
 1

System.Threading.Parallel.ParallelWhile<T> 1

Class 2

 3

[ILAsm] 4
.class public sealed serializable ParallelWhile<T> extends 5
System.Threading.Parallel.ParallelLoop<!0> 6

[C#] 7
public sealed class ParallelWhile<T>: ParallelLoop<T> 8

Assembly Info: 9

· Name: System.Threading.Parallel 10
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 11
· Version: 2.0.x.x 12
· Attributes: 13

o CLSCompliantAttribute(true) 14

Summary 15
 16

A parallel while loop over iteration values of type T. 17

Inherits From: System.Threading.Parallel.ParallelLoop<T> 18
 19
Library: Parallel 20
 21
Thread Safety: All public static members of this type are safe for multithreaded operations. 22
No instance members, unless specifically stated, are guaranteed to be thread safe. 23
 24
Description 25

Class System.Threading.Parallel.ParallelWhile<T> provides a simple way to 26
establish a pool of work to be distributed among multiple threads, and to wait for the 27
work to complete before proceeding. 28
 29
A freshly constructed System.Threading.Parallel.ParallelWhile<T> has an empty 30
pool of work items. Method System.Threading.Parallel.ParallelWhile<T>.Add adds 31
a work item to the pool. Method 32
System.Threading.Parallel.ParallelWhile<T>.BeginRun activates processing of the 33
pool. Inherited method System.Threading.Parallel.ParallelLoop<T>.EndRun waits 34
until all work in the pool completes. Inherited method 35
System.Threading.Parallel.ParallelLoop<T>.Run is a shorthand that combines 36
System.Threading.Parallel.ParallelWhile<T>.BeginRun and 37
System.Threading.Parallel.ParallelLoop<T>.EndRun. New work can be added to the 38
pool while it is active, hence the class corresponds roughly to a parallel while loop that 39
continually chops away at a (possibly growing) collection until the collection becomes 40

 2

empty. Once the loop is running, implementations are free to make method Add process 1
the work item instead of putting it in the pool, for sake of limiting the size of the work 2
pool. (The pool is typically a small multiple of the number of threads.) Once the pool is 3
activated, one or more worker threads pull work items from the pool and apply the 4
callback to each. The implementation is free to process work items in any order. 5
Inherited method System.Threading.Parallel.ParallelLoop<T>.EndRun blocks until 6
the pool is empty and all pending invocations of the callback have returned. An iteration 7
should not cause method System.Threading.Parallel.ParallelWhile<T>.Add to be 8
called after the iteration finishes (e.g. by use of yet another thread), otherwise a race 9
condition ensues in which System.Threading.Parallel.ParallelLoop<T>.EndRun 10
might return prematurely even though there is more work to be done. 11
 12
A conforming implementation is allowed to execute serially, by using the thread that 13
calls System.Threading.Parallel.ParallelWhile<T>.BeginRunto process all pending 14
work items that are added before BeginRun returns, and using the thread that calls 15
System.Threading.Parallel.ParallelLoop<T>.EndRun to process all pending work 16
items that are added after System.Threading.Parallel.ParallelWhile<T>.BeginRun 17
returned and before System.Threading.Parallel.ParallelLoop<T>.EndRunreturns. 18

19

 3

 ParallelWhile<T>() Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor() 3

[C#] 4
public ParallelWhile() 5

Summary 6

Constructs a System.Threading.Parallel.ParallelWhile<T> with an initially empty 7
collection of work items. 8

Description 9

The loop does not start executing until at least method 10
System.Threading.Parallel.ParallelWhile<T>.BeginRun is called and possibly not 11
until method System.Threading.Parallel.ParallelLoop<T>.EndRun is called. 12

13

 4

 ParallelWhile<T>(System.Int32) Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor(int32 numThreads) 3

[C#] 4
public ParallelWhile(int numThreads) 5

Summary 6

Constructs a System.Threading.Parallel.ParallelWhile<T> with an initially empty 7
collection of work items. 8

Parameters 9
 10
 11

Parameter Description

numThreads maximum number of threads to use

 12
Description 13

The loop does not start executing until at least method 14
System.Threading.Parallel.ParallelWhile<T>.BeginRun is called and possibly not 15
until method System.Threading.Parallel.ParallelLoop<T>.EndRun is called. 16
 17
If numThreads is 0, then up to 18
System.Threading.Parallel.ParallelEnvironment.MaxThreads threads are used 19
instead. The value includes the thread that created the 20
System.Threading.Parallel.ParallelFor<T>, hence using numThreads=1 causes 21
sequential execution. 22

23

 5

 ParallelWhile<T>.Add(T) Method 1

[ILAsm] 2
.method public hidebysig instance void Add(!0 item) 3

[C#] 4
public void Add(T item) 5

Summary 6

Add a work item. 7

Parameters 8
 9
 10

Parameter Description

item value for an iteration.

 11
Description 12

This method can be called before or after method 13
System.Threading.Parallel.ParallelWhile<T>.BeginRun is called. 14
 15
This method is always thread safe. 16

17

 6

 1

ParallelWhile<T>.BeginRun(System.Action<T2

>) Method 3

[ILAsm] 4
.method public hidebysig override void BeginRun(class System.Action<!0> 5
action) 6

[C#] 7
public override void BeginRun(Action<T> action) 8

Summary 9

Begin processing work items. 10

Parameters 11
 12
 13

Parameter Description

action The System.Delegate that processes each work item.

 14
Description 15

This method is not thread safe. It should be called only once for a given instance of a 16
System.Threading.Parallel.ParallelWhile<T>. 17
 18
[Note: Implementations, particularly on single-threaded hardware, are free to employ 19
the calling thread to execute all loop iterations.] 20
 21
 22

Exceptions 23
 24
 25

Exception Condition

System.ArgumentNullException action is null.

 26
 27

28

 7

 ParallelWhile<T>.Cancel() Method 1

[ILAsm] 2
.method public hidebysig override void Cancel() 3

[C#] 4
public override void Cancel() 5

Summary 6

Cancel any iterations that have not yet started 7

Description 8

This method is safe to call concurrently on the same instance. 9
 10
It does not cancel any future iterations that can be added. 11

12

 8

 ParallelWhile<T>.EndRun() Method 1

[ILAsm] 2
.method public hidebysig virtual void EndRun() 3

[C#] 4
public void EndRun() 5

Summary 6

Waits until all iterations are finished (or cancelled). If any of the iterations threw an 7
exception, then one of these exceptions is rethrown. 8

Description 9

This method is not thread safe. It should be called exactly once by the thread that called 10
System.Threading.Parallel.ParallelLoop<T>.BeginRun 11

 12

