
System.Threading.WaitHandle Class

[ILAsm]
.class public abstract WaitHandle extends System.MarshalByRefObject implements System.IDisposable
[C#]
public abstract class WaitHandle: MarshalByRefObject, IDisposable
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Implements:
· System.IDisposable

Summary

Encapsulates operating-system specific objects that wait for exclusive access to shared resources.

Inherits From: System.MarshalByRefObject

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.

Description
[Note: This class is typically used as a base class for synchronization objects. Classes derived from System.Threading.WaitHandle define a signaling mechanism to indicate taking or releasing exclusive access to a shared resource, but use the inherited System.Threading.WaitHandle methods to block while waiting for access to shared resources.

The static methods of this class are used to block a System.Threading.Thread until one or more synchronization objects receive a signal.

]

 WaitHandle() Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor()
[C#]
public WaitHandle()
Summary
Constructs and initializes a new instance of the System.Threading.WaitHandle class.

 WaitHandle.Close() Method
[ILAsm]
.method public hidebysig virtual void Close()
[C#]
public virtual void Close()
Summary
Releases all resources held by the current instance.

Description
This method is the public version of the System.IDisposable.Dispose method implemented to support the System.IDisposable interface.

Behaviors

This method releases any unmanaged resources held by the current instance. This method can, but is not required to, suppress finalization during garbage collection by calling the System.GC.SuppressFinalize method.

Default

As described above.

How and When to Override

Override this property to release resources allocated in subclasses.

Usage

Use this method to release all resources held by an instance of WaitHandle. Once this method is called, references to the current instance cause undefined behavior.

 WaitHandle.Dispose(System.Boolean) Method
[ILAsm]
.method family hidebysig virtual void Dispose(bool explicitDisposing)
[C#]
protected virtual void Dispose(bool explicitDisposing)
Summary
Releases the unmanaged resources used by the System.Threading.WaitHandle and optionally releases the managed resources.

Parameters

	Parameter
	Description

	explicitDisposing
	true to release both managed and unmanaged resources; false to release only unmanaged resources.

Behaviors

This method releases all unmanaged resources held by the current instance. When the explicitDisposing parameter is true, this method releases all resources held by any managed objects referenced by the current instance. This method invokes the Dispose() method of each referenced object.

How and When to Override

Override this method to dispose of resources allocated by types derived from System.Threading.WaitHandle. When overriding Dispose(System.Boolean), be careful not to reference objects that have been previously disposed in an earlier call to Dispose or Close. Dispose can be called multiple times by other objects.

Usage

This method is called by the public System.Threading.WaitHandle.Dispose method and the System.Object.Finalize method. Dispose() invokes this method with the explicitDisposing parameter set to true. System.Object.Finalize invokes Dispose with explicitDisposing set to false.

 WaitHandle.Finalize() Method
[ILAsm]
.method family hidebysig virtual void Finalize()
[C#]
~WaitHandle()
Summary
Releases the resources held by the current instance.

Description
[Note: Application code does not call this method; it is automatically invoked during garbage collection unless finalization by the garbage collector has been disabled. For more information, see System.GC.SuppressFinalize, and System.Object.Finalize.

This method overrides System.Object.Finalize.

]

 WaitHandle.System.IDisposable.Dispose() Method
[ILAsm]
.method private final hidebysig virtual void System.IDisposable.Dispose()
[C#]
void IDisposable.Dispose()
Summary
Implemented to support the System.IDisposable interface. [Note: For more information, see System.IDisposable.Dispose.]

 WaitHandle.WaitAll(System.Threading.WaitHandle[]) Method
[ILAsm]
.method public hidebysig static bool WaitAll(class System.Threading.WaitHandle[] waitHandles)
[C#]
public static bool WaitAll(WaitHandle[] waitHandles)
Summary
Waits for all of the elements in the specified array to receive a signal.

Parameters

	Parameter
	Description

	waitHandles
	A System.Threading.WaitHandle array containing the objects for which the current instance will wait. This array cannot contain multiple references to the same object (duplicates).

Return Value

Returns true when every element in waitHandles has received a signal. If the current thread receives a request to abort before the signals are received, this method returns false.
The maximum number of objects specified in the waitHandles array is system defined.
Exceptions

	Exception
	Condition

	System.ArgumentNullException
	waitHandles is null or one or more elements in the waitHandles array is null.

	System.DuplicateWaitObjectException
	waitHandles contains elements that are duplicates.

	System.NotSupportedException
	The number of objects in waitHandles is greater than the system permits.

 WaitHandle.WaitAny(System.Threading.WaitHandle[]) Method
[ILAsm]
.method public hidebysig static int32 WaitAny(class System.Threading.WaitHandle[] waitHandles)
[C#]
public static int WaitAny(WaitHandle[] waitHandles)
Summary
Waits for any of the elements in the specified array to receive a signal.

Parameters

	Parameter
	Description

	waitHandles
	A System.Threading.WaitHandle array containing the objects for which the current instance will wait. This array cannot contain multiple references to the same object (duplicates).

Return Value

Returns a System.Int32 set to the index of the element in waitHandles that received a signal.
The maximum number of objects specified in the waitHandles array is system defined.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	waitHandles is null or one or more elements in the waitHandles array is null.

	System.DuplicateWaitObjectException
	waitHandles contains elements that are duplicates.

	System.NotSupportedException
	The number of objects in waitHandles is greater than the system permits.

 WaitHandle.WaitOne() Method
[ILAsm]
.method public hidebysig virtual bool WaitOne()
[C#]
public virtual bool WaitOne()
Summary
Blocks the current thread until the current instance receives a signal.

Return Value

Returns true when the current instance receives a signal.
Behaviors

The caller of this method blocks indefinitely until a signal is received by the current instance.

How and When to Override

Override this method to customize the behavior of types derived from System.Threading.WaitHandle.

Usage

Use this method to block until a WaitHandle receives a signal from another thread, such as is generated when an asynchronous operation completes. For more information, see the System.IAsyncResult interface.

Exceptions

	Exception
	Condition

	System.ObjectDisposedException
	The current instance has already been disposed.

PAGE
1

