14
depends on whether the field is a value type or a reference type. If the field is a value 15
type, a bit-by-bit copy of all the field's bits is performed. If the field is a reference type, 16
only the reference is copied. The algorithm for performing a shallow copy is as follows 17
(in pseudo-code): 18
 19
for each instance field f in this instance 20
 21
 22
if (f is a value type) 23
 24
 25
bitwise copy the field 26
 27
 28
if (f is a reference type) 29
 30
 31
copy the reference 32
 33
 34
end for loop 35
 36
 37
[Note: This mechanism is referred to as a shallow copy because it copies rather than 38
clones the non-static fields.] 39
 40
 41
 42
Because System.Object.MemberwiseClone implements the above algorithm, for any 43
object, a, the following statements are required to be true: 44

 20

· a.MemberwiseClone() is not identical to a. 1

· a.MemberwiseClone().GetType() is identical to a.GetType(). 2

System.Object.MemberwiseClone does not call any of the type's constructors. 3
 4
[Note: If System.Object.Equals has been overridden, a.MemberwiseClone().Equals(a) 5
might return false.] 6
 7
 8

Usage 9

For an alternate copying mechanism, see System.ICloneable. 10
 11
System.Object.MemberwiseClone is protected (rather than public) to ensure that from 12
verifiable code it is only possible to clone objects of the same class as the one 13
performing the operation (or one of its subclasses). Although cloning an object does not 14
directly open security holes, it does allow an object to be created without running any of 15
its constructors. Since these constructors might establish important invariants, objects 16
created by cloning might not have these invariants established, and this can lead to 17
incorrect program behavior. For example, a constructor might add the new object to a 18
linked list of all objects of this class, and cloning the object would not add the new 19
object to that list -- thus operations that relied on the list to locate all instances would 20
fail to notice the cloned object. By making the method protected, only objects of the 21
same class (or a subclass) can produce a clone and implementers of those classes are 22
(presumably) aware of the appropriate invariants and can arrange for them to be true 23
without necessarily calling a constructor. 24

Example 25
 26

The following example shows a class called MyClass as well as a representation of the 27
instance of MyClass returned by System.Object.MemberwiseClone. 28
 29
[C#] 30

using System; 31
class MyBaseClass { 32
 public static string CompanyName = "My Company"; 33
 public int age; 34
 public string name; 35
} 36
 37
class MyDerivedClass: MyBaseClass { 38
 39
 static void Main() { 40
 41
 //Create an instance of MyDerivedClass 42
 //and assign values to its fields. 43
 MyDerivedClass m1 = new MyDerivedClass(); 44

 21

 m1.age = 42; 1
 m1.name = "Sam"; 2
 3
 //Do a shallow copy of m1 4
 //and assign it to m2. 5
 MyDerivedClass m2 = (MyDerivedClass) m1.MemberwiseClone(); 6
 } 7
} 8
A graphical representation of m1 and m2 might look like this 9

 10
+---------------+ 11
 12
| 42 | m1 13
 14
+---------------+ 15
 16
| +---------|-----------------> "Sam" 17
 18
+---------------+ /|\ 19
 20
 | 21
 22
+---------------+ | 23
 24
| 42 | | m2 25
 26
+---------------+ | 27
 28
| +--------|---------------------| 29
 30
+---------------+ 31

32

 22

 Object.ReferenceEquals(System.Object, 1

System.Object) Method 2

[ILAsm] 3
.method public hidebysig static bool ReferenceEquals(object objA, object 4
objB) 5

[C#] 6
public static bool ReferenceEquals(object objA, object objB) 7

Summary 8

Determines whether two object references are identical. 9

Parameters 10
 11
 12

Parameter Description

objA First object to compare.

objB Second object to compare.

 13
Return Value 14
 15

True if a and b refer to the same object or are both null references; otherwise, false. 16

Description 17

This static method provides a way to compare two objects for reference equality. It does 18
not call any user-defined code, including overrides of System.Object.Equals. 19

Example 20
 21

[C#] 22

using System; 23
class MyClass { 24
 static void Main() { 25
 object o = null; 26
 object p = null; 27
 object q = new Object(); 28
 Console.WriteLine(Object.ReferenceEquals(o, p)); 29

 23

 p = q; 1
 Console.WriteLine(Object.ReferenceEquals(p, q)); 2
 Console.WriteLine(Object.ReferenceEquals(o, p)); 3
 } 4
} 5
 6
The output is 7
 8
True 9
 10
 11
True 12
 13
 14
False 15
 16

17

 24

 Object.ToString() Method 1

[ILAsm] 2
.method public hidebysig virtual string ToString() 3

[C#] 4
public virtual string ToString() 5

Summary 6

Creates and returns a System.String representation of the current instance. 7

Return Value 8
 9

A System.String representation of the current instance. 10

Behaviors 11

System.Object.ToString returns a string whose content is intended to be understood 12
by humans. Where the object contains culture-sensitive data, the string representation 13
returned by System.Object.ToString takes into account the current system culture. 14
For example, for an instance of the System.Double class whose value is zero, the 15
implementation of System.Double.ToString might return "0.00" or "0,00" depending 16
on the current UI culture. [Note: Although there are no exact requirements for the 17
format of the returned string, it should as much as possible reflect the value of the 18
object as perceived by the user.] 19

 20

Default 21

System.Object.ToString is equivalent to calling System.Object.GetType to obtain the 22
System.Type object for the current instance and then returning the result of calling the 23
System.Object.ToString implementation for that type. [Note: The value returned 24
includes the full name of the type.] 25

 26

How and When to Override 27

It is recommended, but not required, that System.Object.ToString be overridden in a 28
derived class to return values that are meaningful for that type. For example, the base 29
data types, such as System.Int32, implement System.Object.ToString so that it 30
returns the string form of the value the object represents. 31
 32
Subclasses that require more control over the formatting of strings than 33
System.Object.ToString provides should implement System.IFormattable, whose 34
System.Object.ToString method uses the culture of the current thread. 35

 25

Example 1
 2

The following example outputs the textual description of the value of an object of type 3
System.Object to the console. 4
 5
[C#] 6

using System; 7
 8
class MyClass { 9
 static void Main() { 10
 object o = new object(); 11
 Console.WriteLine (o.ToString()); 12
 } 13
} 14
 15
The output is 16
 17
System.Object 18

 19

	Usage
	Behaviors
	Default
	How and When to Override
	Usage
	Behaviors
	Default
	How and When to Override
	Usage
	Behaviors
	Default
	How and When to Override
	Usage
	Usage
	Behaviors
	Default
	How and When to Override

