
 1

System.ICloneable Interface 1

 2

[ILAsm] 3
.class interface public abstract ICloneable 4

[C#] 5
public interface ICloneable 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Implemented by classes that require control over the way in which copies of instances 15
are constructed. 16

Library: BCL 17
 18
Description 19

[Note: System.ICloneable contains the System.ICloneable.Clone method. The 20
consumer of an object should call this method when a copy of the object is needed.] 21
 22
 23

24

 2

 ICloneable.Clone() Method 1

[ILAsm] 2
.method public hidebysig virtual abstract object Clone() 3

[C#] 4
object Clone() 5

Summary 6

Creates a copy of the current instance. 7

Return Value 8
 9

A System.Object of the same type as the current instance, containing copies of the 10
non-static members of the current instance. 11

Description 12

The exact behavior of this method is unspecified. The intent of the method is to provide 13
a mechanism that constructs instances that are copies of the current instance, without 14
regard for class-specific definitions of the term "copy". 15
 16
[Note: Use the System.Object.MemberwiseClone method to create a shallow copy of an 17
object. For more information, see System.Object.MemberwiseClone.] 18
 19
 20

Behaviors 21

This method is required to return an instance of the same type as the current instance. 22

 23

How and When to Override 24

Implement this method to provide class-specific copying behavior. 25

 26

Usage 27

Use the System.ICloneable.Clone method to obtain a copy of the current instance. 28

 29

Example 30
 31

 3

The following example shows an implementation of System.ICloneable.Clone that 1
uses the System.Object.MemberwiseClone method to create a copy of the current 2
instance. 3
 4
[C#] 5

using System; 6
class MyClass:ICloneable { 7
 public int myField; 8
 public MyClass() { 9
 myField = 0; 10
 } 11
 public MyClass(int value) { 12
 myField = value; 13
 } 14
 public object Clone() { 15
 return this.MemberwiseClone(); 16
 } 17
} 18
public class TestMyClass { 19
 public static void Main() { 20
 MyClass my1 = new MyClass(44); 21
 MyClass my2 = (MyClass) my1.Clone(); 22
 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField); 23
 my2.myField = 22; 24
 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField); 25
 } 26
} 27
The output is 28
 29
my1 44 my2 44 30
 31
 32
my1 44 my2 22 33
 34

 35

	Behaviors
	How and When to Override
	Usage

