
 1

System.Reflection.Binder Class 1

 2

[ILAsm] 3
.class public abstract serializable Binder extends System.Object 4

[C#] 5
public abstract class Binder 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Performs custom overload resolution and argument coercion to bind a member when 15
reflection is used to invoke a member of a System.Type. 16

Inherits From: System.Object 17
 18
Library: Reflection 19
 20
Thread Safety: All public static members of this type are safe for multithreaded operations. 21
No instance members are guaranteed to be thread safe. 22
 23
Description 24

Late binding is controlled by a customized binding interface through reflection. The 25
System.Reflection.Binder class is designed to provide this functionality. 26
System.Reflection.Binder objects are used in overload resolution and argument 27
coercion for dynamic invocation of members at runtime. 28
 29
Access to information obtained from reflection is controlled at two levels: untrusted code 30
and code with System.Security.Permissions.ReflectionPermission. 31
 32
Untrusted code is code with no special level of trust (such as code downloaded from the 33
Internet). Such code is allowed to invoke anything that it would have been able to 34
invoke in an early bound way. 35
 36
System.Security.Permissions.ReflectionPermission controls access to metadata 37
through reflection. If this permission is granted to code, that code has access to all the 38
types in its application domain, assembly, and module. It can access information about 39
public, family, and private members of all types it has access to. Two primary 40
capabilities are granted: 41

 2

· The ability to read the metadata for family and private members of any type. 1

· The ability to access peer classes in the module and peer modules in the assembly. 2

[Note: The term "reflection" refers to the ability to obtain information about a 3
System.Object during runtime. The primary means through which this information is 4
accessed is via the System.Type of the object. Reflection allows the programmatic discovery 5
of a type's metadata. The information included in the metadata includes details about the 6
assembly or module in which the type is defined as well as members of the type. Reflection 7
uses this information to provide the following primary services: 8

· Access to type information at runtime. 9

· The ability to use this type information to create instances, invoke methods, and 10
access data members of the type. 11

The primary users of these services are script engines, object viewers, compilers, and object 12
persistence formatters. 13
 14
Through reflection, methods can be bound and invoked at runtime. If more than one 15
member exists for a given member name, overload resolution determines which 16
implementation of that method is invoked by the system. Coercion can occur when a 17
parameter specified for a method call does not match the type specified for the parameter 18
in the method signature. When possible, the binder converts the parameter (coerces it) to 19
the type specified by the method signature. Coercion might not be possible depending on 20
the types involved. 21
 22
To bind to a method, field, or property, typically a list of probable candidates is obtained 23
from the System.Type of a System.Object. That list is the passed to the appropriate 24
method of a System.Reflection.Binder instance. Based on the other parameters passed 25
to that method, typically (although not necessarily) one of the members of the list is 26
chosen, and an object that reflects that member is returned. 27
 28
The system supplies a default binder that provides default binding rules. Because binding 29
rules vary among programming languages, it is recommended that each programming 30
language provide a custom implementation of System.Reflection.Binder. 31
 32
] 33

34

 3

 Binder() Constructor 1

[ILAsm] 2
family rtspecialname specialname instance void .ctor() 3

[C#] 4
protected Binder() 5

Summary 6

Constructs a new instance of the System.Reflection.Binder class. 7

8

 4

 1

Binder.BindToField(System.Reflection.Binding2

Flags, System.Reflection.FieldInfo[], 3

System.Object, 4

System.Globalization.CultureInfo) Method 5

[ILAsm] 6
.method public hidebysig virtual abstract class 7
System.Reflection.FieldInfo BindToField(valuetype 8
System.Reflection.BindingFlags bindingAttr, class 9
System.Reflection.FieldInfo[] match, object value, class 10
System.Globalization.CultureInfo culture) 11

[C#] 12
public abstract FieldInfo BindToField(BindingFlags bindingAttr, 13
FieldInfo[] match, object value, CultureInfo culture) 14

Summary 15

Selects a field from the specified set of fields, based on the specified criteria. 16

Parameters 17
 18
 19

Parameter Description

bindingAttr
A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. For requirements, see the Behaviors section.

match
An array of System.Reflection.FieldInfo objects whose elements represent
the set of fields that reflection has determined to be a possible match, typically
because the fields have the correct member name.

value

An object of a type that is assignment-compatible with the type of the field
being searched for. [Note: For example, if value is an instance of a class, the
type of that instance can be assigned to the type of the field returned by this
method. Fields in match that cannot be assigned to this value are eliminated
from the search.]

culture The only defined value for this parameter is null.

 20
Return Value 21
 22

 5

A System.Reflection.FieldInfo instance that reflects the field that matches the 1
specified criteria. It is not required that this instance be contained in match. If a suitable 2
field is not found, returns null. 3

Behaviors 4

For the bindingAttr parameter, the caller is required to specify either 5
System.Reflection.BindingFlags.Public or 6
System.Reflection.BindingFlags.NonPublic, and either 7
System.Reflection.BindingFlags.Instance or 8
System.Reflection.BindingFlags.Static. If at least one value from each pair is not 9
specified, this method is required to return null. 10

 11

12

 6

 1

Binder.BindToMethod(System.Reflection.Bind2

ingFlags, System.Reflection.MethodBase[], 3

System.Object[]&, 4

System.Reflection.ParameterModifier[], 5

System.Globalization.CultureInfo, 6

System.String[], System.Object&) Method 7

[ILAsm] 8
.method public hidebysig virtual abstract class 9
System.Reflection.MethodBase BindToMethod(valuetype 10
System.Reflection.BindingFlags bindingAttr, class 11
System.Reflection.MethodBase[] match, object[]& args, class 12
System.Reflection.ParameterModifier[] modifiers, class 13
System.Globalization.CultureInfo culture, string[] names, object& state) 14

[C#] 15
public abstract MethodBase BindToMethod(BindingFlags bindingAttr, 16
MethodBase[] match, ref object[] args, ParameterModifier[] modifiers, 17
CultureInfo culture, string[] names, ref object state) 18

Summary 19

Selects a method based on the specified criteria. 20

Parameters 21
 22
 23

Parameter Description

bindingAttr
A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. For requirements, see the Behaviors section.

match
An array of System.Reflection.MethodBase objects that represent the set of
methods that Reflection has determined to be a possible match, typically
because they have the correct member name.

args
An array of objects that represent the parameters passed in the method
invocation. The types, values, and order of the elements of this array might be
changed by this method to match the signature of the selected method.

modifiers The only defined value for this parameter is null.

 7

culture The only defined value for this parameter is null.

names A System.String array containing the names of methods to be searched.

state

A binder-provided System.Object that keeps track of parameter reordering.
The state object is totally defined by the implementer of the
System.Reflection.Binder class. This object is null if the binder does not
reorder the argument array of the bound method.

 1
Return Value 2
 3

A System.Reflection.MethodBase instance that reflects the method that matches to 4
the specified criteria. It is not required that this instance be contained in match. If a 5
suitable method is not found, returns null. 6

Description 7

If state is not null, the system invokes 8
System.Reflection.Binder.ReorderArgumentArray after this method returns. [Note: 9
This allows a caller to map the argument array of a method back to the original form if 10
the order has been altered by System.Reflection.Binder.BindToMethod. This is useful 11
if ByRef arguments are in the argument array, because the caller can retrieve those 12
arguments in their original order on return from this method. When arguments are 13
passed by name (i.e., using named arguments), the binder reorders the argument array 14
and that is what the caller sees. This method insures that the original order of the 15
arguments is restored.] 16
 17
 18

Behaviors 19

For the bindingAttr parameter, the caller is required to specify either 20
System.Reflection.BindingFlags.Public or 21
System.Reflection.BindingFlags.NonPublic, and either 22
System.Reflection.BindingFlags.Instance or 23
System.Reflection.BindingFlags.Static. If at least one value from each pair is not 24
specified, this method is required to return null. 25
 26
The System.Reflection.Binder.BindToMethod method is permitted to change the 27
order of the argument array of a method call only if the binder returns, via the state 28
parameter, a non-null opaque object that records the original order of the argument 29
array. If, on return from System.Reflection.Binder.BindToMethod, state is not null, 30
the system calls System.Reflection.Binder.ReorderArgumentArray. 31

32

 8

 Binder.ChangeType(System.Object, 1

System.Type, 2

System.Globalization.CultureInfo) Method 3

[ILAsm] 4
.method public hidebysig virtual abstract object ChangeType(object value, 5
class System.Type type, class System.Globalization.CultureInfo culture) 6

[C#] 7
public abstract object ChangeType(object value, Type type, CultureInfo 8
culture) 9

Summary 10

Converts the type of the specified object to the specified type. 11

Parameters 12
 13
 14

Parameter Description

value The object to be converted to a new System.Type.

type The System.Type to which value is converted.

culture The only defined value for this parameter is null.

 15
Return Value 16
 17

A new object of the type specified by type. The contents of this object are equal to those 18
of value. 19

Behaviors 20

As described above. 21

 22

How and When to Override 23

Implement this method to change the type of a member of a parameter array. Typically, 24
it is recommended that implementations of this method perform only widening 25
conversions. 26

 9

 1

Usage 2

This method is used to change the type of a element in a parameter array to match the 3
type required by the signature of a bound method. 4

 5

6

 10

 1

Binder.ReorderArgumentArray(System.Object2

[]&, System.Object) Method 3

[ILAsm] 4
.method public hidebysig virtual abstract void 5
ReorderArgumentArray(object[]& args, object state) 6

[C#] 7
public abstract void ReorderArgumentArray(ref object[] args, object state) 8

Summary 9

Restores the specified set of parameters to their original order after a call to 10
System.Reflection.Binder.BindToMethod. 11

Parameters 12
 13
 14

Parameter Description

args An array of objects whose elements represent the parameters passed to the
bound method in their original order.

state

A binder-provided opaque object that keeps track of parameter reordering. This
object is the same object that was passed as the state parameter in the
invocation of System.Reflection.Binder.BindToMethod that caused
System.Reflection.Binder.ReorderArgumentArray to be called.

 15
Description 16

[Note: When a method call is bound to a method through reflection using 17
System.Reflection.Binder.BindToMethod, the order, value, and type of the 18
parameters in the original method call can be changed to match the signature of the 19
bound method. The binder creates state as an opaque object that records the original 20
order of the argument array. If, on return from 21
System.Reflection.Binder.BindToMethod, state is not null, the system calls 22
System.Reflection.Binder.ReorderArgumentArray. This allows a caller to map the 23
argument array of a method back to the original form if the order had been altered by 24
System.Reflection.Binder.BindToMethod. This is useful if ByRef arguments are in the 25
argument array, because the caller can retrieve those arguments in their original order 26
on return from this method. When arguments are passed by name (i.e., using named 27
arguments), the binder reorders the argument array and that is what the caller sees. 28
This method insures that the original order of the arguments is restored.] 29

 11

 1
 2

Behaviors 3

state is required to be a non-null System.Object that tracks the original ordering of 4
args if args is reordered by a call to System.Reflection.Binder.BindToMethod. This 5
method is required to restore the elements of args to their original order, value, and 6
System.Type 7

 8

How and When to Override 9

Implement this method to insure that the parameters contained in args are returned to 10
their original order, System.Type and value, after being used by a bound method. 11

 12

Usage 13

Use this method to insure that the parameters contained in args are returned to their 14
original order, System.Type and value, after being used by a bound method. 15

 16

17

 12

 1

Binder.SelectMethod(System.Reflection.Bindi2

ngFlags, System.Reflection.MethodBase[], 3

System.Type[], 4

System.Reflection.ParameterModifier[]) 5

Method 6

[ILAsm] 7
.method public hidebysig virtual abstract class 8
System.Reflection.MethodBase SelectMethod(valuetype 9
System.Reflection.BindingFlags bindingAttr, class 10
System.Reflection.MethodBase[] match, class System.Type[] types, class 11
System.Reflection.ParameterModifier[] modifiers) 12

[C#] 13
public abstract MethodBase SelectMethod(BindingFlags bindingAttr, 14
MethodBase[] match, Type[] types, ParameterModifier[] modifiers) 15

Summary 16

Selects a method from the specified set of methods, based on the argument type. 17

Parameters 18
 19
 20

Parameter Description

bindingAttr
A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. For requirements, see the Behaviors section.

match
An array of System.Reflection.MethodBase objects that represent the set of
methods that Reflection has determined to be a possible match, typically
because they have the correct member name.

types
An array of System.Type objects that represent the values used to locate a
matching method.

modifiers The only defined value for this parameter is null.

 21
Return Value 22
 23

 13

A System.Reflection.MethodBase instance that reflects the method that is matched to 1
the specified criteria. It is not required that this instance be contained in match. If a 2
suitable method is not found, returns null. 3

Behaviors 4

For the bindingAttr parameter, the caller is required to specify either 5
System.Reflection.BindingFlags.Public or 6
System.Reflection.BindingFlags.NonPublic, and either 7
System.Reflection.BindingFlags.Instance or 8
System.Reflection.BindingFlags.Static. If at least one value from each pair is not 9
specified, this method is required to return null. 10

 11

12

 14

 1

Binder.SelectProperty(System.Reflection.Bind2

ingFlags, System.Reflection.PropertyInfo[], 3

System.Type, System.Type[], 4

System.Reflection.ParameterModifier[]) 5

Method 6

[ILAsm] 7
.method public hidebysig virtual abstract class 8
System.Reflection.PropertyInfo SelectProperty(valuetype 9
System.Reflection.BindingFlags bindingAttr, class 10
System.Reflection.PropertyInfo[] match, class System.Type returnType, 11
class System.Type[] indexes, class System.Reflection.ParameterModifier[] 12
modifiers) 13

[C#] 14
public abstract PropertyInfo SelectProperty(BindingFlags bindingAttr, 15
PropertyInfo[] match, Type returnType, Type[] indexes, ParameterModifier[] 16
modifiers) 17

Summary 18

Selects a property from the specified set of properties, based on the specified criteria. 19

Parameters 20
 21
 22

Parameter Description

bindingAttr
A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. For requirements, see the Behaviors section.

match
An array of System.Reflection.PropertyInfo objects that represent the set
of properties that Reflection has determined to be a possible match, typically
because they have the correct member name.

returnType The System.Type of the property being searched for.

indexes
An array of System.Type objects that represent the index types of the property
being searched for. [Note: Use this parameter for index properties such as the
indexer for a class.]

modifiers The only defined value for this parameter is null.

 15

 1
Return Value 2
 3

A System.Reflection.PropertyInfo instance that reflects the property that matches 4
the specified criteria. It is not required that this instance be contained in match. If a 5
suitable property is not found, returns null. 6

Behaviors 7

For the bindingAttr parameter, the caller is required to specify either 8
System.Reflection.BindingFlags.Public or 9
System.Reflection.BindingFlags.NonPublic, and either 10
System.Reflection.BindingFlags.Instance or 11
System.Reflection.BindingFlags.Static. If at least one value from each pair is not 12
specified, this method is required to return null. 13

 14

 15

	Behaviors
	Behaviors
	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	Behaviors

