
 1

System.Threading.WaitHandle Class 1

 2

[ILAsm] 3
.class public abstract WaitHandle extends System.MarshalByRefObject 4
implements System.IDisposable 5

[C#] 6
public abstract class WaitHandle: MarshalByRefObject, IDisposable 7

Assembly Info: 8

· Name: mscorlib 9
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 10
· Version: 2.0.x.x 11
· Attributes: 12

o CLSCompliantAttribute(true) 13

Implements: 14

· System.IDisposable 15

Summary 16
 17

Encapsulates operating-system specific objects that wait for exclusive access to shared 18
resources. 19

Inherits From: System.MarshalByRefObject 20
 21
Library: BCL 22
 23
Thread Safety: All public static members of this type are safe for multithreaded operations. 24
No instance members are guaranteed to be thread safe. 25
 26
Description 27

[Note: This class is typically used as a base class for synchronization objects. Classes 28
derived from System.Threading.WaitHandle define a signaling mechanism to indicate 29
taking or releasing exclusive access to a shared resource, but use the inherited 30
System.Threading.WaitHandle methods to block while waiting for access to shared 31
resources. 32
 33
The static methods of this class are used to block a System.Threading.Thread until one 34
or more synchronization objects receive a signal. 35
 36
] 37

38

 2

 WaitHandle() Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor() 3

[C#] 4
public WaitHandle() 5

Summary 6

Constructs and initializes a new instance of the System.Threading.WaitHandle class. 7

8

 3

 WaitHandle.Close() Method 1

[ILAsm] 2
.method public hidebysig virtual void Close() 3

[C#] 4
public virtual void Close() 5

Summary 6

Releases all resources held by the current instance. 7

Description 8

This method is the public version of the System.IDisposable.Dispose method 9
implemented to support the System.IDisposable interface. 10

Behaviors 11

This method releases any unmanaged resources held by the current instance. This 12
method can, but is not required to, suppress finalization during garbage collection by 13
calling the System.GC.SuppressFinalize method. 14

 15

Default 16

As described above. 17

 18

How and When to Override 19

Override this property to release resources allocated in subclasses. 20

 21

Usage 22

Use this method to release all resources held by an instance of WaitHandle. Once this 23
method is called, references to the current instance cause undefined behavior. 24

 25

26

 4

 WaitHandle.Dispose(System.Boolean) 1

Method 2

[ILAsm] 3
.method family hidebysig virtual void Dispose(bool explicitDisposing) 4

[C#] 5
protected virtual void Dispose(bool explicitDisposing) 6

Summary 7

Releases the unmanaged resources used by the System.Threading.WaitHandle and 8
optionally releases the managed resources. 9

Parameters 10
 11
 12

Parameter Description

explicitDisposing
true to release both managed and unmanaged resources; false to
release only unmanaged resources.

 13
 14

Behaviors 15

This method releases all unmanaged resources held by the current instance. When the 16
explicitDisposing parameter is true, this method releases all resources held by any 17
managed objects referenced by the current instance. This method invokes the 18
Dispose() method of each referenced object. 19

 20

How and When to Override 21

Override this method to dispose of resources allocated by types derived from 22
System.Threading.WaitHandle. When overriding Dispose(System.Boolean), be careful 23
not to reference objects that have been previously disposed in an earlier call to Dispose 24
or Close. Dispose can be called multiple times by other objects. 25

 26

Usage 27

 5

This method is called by the public System.Threading.WaitHandle.Dispose method 1
and the System.Object.Finalize method. Dispose() invokes this method with the 2
explicitDisposing parameter set to true. System.Object.Finalize invokes Dispose 3
with explicitDisposing set to false. 4

 5

6

 6

 WaitHandle.Finalize() Method 1

[ILAsm] 2
.method family hidebysig virtual void Finalize() 3

[C#] 4
~WaitHandle() 5

Summary 6

Releases the resources held by the current instance. 7

Description 8

[Note: Application code does not call this method; it is automatically invoked during 9
garbage collection unless finalization by the garbage collector has been disabled. For 10
more information, see System.GC.SuppressFinalize, and System.Object.Finalize. 11
 12
This method overrides System.Object.Finalize. 13
 14
] 15

16

 7

 WaitHandle.System.IDisposable.Dispose() 1

Method 2

[ILAsm] 3
.method private final hidebysig virtual void System.IDisposable.Dispose() 4

[C#] 5
void IDisposable.Dispose() 6

Summary 7

Implemented to support the System.IDisposable interface. [Note: For more 8
information, see System.IDisposable.Dispose.] 9

10

 8

 1

WaitHandle.WaitAll(System.Threading.WaitH2

andle[]) Method 3

[ILAsm] 4
.method public hidebysig static bool WaitAll(class 5
System.Threading.WaitHandle[] waitHandles) 6

[C#] 7
public static bool WaitAll(WaitHandle[] waitHandles) 8

Summary 9

Waits for all of the elements in the specified array to receive a signal. 10

Parameters 11
 12
 13

Parameter Description

waitHandles
A System.Threading.WaitHandle array containing the objects for which the
current instance will wait. This array cannot contain multiple references to the
same object (duplicates).

 14
Return Value 15
 16

Returns true when every element in waitHandles has received a signal. If the current 17
thread receives a request to abort before the signals are received, this method returns 18
false. 19

The maximum number of objects specified in the waitHandles array is system defined. 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentNullException
waitHandles is null or one or more elements in
the waitHandles array is null.

System.DuplicateWaitObjectException waitHandles contains elements that are

 9

duplicates.

System.NotSupportedException The number of objects in waitHandles is greater
than the system permits.

 1
 2

3

 10

 1

WaitHandle.WaitAny(System.Threading.Wait2

Handle[]) Method 3

[ILAsm] 4
.method public hidebysig static int32 WaitAny(class 5
System.Threading.WaitHandle[] waitHandles) 6

[C#] 7
public static int WaitAny(WaitHandle[] waitHandles) 8

Summary 9

Waits for any of the elements in the specified array to receive a signal. 10

Parameters 11
 12
 13

Parameter Description

waitHandles
A System.Threading.WaitHandle array containing the objects for which the
current instance will wait. This array cannot contain multiple references to the
same object (duplicates).

 14
Return Value 15
 16

Returns a System.Int32 set to the index of the element in waitHandles that received a 17
signal. 18

The maximum number of objects specified in the waitHandles array is system defined. 19
 20
 21

Exceptions 22
 23
 24

Exception Condition

System.ArgumentNullException
waitHandles is null or one or more elements in
the waitHandles array is null.

 11

System.DuplicateWaitObjectException waitHandles contains elements that are
duplicates.

System.NotSupportedException The number of objects in waitHandles is greater
than the system permits.

 1
 2

3

 12

 WaitHandle.WaitOne() Method 1

[ILAsm] 2
.method public hidebysig virtual bool WaitOne() 3

[C#] 4
public virtual bool WaitOne() 5

Summary 6

Blocks the current thread until the current instance receives a signal. 7

Return Value 8
 9

Returns true when the current instance receives a signal. 10

Behaviors 11

The caller of this method blocks indefinitely until a signal is received by the current 12
instance. 13

 14

How and When to Override 15

Override this method to customize the behavior of types derived from 16
System.Threading.WaitHandle. 17

 18

Usage 19

Use this method to block until a WaitHandle receives a signal from another thread, such 20
as is generated when an asynchronous operation completes. For more information, see 21
the System.IAsyncResult interface. 22

 23

Exceptions 24
 25
 26

Exception Condition

System.ObjectDisposedException The current instance has already been disposed.

 13

 1
 2

	Behaviors
	Default
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage

