
 1

System.IFormattable Interface 1

 2

[ILAsm] 3
.class interface public abstract IFormattable 4

[C#] 5
public interface IFormattable 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Implemented by classes that construct customizable string representations of objects. 15

Library: BCL 16
 17
Description 18

[Note: System.IFormattable contains the System.IFormattable.ToString method. 19
The consumer of an object calls this method to obtain a formatted string representation 20
of the value of the object.] 21
 22
A format is a string that describes the appearance of an object when it is converted to a 23
string. Either standard or custom formats can be used. A standard format takes the 24
form Axx, where A is a single alphabetic character called the format specifier, and xx is 25
an integer between zero and 99 inclusive, called the precision specifier. The format 26
specifier controls the type of formatting applied to the value being represented as a 27
string. The precision specifier controls the number of significant digits or decimal places 28
in the string, if applicable. [Note: For the list of standard format specifiers, see the table 29
below. Note that a given data type, such as System.Int32, might not support one or 30
more of the standard format specifiers.] 31
 32
 33
 34
[Note: When a format includes symbols that vary by culture, such as the currency 35
symbol included by the "C" and "c" formats, a formatting object supplies the actual 36
characters used in the string representation. A method might include a parameter to 37
pass a System.IFormatProvider object that supplies a formatting object, or the method 38
might use the default formatting object, which contains the symbol definitions for the 39
current culture. The current culture typically uses the same set of symbols used system-40
wide by default. In the Base Class Library, the formatting object for system-supplied 41
numeric types is a System.Globalization.NumberFormatInfo instance. For 42

 2

System.DateTime instances, a System.Globalization.DateTimeFormatInfo is used.] 1
 2
 3
 4
The following table describes the standard format specifiers and associated formatting 5
object members that are used with numeric data types in the Base Class Library. 6

Format
Specifier Description

C

c

Currency Format: Used for strings containing a monetary value. The
System.Globalization.NumberFormatInfo.CurrencySymbol,
System.Globalization.NumberFormatInfo.CurrencyGroupSizes,
System.Globalization.NumberFormatInfo.CurrencyGroupSeparator, and
System.Globalization.NumberFormatInfo.CurrencyDecimalSeparator
members of a System.Globalization.NumberFormatInfo supply the currency
symbol, size and separator for digit groupings, and decimal separator,
respectively.

System.Globalization.NumberFormatInfo.CurrencyNegativePattern and
System.Globalization.NumberFormatInfo.CurrencyPositivePattern
determine the symbols used to represent negative and positive values. For
example, a negative value can be prefixed with a minus sign, or enclosed in
parentheses.

If the precision specifier is omitted,
System.Globalization.NumberFormatInfo.CurrencyDecimalDigits
determines the number of decimal places in the string. Results are rounded to
the nearest representable value when necessary.

D

d

Decimal Format: (This format is valid only when specified with integral data
types.) Used for strings containing integer values. Negative numbers are prefixed
with the negative number symbol specified by the
System.Globalization.NumberFormatInfo.NegativeSign property.

The precision specifier determines the minimum number of digits that appear in
the string. If the specified precision requires more digits than the value contains,
the string is left-padded with zeros. If the precision specifier specifies fewer digits
than are in the value, the precision specifier is ignored.

E

e

Scientific (Engineering) Format: Used for strings in one of the following
forms:

[-]m.ddddddE+xxx

 3

[-]m.ddddddE-xxx

[-]m.dddddde+xxx

[-]m.dddddde-xxx

The negative number symbol ('-') appears only if the value is negative, and is
supplied by the System.Globalization.NumberFormatInfo.NegativeSign
property.

Exactly one non-zero decimal digit (m) precedes the decimal separator ('.'),
which is supplied by the
System.Globalization.NumberFormatInfo.NumberDecimalSeparator property.

The precision specifier determines the number of decimal places (dddddd) in the
string. If the precision specifier is omitted, six decimal places are included in the
string.

The exponent (+/-xxx) consists of either a positive or negative number symbol
followed by a minimum of three digits (xxx). The exponent is left-padded with
zeros, if necessary. The case of the format specifier ('E' or 'e') determines the
case used for the exponent prefix (E or e) in the string. Results are rounded to
the nearest representable value when necessary. The positive number symbol is
supplied by the System.Globalization.NumberFormatInfo.PositiveSign
property.

F

f

Fixed-Point Format: Used for strings in the following form:

"[-]m.dd...d"

At least one non-zero decimal digit (m) precedes the decimal separator ('.'),
which is supplied by the
System.Globalization.NumberFormatInfo.NumberDecimalSeparator property.

A negative number symbol sign ('-') precedes m only if the value is negative.
This symbol is supplied by the
System.Globalization.NumberFormatInfo.NegativeSign property.

The precision specifier determines the number of decimal places (dd...d) in the
string. If the precision specifier is omitted,
System.Globalization.NumberFormatInfo.NumberDecimalDigits determines
the number of decimal places in the string. Results are rounded to the nearest
representable value when necessary.

G General Format: The string is formatted in either fixed-point format ('F' or 'f') or

 4

g

scientific format ('E' or 'e').

For integral types:

Values are formatted using fixed-point format if exponent < precision specifier,
where exponent is the exponent of the value in scientific format. For all other
values, scientific format is used.

If the precision specifier is omitted, a default precision equal to the field width
required to display the maximum value for the data type is used, which results in
the value being formatted in fixed-point format. The default precisions for
integral types are as follows:

System.Int16, System.UInt16 - 5

System.Int32, System.UInt32- 10

System.Int64, System.UInt64 - 19

For Single, Decimal and Double types:

Values are formatted using fixed-point format if exponent >= -4 and exponent <
precision specifier, where exponent is the exponent of the value in scientific
format. For all other values, scientific format is used. Results are rounded to the
nearest representable value when necessary.

If the precision specifier is omitted, the following default precisions are used:

System.Single: 7

System.Double: 15

System.Decimal: 29

For all types:

- The number of digits that appear in the result (not including the exponent) will
not exceed the value of the precision specifier; values are rounded as necessary.

- The decimal point and any trailing zeros after the decimal point are removed
whenever possible.

- The case of the format specifier ('G' or 'g') determines whether 'E' or 'e'
prefixes the scientific format exponent.

 5

N

n

Number Format: Used for strings in the following form:

[-]d,ddd,ddd.dd...d

The representation of negative values is determined by the
System.Globalization.NumberFormatInfo.NumberNegativePatternproperty. If
the pattern includes a negative number symbol ('-'), this symbol is supplied by
the System.Globalization.NumberFormatInfo.NegativeSign property.

At least one non-zero decimal digit (d) precedes the decimal separator ('.'),
which is supplied by the
System.Globalization.NumberFormatInfo.NumberDecimalSeparator property.
Digits between the decimal point and the most significant digit in the value are
grouped using the group size specified by the
System.Globalization.NumberFormatInfo.NumberGroupSizes property. The
group separator (',') is inserted between each digit group, and is supplied by the
System.Globalization.NumberFormatInfo.NumberGroupSeparator property.

The precision specifier determines the number of decimal places (dd...d). If the
precision specifier is omitted,
System.Globalization.NumberFormatInfo.NumberDecimalDigits determines
the number of decimal places in the string. Results are rounded to the nearest
representable value when necessary.

P

p

Percent Format: Used for strings containing a percentage. The
System.Globalization.NumberFormatInfo.PercentSymbol,
System.Globalization.NumberFormatInfo.PercentGroupSizes,
System.Globalization.NumberFormatInfo.PercentGroupSeparator, and
System.Globalization.NumberFormatInfo.PercentDecimalSeparator
members of a System.Globalization.NumberFormatInfo supply the percent
symbol, size and separator for digit groupings, and decimal separator,
respectively.

System.Globalization.NumberFormatInfo.PercentNegativePattern and
System.Globalization.NumberFormatInfo.PercentPositivePattern
determine the symbols used to represent negative and positive values. For
example, a negative value can be prefixed with a minus sign, or enclosed in
parentheses.

If no precision is specified, the number of decimal places in the result is
determined by
System.Globalization.NumberFormatInfo.PercentDecimalDigits. Results are
rounded to the nearest representable value when necessary.

 6

The result is scaled by 100 (.99 becomes 99%).

R

r

Round trip Format: (This format is valid only when specified with
System.Double or System.Single.) Used to ensure that the precision of the
string representation of a floating-point value is such that parsing the string does
not result in a loss of precision when compared to the original value. If the
maximum precision of the data type (7 for System.Single, and 15 for
System.Double) would result in a loss of precision, the precision is increased by
two decimal places. If a precision specifier is supplied with this format specifier, it
is ignored. This format is otherwise identical to the fixed-point format.

X

x

Hexadecimal Format: (This format is valid only when specified with integral data
types.) Used for string representations of numbers in Base 16. The precision
determines the minimum number of digits in the string. If the precision specifies
more digits than the number contains, the number is left-padded with zeros. The
case of the format specifier ('X' or 'x') determines whether upper case or lower
case letters are used in the hexadecimal representation.

 1
If the numerical value is a System.Single or System.Double with a value of NaN, 2
PositiveInfinity, or NegativeInfinity, the format specifier is ignored, and one of 3
the following is returned: System.Globalization.NumberFormatInfo.NaNSymbol, 4
System.Globalization.NumberFormatInfo.PositiveInfinitySymbol, or 5
System.Globalization.NumberFormatInfo.NegativeInfinitySymbol. 6
 7
A custom format is any string specified as a format that is not in the form of a standard 8
format string (Axx) described above. The following table describes the characters that 9
are used in constructing custom formats. 10

Format
Specifier Description

0 (zero)

Zero placeholder: If the value being formatted has a digit in the position
where a '0' appears in the custom format, then that digit is copied to the
output string; otherwise a zero is stored in that position in the output string.
The position of the leftmost '0' before the decimal separator and the rightmost
'0' after the decimal separator determine the range of digits that are always
present in the output string.

The number of Zero and/or Digit placeholders after the decimal separator
determines the number of digits that appear after the decimal separator.
Values are rounded as necessary.

Digit placeholder: If the value being formatted has a digit in the position

 7

where a '#' appears in the custom format, then that digit is copied to the
output string; otherwise, nothing is stored in that position in the output string.
Note that this specifier never stores the '0' character if it is not a significant
digit, even if '0' is the only digit in the string. (It does display the '0' character
in the output string if it is a significant digit.)

The number of Zero and/or Digit placeholders after the decimal separator
determines the number of digits that appear after the decimal separator.
Values are rounded as necessary.

. (period)

Decimal separator: The left most '.' character in the format string determines
the location of the decimal separator in the formatted value; any additional '.'
characters are ignored. The
System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property determines the symbol used as the decimal separator.

, (comma)

Group separator and number scaling: The ',' character serves two
purposes. First, if the custom format contains this character between two Zero
or Digit placeholders (0 or #) and to the left of the decimal separator if one is
present, then the output will have group separators inserted between each
group of digits to the left of the decimal separator. The
System.Globalization.NumberFormatInfo.NumberGroupSeparator and
System.Globalization.NumberFormatInfo.NumberGroupSizes properties
determine the symbol used as the group separator and the number of digits in
each group, respectively.

If the format string contains one or more ',' characters immediately to the left
of the decimal separator, then the number will be scaled. The scale factor is
determined by the number of group separator characters immediately to the
left of the decimal separator. If there are x characters, then the value is
divided by 1000X before it is formatted. For example, the format string '0,,' will
divide a value by one million. Note that the presence of the ',' character to
indicate scaling does not insert group separators in the output string. Thus, to
scale a number by 1 million and insert group separators, use a custom format
similar to "#,##0,,".

%
(percent)

Percentage placeholder: The presence of a '%' character in a custom format
causes a number to be multiplied by 100 before it is formatted. The percent
symbol is inserted in the output string at the location where the '%' appears in
the format string. The
System.Globalization.NumberFormatInfo.PercentSymbol property
determines the percent symbol.

E0

Engineering format: If any of the strings 'E', 'E+', 'E-', 'e', 'e+', or 'e-' are
present in a custom format and is followed immediately by at least one '0'

 8

E+0

E-0

e0

e+0

e-0

character, then the value is formatted using scientific notation. The number of
'0' characters following the exponent prefix (E or e) determines the minimum
number of digits in the exponent. The 'E+' and 'e+' formats indicate that a
positive or negative number symbol always precedes the exponent. The 'E', 'E-
', 'e', or 'e-' formats indicate that a negative number symbol precedes negative
exponents; no symbol is precedes positive exponents. The positive number
symbol is supplied by the
System.Globalization.NumberFormatInfo.PositiveSign property. The
negative number symbol is supplied by the
System.Globalization.NumberFormatInfo.NegativeSign property.

\
(backslash)

Escape character: In some languages, such as C#, the backslash character
causes the next character in the custom format to be interpreted as an escape
sequence. It is used with C language formatting sequences, such as "\n"
(newline). In some languages, the escape character itself is required to be
preceded by an escape character when used as a literal. Otherwise, the
compiler interprets the character as an escape sequence. This escape character
is not required to be supported in all programming languages.

'ABC'

"ABC"

Literal string: Characters enclosed in single or double quotes are copied to
the output string literally, and do not affect formatting.

;
(semicolon)

Section separator: The ';' character is used to separate sections for positive,
negative, and zero numbers in the format string. (This feature is described in
detail below.)

Other
All other characters: All other characters are stored in the output string as
literals in the position in which they appear.

 1
Note that for fixed-point format strings (strings not containing an 'E0', E+0', 'E-0', 'e0', 2
'e+0', or 'e-0'), numbers are rounded to as many decimal places as there are Zero or 3
Digit placeholders to the right of the decimal separator. If the custom format does not 4
contain a decimal separator, the number is rounded to the nearest integer. If the 5
number has more digits than there are Zero or Digit placeholders to the left of the 6
decimal separator, the extra digits are copied to the output string immediately before 7
the first Zero or Digit placeholder. 8
 9
A custom format can contain up to three sections separated by section separator 10
characters, to specify different formatting for positive, negative, and zero values. The 11
sections are interpreted as follows: 12

· One section: The custom format applies to all values (positive, negative and zero). 13
Negative values include a negative sign. 14

 9

· Two sections: The first section applies to positive values and zeros, and the second 1
section applies to negative values. If the value to be formatted is negative, but 2
becomes zero after rounding according to the format in the second section, then the 3
resulting zero is formatted according to the first section. Negative values do not 4
include a negative sign to allow full control over representations of negative values. 5
For example, a negative can be represented in parenthesis using a custom format 6
similar to "####.####;(####.####)". 7

· Three sections: The first section applies to positive values, the second section 8
applies to negative values, and the third section applies to zeros. The second section 9
can be empty (nothing appears between the semicolons), in which case the first 10
section applies to all nonzero values, and negative values include a negative sign. If 11
the number to be formatted is nonzero, but becomes zero after rounding according 12
to the format in the first or second section, then the resulting zero is formatted 13
according to the third section. 14

The System.Enum and System.DateTime types also support using format specifiers to 15
format string representations of values. The meaning of a specific format specifier varies 16
according to the kind of data (numeric, date/time, enumeration) being formatted. See 17
System.Enum and System.Globalization.DateTimeFormatInfo for a comprehensive list of 18
the format specifiers supported by each type. 19

20

 10

 IFormattable.ToString(System.String, 1

System.IFormatProvider) Method 2

[ILAsm] 3
.method public hidebysig virtual abstract string ToString(string format, 4
class System.IFormatProvider formatProvider) 5

[C#] 6
string ToString(string format, IFormatProvider formatProvider) 7

Summary 8

Returns a System.String representation of the value of the current instance. 9

Parameters 10
 11
 12

Parameter Description

format
A System.String that specifies the format of the returned string. If format
is a null reference or the empty string, the default format defined for the
type of the current instance is used.

formatProvider
A System.IFormatProvider that supplies a formatting object containing
culture-specific formatting information, or null.

 13
Return Value 14
 15

A System.String containing the value of the current instance formatted in accordance 16
with format and formatProvider. 17

Behaviors 18

Conforming implementations do not throw an exception when format and/or 19
formatProvider are null references. If formatProvider is a null reference, the string is 20
constructed using a system-supplied formatting object containing information for the 21
current system culture. If format is null, the string is constructed using a system-22
supplied default format appropriate for the type of the current instance. 23
 24
If the object returned by formatProvider supplies a culture-specific representation of 25
symbols or patterns included in format, the returned string is required to use the 26
information supplied by formatProvider. 27

How and When to Override 28

 11

Implement to allow consumers of a class to use format strings and formatting objects to 1
control the way in which the class is represented as a string. 2

 3

Exceptions 4
 5
 6

Exception Condition

System.FormatException The specified format is invalid or cannot be used with the type
of the current instance.

 7
Example 8
 9

The following example demonstrates using the System.IFormattable.ToString method 10
to display values in a variety of formats. The current system culture is U.S. English, 11
which provides the default values for the formatProvider parameter of 12
System.IFormattable.ToString. 13
 14
[C#] 15

using System; 16
class FormattableExample { 17
 public static void Main() { 18
 double d = 123.12345678901234; 19
 string[] formats = {"C","E","e","F","G","N","P","R"}; 20
 for (int i = 0; i< formats.Length;i++) 21
 Console.WriteLine("{0:R} as {1}: 22
{2}",d,formats[i],d.ToString(formats[i],null)); 23
 24
 string[]intFormats = {"D","x","X"}; 25
 int val = 255; 26
 for (int i = 0; i< intFormats.Length;i++) 27
 Console.WriteLine("{0} as {1}: 28
{2}",val,intFormats[i],val.ToString(intFormats[i],null)); 29
 30
 } 31
} 32
The output is 33
 34
123.12345678901234 as C: $123.12 35
 36
 37
123.12345678901234 as E: 1.231235E+002 38
 39
 40

 12

123.12345678901234 as e: 1.231235e+002 1
 2
 3
123.12345678901234 as F: 123.12 4
 5
 6
123.12345678901234 as G: 123.123456789012 7
 8
 9
123.12345678901234 as N: 123.12 10
 11
 12
123.12345678901234 as P: 12,312.35 % 13
 14
 15
123.12345678901234 as R: 123.12345678901234 16
 17
 18
255 as D: 255 19
 20
 21
255 as x: ff 22
 23
 24
255 as X: FF 25
 26

 27

	Behaviors
	How and When to Override

