
System.IO.Path Class

[ILAsm]
.class public sealed Path extends System.Object
[C#]
public sealed class Path
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Summary

Performs operations on System.String instances that contain file or directory path information.

Inherits From: System.Object

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.

Description
A path is a string that provides the location of a file or directory. A path does not necessarily point to a location on disk; for example, a path might map to a location in memory or on a device. Paths are composed of the components described below. Component names are shown in italics and the following table describes the symbols used in component definitions:

	Symbol
	Description

	< >
	Indicates a path component.

	{ }
	Indicates a grouping; either all components in a grouping are present, or none are permitted to be present.

	*
	Indicates that the component or grouping that immediately precedes this symbol can appear zero, one, or multiple times.

	?
	Indicates that the component or grouping that immediately precedes this symbol can appear zero, or one times.

	+
	Indicates string concatenation.

The components that define a path are as follows:

Directory Name: A string that specifies one or more directory levels in a file system. If a directory name contains multiple levels, a directory separator character separates the levels; however, a directory name does not begin or end with a directory separator character. In the example path C:/foo/bar/bat.txt, the directory name is "foo/bar". System.IO.Path.GetDirectoryName returns the directory name component of a path. Note that this method does include a beginning separator character if one is included in the specified path.

Directory Separator Character: An implementation-specific constant string containing a single printable non-alphanumeric character used to separate levels in a file system. In the example path C:/foo/bar/bat.txt, the directory separator character is "/". The System.IO.Path.DirectorySeparatorChar and System.IO.Path.AltDirectorySeparatorChar store implementation-specific directory separator characters.

Extension: A string that consists of the characters at the end of a file name, from and including the last extension separator character. The minimum and maximum lengths of extension components are implementation-specific. In the example path C:/foo/bar/bat.txt, the extension is ".txt". The System.IO.Path.GetExtension method returns the extension component of a path.

Extension Separator Character: An implementation-specific constant string composed of a single character that appears after the last character in the file base component indicating the beginning of the extension component. If the extension separator character is the first character in a file name, it is not interpreted as a extension separator character. If more than one extension separator character appears in a file name, only the last occurrence is the extension separator character; all other occurrences are part of the file base component. In the example path C:/foo/bar/bat.txt, the extension separator character is ".".

File Base: A string containing the filename with the extension component removed. In the example path C:/foo/bar/bat.txt, the file base is "bat". The System.IO.Path.GetFileNameWithoutExtension method returns the file base component of a path.

File Name: A string containing all information required to uniquely identify a file within a directory. This component is defined as follows:

<file base>{+<extension>}?

The file name component is commonly referred to as a relative file name. In the example path C:/foo/bar/bat.txt, the file name is "bat.txt". The System.IO.Path.GetFileName method returns the file name component of a path.

Full Directory Name: A string containing all information required to uniquely identify a directory within a file system. This component is defined as follows:

<path root>+<directory name>

The full directory name component is commonly referred to as the absolute directory name. In the example path C:/foo/bar/bat.txt, the full directory name is "C:/foo/bar ".

FullPath: A string containing all information required to uniquely identify a file within a file system. This component is defined as follows:

<full directory name>+<directory separator character>+<file name>

The full path component is commonly referred to as the absolute file name. In the example path C:/foo/bar/bat.txt, the full path is "C:/foo/bar/bat.txt". The System.IO.Path.GetFullPath method returns the full path component.

Path Root: A string containing all information required to uniquely identify the highest level in a file system. The component is defined as follows:

{<volume identifier>+<volume separator character>}?+<directory separator character>

In the example path C:/foo/bar/bat.txt, the path root is "C:/". The System.IO.Path.GetPathRoot method returns the path root component.

VolumeIdentifier: A string composed of a single alphabetic character that uniquely defines a drive or volume in a file system. This component is optional; on systems that do not support volume identifiers, this component is required to be a zero length string. In the example path C:/foo/bar/bat.txt, the path root is "C:". In the example path, \\myserver\myshare\foo\bar\baz.txt the path root is "\\myserver\myshare".

Volume Separator Character: A string composed of a single alphabetic character used to separate the volumeidentifier from other components in a path. This component can appear in a path only if a volume identifier is present. This component is optional; on systems that do not support the volume identifier component, the volume separator character component is required to be a zero length string.

The exact format of a path is determined by the current platform. For example, on Windows systems a path can start with a volume identifier, while this element is not present in Unix system paths. On some systems, paths containing file names can contain extensions. The format of an extension is platform dependent; for example, some systems limit extensions to three characters, while others do not. The current platform and possibly the current file system determine the set of characters used to separate the elements of a path, and the set of characters that cannot be used when specifying paths. Because of these differences, the fields of the System.IO.Path class as well as the exact behavior of some members of the System.IO.Path class are determined by the current platform and/or file system.

A path contains either absolute or relative location information. Absolute paths fully specify a location: the file or directory can be uniquely identified regardless of the current location. A full path or full directory name component is present in an absolute path. Relative paths specify a partial location: the current working directory is used as the starting point when locating a file specified with a relative path. [Note: To determine the current working directory, call System.IO.Directory.GetCurrentDirectory.]

Most members of the Path class do not interact with the file system and do not verify the existence of the file or directory specified by a path string. System.IO.Path members that modify a path string, such as System.IO.Path.ChangeExtension, have no effect on files and directories in the file system. System.IO.Path members do, however, validate the contents of a specified path string, and throw System.ArgumentException if the string contains characters that are not valid in path strings, as defined by the current platform and file system. Implementations are required to preserve the case of file and directory path strings, and to be case sensitive if and only if the current platform is case-sensitive.

 Path.AltDirectorySeparatorChar Field
[ILAsm]
.field public static initOnly valuetype System.Char AltDirectorySeparatorChar
[C#]
public static readonly char AltDirectorySeparatorChar
Summary
Provides a string containing an alternate single printable non-alphanumeric character used to separate directory levels in a hierarchical file system.

Description
This field is read-only.

This field can be set to the same value as System.IO.Path.DirectorySeparatorChar.

[Note: System.IO.Path.AltDirectorySeparatorChar and System.IO.Path.DirectorySeparatorChar are both valid for separating directory levels in a path string.

The value of this field is a slash ('/') on Windows systems and a backslash ('\') on Unix systems.

]

 Path.DirectorySeparatorChar Field
[ILAsm]
.field public static initOnly valuetype System.Char DirectorySeparatorChar
[C#]
public static readonly char DirectorySeparatorChar
Summary
Provides a string containing a single printable non-alphanumeric character used to separate directory levels in a hierarchical file system.

Description
This field is read-only.

[Note: System.IO.Path.AltDirectorySeparatorChar and System.IO.Path.DirectorySeparatorChar are both valid for separating directory levels in a path string.

The value of this field is a backslash ('\') on Windows systems and a slash ('/') on Unix systems.

]

 Path.PathSeparator Field
[ILAsm]
.field public static initOnly valuetype System.Char PathSeparator
[C#]
public static readonly char PathSeparator
Summary
Provides a implementation-specific separator character used to separate path strings in environment variables.

Description
This field is read-only.

 Path.ChangeExtension(System.String, System.String) Method
[ILAsm]
.method public hidebysig static string ChangeExtension(string path, string extension)
[C#]
public static string ChangeExtension(string path, string extension)
Summary
Changes the extension component of the specified path string.

Parameters

	Parameter
	Description

	path
	A System.String containing the path information to modify.

	extension
	A System.String containing the new extension. Specify null to remove an existing extension from path.

Return Value

A System.String containing the modified path information.

Platforms that do not support this feature return path unmodified.
Description
The exact behavior of this method is implementation-specific. This method checks path for invalid characters as defined by the current platform and file system.

Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters.

 Path.Combine(System.String, System.String) Method
[ILAsm]
.method public hidebysig static string Combine(string path1, string path2)
[C#]
public static string Combine(string path1, string path2)
Summary
Concatenates two path strings.

Parameters

	Parameter
	Description

	path1
	A System.String containing the first path.

	path2
	A System.String containing the second path.

Return Value

A System.String containing path1 followed by path2. If one of the specified paths is a zero length string, this method returns the other path. If path2 contains an absolute path, this method returns path2.
Description
If path1 does not end with a valid separator character (System.IO.Path.DirectorySeparatorChar or System.IO.Path.AltDirectorySeparatorChar), DirectorySeparatorChar is appended to path1 prior to the concatenation.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	path1 or path2 is null.

	System.ArgumentException
	path1 or path2 contains one or more implementation-specific invalid characters.

Example

The following example demonstrates using the Combine method on a Windows system.

[C#]
using System;

using System.IO;

class CombineTest {

 public static void Main() {

 string path1, path2;

 Console.WriteLine("Dir char is {0} Alt dir char is {1}",

 Path.DirectorySeparatorChar,

 Path.AltDirectorySeparatorChar

);

 path1 = "foo.txt";

 path2 = "\\ecmatest\\examples";

 Console.WriteLine("{0} combined with {1} = {2}",path1, path2, Path.Combine(path1,

path2));

 path1 = "\\ecmatest\\examples";

 path2 = "foo.txt";

 Console.WriteLine("{0} combined with {1} = {2}",path1, path2, Path.Combine(path1,

path2));

 }

}

The output is

Dir char is \ Alt dir char is /

foo.txt combined with \ecmatest\examples = \ecmatest\examples

\ecmatest\examples combined with foo.txt = \ecmatest\examples\foo.txt

 Path.GetDirectoryName(System.String) Method
[ILAsm]
.method public hidebysig static string GetDirectoryName(string path)
[C#]
public static string GetDirectoryName(string path)
Summary
Returns the directory name component of the specified path string.

Parameters

	Parameter
	Description

	path
	A System.String containing the path of a file or directory.

Return Value

A System.String containing directory information for path, or null if path denotes a root directory, is the empty string, or is null. Returns System.String.Empty if path does not contain directory information.
Description
The string returned by this method consists of all characters between the first and last System.IO.Path.DirectorySeparatorChar or System.IO.Path.AltDirectorySeparatorChar character in path. The first separator character is included, but the last separator character is not included in the returned string.

Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters.

Example

The following example demonstrates using the System.IO.Path.GetDirectoryName method on a Windows system.

[C#]
using System;

using System.IO;

class GetDirectoryTest {

 public static void Main() {

 string [] paths = {

 @"\ecmatest\examples\pathtests.txt",

 @"\ecmatest\examples\",

 "pathtests.xyzzy",

 @"\",

 @"C:\",

 @"\\myserver\myshare\foo\bar\baz.txt"

 };

 foreach (string pathString in paths) {

 string s = Path.GetDirectoryName(pathString);

 Console.WriteLine("Path: {0} directory is {1}",pathString, s== null? "null": s);

 }

 }

}

The output is

Path: \ecmatest\examples\pathtests.txt directory is \ecmatest\examples

Path: \ecmatest\examples\ directory is \ecmatest\examples

Path: pathtests.xyzzy directory is

Path: \ directory is null

Path: C:\ directory is null

Path: \\myserver\myshare\foo\bar\baz.txt directory is \\myserver\myshare\foo\bar

 Path.GetExtension(System.String) Method
[ILAsm]
.method public hidebysig static string GetExtension(string path)
[C#]
public static string GetExtension(string path)
Summary
Returns the extension component of the specified path string.

Parameters

	Parameter
	Description

	path
	A System.String containing the path information from which to get the extension.

Return Value

A System.String containing the extension of path,null, or System.String.Empty. If path is null, returns null. If path does not have extension information, returns System.String.Empty.

The extension returned by this method includes the implementation-specific extension separator character used to separate the extension from the rest of the path.

Platforms that do not support this feature return path unmodified.
Description
The exact behavior of this method is implementation-specific. The character used to separate the extension from the rest of the path is implementation-specific.

Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters.

Example

The following example demonstrates using the System.IO.Path.GetExtension method on a Windows system.

[C#]
using System;

using System.IO;

class GetDirectoryTest {

 public static void Main(){

 string [] paths = {

 @"\ecmatest\examples\pathtests.txt",

 @"\ecmatest\examples\",

 "pathtests.xyzzy",

 "pathtests.xyzzy.txt",

 @"\",

 ""

 };

 foreach (string pathString in paths){

 string s = Path.GetExtension (pathString);

 if (s == String.Empty) s= "(empty string)";

 if (s == null) s= "null";

 Console.WriteLine("{0} is the extension of {1}", s, pathString);

 }

 }

}

The output is

.txt is the extension of \ecmatest\examples\pathtests.txt

(empty string) is the extension of \ecmatest\examples\

.xyzzy is the extension of pathtests.xyzzy

.txt is the extension of pathtests.xyzzy.txt

(empty string) is the extension of \

(empty string) is the extension of

 Path.GetFileName(System.String) Method
[ILAsm]
.method public hidebysig static string GetFileName(string path)
[C#]
public static string GetFileName(string path)
Summary
Returns the file name, including the extension if any, of the specified path string.

Parameters

	Parameter
	Description

	path
	A System.String containing the path information from which to obtain the filename and extension.

Return Value

A System.String consisting of the characters after the last directory character in path. If the last character of path is a directory separator character, returns System.String.Empty. If path is null, returns null.

Platforms that do not support this feature return path unmodified.
Description
The directory separator characters used to determine the start of the file name are System.IO.Path.DirectorySeparatorChar and System.IO.Path.AltDirectorySeparatorChar.

Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters.

Example

The following example demonstrates the behavior of the System.IO.Path.GetFileName method on a Windows system.

[C#]
using System;

using System.IO;

class FileNameTest {

 public static void Main() {

 string [] paths = {"pathtests.txt",

 @"\ecmatest\examples\pathtests.txt",

 "c:pathtests.txt",

 @"\ecmatest\examples\",

 ""

 };

 foreach (string p in paths) {

 Console.WriteLine("Path: {0} filename = {1}",p, Path.GetFileName(p));

 }

 }

}

The output is

Path: pathtests.txt filename = pathtests.txt

Path: \ecmatest\examples\pathtests.txt filename = pathtests.txt

Path: c:pathtests.txt filename = pathtests.txt

Path: \ecmatest\examples\ filename =

Path: filename =

 Path.GetFileNameWithoutExtension(System.String) Method
[ILAsm]
.method public hidebysig static string GetFileNameWithoutExtension(string path)
[C#]
public static string GetFileNameWithoutExtension(string path)
Summary
Returns the file base component of the specified path string without the extension.

Parameters

	Parameter
	Description

	path
	A System.String containing the path of the file.

Return Value

A System.String consisting of the string returned by System.IO.Path.GetFileName, minus the implementation-specific extension separator character and extension. Platforms that do not support this feature return path unmodified.
Description
[Note: For additional details, see System.IO.Path.GetFileName.]

Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters.

 Path.GetFullPath(System.String) Method
[ILAsm]
.method public hidebysig static string GetFullPath(string path)
[C#]
public static string GetFullPath(string path)
Summary
Returns information required to uniquely identify a file within a file system.

Parameters

	Parameter
	Description

	path
	A System.String containing the file or directory for which to obtain absolute path information.

Return Value

A System.String containing the fully qualified (absolute) location of path.
Description
The absolute path includes all information required to locate a file or directory on a system. The file or directory specified by path is not required to exist; however if path does exist, the caller is required to have permission to obtain path information for path. Note that unlike most members of the System.IO.Path class, this method accesses the file system.

Exceptions

	Exception
	Condition

	System.ArgumentException
	path is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.

-or-

The system could not retrieve the absolute path.

	System.Security.SecurityException
	The caller does not have the required permissions.

	System.ArgumentNullException
	path is null.

	System.IO.PathTooLongException
	The length of path or the absolute path information for path exceeds the system-defined maximum length.

Example

The following example demonstrates the System.IO.Path.GetFullPath method on a Windows system. In this example, the absolute path for the current directory is c:\ecmatest\examples.

[C#]
using System;

using System.IO;

class GetDirectoryTest {

 public static void Main() {

 string [] paths = {

 @"\ecmatest\examples\pathtests.txt",

 @"\ecmatest\examples\",

 "pathtests.xyzzy",

 @"\",

 };

 foreach (string pathString in paths)

 Console.WriteLine("Path: {0} full path is {1}",pathString,

Path.GetFullPath(pathString));

 }

}

The output is

Path: \ecmatest\examples\pathtests.txt full path is C:\ecmatest\examples\pathtests.txt

Path: \ecmatest\examples\ full path is C:\ecmatest\examples\

Path: pathtests.xyzzy full path is C:\ecmatest\examples\pathtests.xyzzy

Path: \ full path is C:\

Permissions

	Permission
	Description

	System.Security.Permissions. FileIOPermission
	Requires permission to access path information. See System.Security.Permissions.FileIOPermissionAccess.PathDiscovery.

 Path.GetPathRoot(System.String) Method
[ILAsm]
.method public hidebysig static string GetPathRoot(string path)
[C#]
public static string GetPathRoot(string path)
Summary
Returns the path root component of the specified path.

Parameters

	Parameter
	Description

	path
	A System.String containing the path from which to obtain root directory information

Return Value

A System.String containing the root directory of path, or null if path is null. Returns System.String.Empty if the specified path does not contain root information.

Platforms that do not support this feature return path unmodified.
Description
This method does not verify that the path exists.

The exact behavior of this method is implementation-specific.

Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters or is equal to System.String.Empty.

Example

The following example demonstrates the System.IO.Path.GetPathRoot method.

[C#]
using System;

using System.IO;

class GetPathRootTest

{

 public static void Main() {

 string [] paths = {

@"\ecmatest\examples\pathtests.txt",

 "pathtests.xyzzy",

 @"\",

 @"C:\",

@"\\myserver\myshare\foo\bar\baz.txt"

 };

 foreach (string pathString in paths) {

 string s = Path.GetPathRoot(pathString);

 Console.WriteLine("Path: {0} Path root is {1}",pathString, s== null? "null": s);

 }

 }

}

The output is

Path: \ecmatest\examples\pathtests.txt Path root is \

Path: pathtests.xyzzy Path root is

Path: \ Path root is \

Path: C:\ Path root is C:\

Path: \\myserver\myshare\foo\bar\baz.txt Path root is \\myserver\myshare

 Path.GetTempFileName() Method
[ILAsm]
.method public hidebysig static string GetTempFileName()
[C#]
public static string GetTempFileName()
Summary
Returns a unique temporary file name and creates a 0-byte file by that name on disk.

Return Value

A System.String containing the name of the temporary file.

Platforms that do not support this feature return System.String.Empty.
 Path.GetTempPath() Method
[ILAsm]
.method public hidebysig static string GetTempPath()
[C#]
public static string GetTempPath()
Summary
Returns the path information of a temporary directory.

Return Value

A System.String containing the full directory name of a temporary directory.

The information returned by this method is implementation-specific. Platforms that do not support this feature return System.String.Empty.
Description
On platforms that provide a mechanism for users to discover this information, (for example by checking an environment variable), implementations of the CLI return the same information as the implementation-specific mechanism.

Exceptions

	Exception
	Condition

	System.Security.SecurityException
	The caller does not have the required permission.

Permissions

	Permission
	Description

	System.Security.Permissions. EnvironmentPermission
	Requires unrestricted access to environment variables. See System.Security.Permissions.PermissionState. Unrestricted.

 Path.HasExtension(System.String) Method
[ILAsm]
.method public hidebysig static bool HasExtension(string path)
[C#]
public static bool HasExtension(string path)
Summary
Returns a System.Boolean indicating whether the specified path includes an extension component.

Parameters

	Parameter
	Description

	path
	A System.String containing the path to search for an extension.

Return Value

true if path includes a file extension.

Platforms that do not support this feature return false.
Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters.

 Path.IsPathRooted(System.String) Method
[ILAsm]
.method public hidebysig static bool IsPathRooted(string path)
[C#]
public static bool IsPathRooted(string path)
Summary
Returns a System.Boolean indicating whether the specified path string contains a path root component.

Parameters

	Parameter
	Description

	path
	A System.String containing the path to test.

Return Value

true if path contains an absolute path; false if path contains relative path information.

Platforms that do not support this feature return false.
Description
[Note: This method does not access file systems or verify the existence of the specified path.]

Exceptions

	Exception
	Condition

	System.ArgumentException
	path contains one or more implementation-specific invalid characters.

PAGE
1

