
 1

System.Net.Sockets.NetworkStream Class 1

 2

[ILAsm] 3
.class public NetworkStream extends System.IO.Stream 4

[C#] 5
public class NetworkStream: Stream 6

Assembly Info: 7

· Name: System 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Implements: 13

· System.IDisposable 14

Summary 15
 16

Implements the standard stream mechanism to read and write network data through an 17
instance of the System.Net.Sockets.Socket class. 18

Inherits From: System.IO.Stream 19
 20
Library: Networking 21
 22
Thread Safety: All public static members of this type are safe for multithreaded operations. 23
No instance members are guaranteed to be thread safe. 24
 25
Description 26

The System.Net.Sockets.NetworkStream class allows network data to be read and 27
written in the same manner as the System.IO.Stream class. 28
 29
This class supports simultaneous synchronous and asynchronous access to the network 30
data. Random access is not supported and thus the 31
System.Net.Sockets.NetworkStream.CanSeek property always returns false. 32
 33
The following properties and methods inherited from the System.IO.Stream class are 34
not supported and throw a System.NotSupportedException exception when accessed: 35

· System.Net.Sockets.NetworkStream.Length 36

 2

· System.Net.Sockets.NetworkStream.Position 1

· System.Net.Sockets.NetworkStream.Seek 2

· System.Net.Sockets.NetworkStream.SetLength 3

The System.Net.Sockets.NetworkStream.Flush method is reserved for future use but 4
does not throw an exception. 5

6

 3

 NetworkStream(System.Net.Sockets.Socket, 1

System.IO.FileAccess, System.Boolean) 2

Constructor 3

[ILAsm] 4
public rtspecialname specialname instance void .ctor(class 5
System.Net.Sockets.Socket socket, valuetype System.IO.FileAccess access, 6
bool ownsSocket) 7

[C#] 8
public NetworkStream(Socket socket, FileAccess access, bool ownsSocket) 9

Summary 10

Constructs and initializes a new instance of the System.Net.Sockets.NetworkStream 11
class. 12

Parameters 13
 14
 15

Parameter Description

socket An instance of the System.Net.Sockets.Socket class.

access One of the values of the System.IO.FileAccess enumeration.

ownsSocket true if socket is owned by the current instance; otherwise, false.

 16
Description 17

socket is required to be an instance of the System.Net.Sockets.Socket class with its 18
System.Net.Sockets.Socket.Connected property equal to true, 19
System.Net.Sockets.Socket.Blocking property equal to true, and 20
System.Net.Sockets.SocketType equal to System.Net.Sockets.SocketType.Stream. 21
 22
When ownsSocket is true, the current instance owns socket, meaning the 23
System.Net.Sockets.NetworkStream.Close and 24
System.Net.Sockets.NetworkStream.Dispose methods call the 25
System.Net.Sockets.Socket.Close method of socket. 26

Exceptions 27
 28
 29

 4

Exception Condition

System.ArgumentNullException socket is null.

System.IO.IOException

The System.Net.Sockets.Socket.Blocking property
of socket is false.

-or-

The System.Net.Sockets.Socket.Connected property
of socket is false.

-or-

The System.Net.Sockets.Socket.SocketType property
of socket is not
System.Net.Sockets.SocketType.Stream.

 1
 2

3

 5

 NetworkStream(System.Net.Sockets.Socket, 1

System.IO.FileAccess) Constructor 2

[ILAsm] 3
public rtspecialname specialname instance void .ctor(class 4
System.Net.Sockets.Socket socket, valuetype System.IO.FileAccess access) 5

[C#] 6
public NetworkStream(Socket socket, FileAccess access) 7

Summary 8

Constructs and initializes a new instance of the System.Net.Sockets.NetworkStream 9
class. 10

Parameters 11
 12
 13

Parameter Description

socket An instance of the System.Net.Sockets.Socket class.

access One of the values of the System.IO.FileAccess enumeration.

 14
Description 15

This constructor is equivalent to 16
System.Net.Sockets.NetworkStream.NetworkStream(socket, access, false). 17

Exceptions 18
 19
 20

Exception Condition

System.ArgumentNullException socket is null.

System.IO.IOException

The System.Net.Sockets.Socket.Blocking property
of socket is false.

-or-

The System.Net.Sockets.Socket.Connected property

 6

of socket is false.

-or-

The System.Net.Sockets.Socket.SocketType property
of socket is not
System.Net.Sockets.SocketType.Stream.

 1
 2

3

 7

 NetworkStream(System.Net.Sockets.Socket) 1

Constructor 2

[ILAsm] 3
public rtspecialname specialname instance void .ctor(class 4
System.Net.Sockets.Socket socket) 5

[C#] 6
public NetworkStream(Socket socket) 7

Summary 8

Constructs and initializes a new instance of the System.Net.Sockets.NetworkStream 9
class. 10

Parameters 11
 12
 13

Parameter Description

socket An instance of the System.Net.Sockets.Socket class.

 14
Description 15

This constructor is equivalent to 16
System.Net.Sockets.NetworkStream.NetworkStream(socket, 17
System.IO.FileAccess.ReadWrite, false). 18

Exceptions 19
 20
 21

Exception Condition

System.ArgumentNullException socket is null.

System.IO.IOException

The System.Net.Sockets.Socket.Blocking property
of socket is false.

-or-

The System.Net.Sockets.Socket.Connected property
of socket is false.

 8

-or-

The System.Net.Sockets.Socket.SocketType property
of socket is not
System.Net.Sockets.SocketType.Stream.

 1
 2

3

 9

 NetworkStream(System.Net.Sockets.Socket, 1

System.Boolean) Constructor 2

[ILAsm] 3
public rtspecialname specialname instance void .ctor(class 4
System.Net.Sockets.Socket socket, bool ownsSocket) 5

[C#] 6
public NetworkStream(Socket socket, bool ownsSocket) 7

Summary 8

Constructs and initializes a new instance of the System.Net.Sockets.NetworkStream 9
class. 10

Parameters 11
 12
 13

Parameter Description

socket An instance of the System.Net.Sockets.Socket class.

ownsSocket true if socket is owned by the current instance; otherwise, false.

 14
Description 15

This constructor is equivalent to 16
System.Net.Sockets.NetworkStream.NetworkStream(socket, 17
System.IO.FileAccess.ReadWrite, ownsSocket). 18

Exceptions 19
 20
 21

Exception Condition

System.ArgumentNullException socket is null.

System.IO.IOException

The System.Net.Sockets.Socket.Blocking property
of socket is false.

-or-

 10

The System.Net.Sockets.Socket.Connected property
of socket is false.

-or-

The System.Net.Sockets.Socket.SocketType property
of socket is not
System.Net.Sockets.SocketType.Stream.

 1
 2

3

 11

 NetworkStream.BeginRead(System.Byte[], 1

System.Int32, System.Int32, 2

System.AsyncCallback, System.Object) 3

Method 4

[ILAsm] 5
.method public hidebysig virtual class System.IAsyncResult BeginRead(class 6
System.Byte[] buffer, int32 offset, int32 size, class System.AsyncCallback 7
callback, object state) 8

[C#] 9
public override IAsyncResult BeginRead(byte[] buffer, int offset, int 10
size, AsyncCallback callback, object state) 11

Summary 12

Begins an asynchronous operation to read data from the current instance. 13

Parameters 14
 15
 16

Parameter Description

buffer A System.Byte array to store data read from the stream.

offset
A System.Int32 containing the zero-based position in buffer at which to begin
storing the data.

size A System.Int32 containing the number of bytes to read.

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 17
Return Value 18
 19

A System.IAsyncResult instance that contains information about the asynchronous 20
operation. 21

Description 22

 12

To retrieve the results of the operation and release resources allocated by the 1
System.Net.Sockets.NetworkStream.BeginRead method, call the 2
System.Net.Sockets.NetworkStream.EndRead method, and specify the 3
System.IAsyncResult object returned by this method. 4
 5
[Note: The System.Net.Sockets.NetworkStream.EndRead method should be called 6
exactly once for each call to the System.Net.Sockets.NetworkStream.BeginRead 7
method.] 8
 9
 10
 11
If the callback parameter is not null, the method referenced by callback is invoked 12
when the asynchronous operation completes. The System.IAsyncResult object 13
returned by this method is passed as the argument to the method referenced by 14
callback. The method referenced by callback can retrieve the results of the operation by 15
calling the System.Net.Sockets.NetworkStream.EndRead method. 16
 17
The state parameter can be any object that the caller wishes to have available for the 18
duration of the asynchronous operation. This object is available via the 19
System.IAsyncResult.AsyncState property of the object returned by this method. 20
 21
[Note: This method overrides System.IO.Stream.BeginRead. 22
 23
] 24

Exceptions 25
 26
 27

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

 13

System.IO.IOException

An error occurred while accessing the
underlying socket.

[Note: Any exception thrown by the
System.Net.Sockets.Socket.BeginReceive
method is caught and rethrown as an
IOException with the original exception stored
in the System.Exception.InnerException
property.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the 5
System.Net.Sockets.Socket class overview. 6

7

 14

 NetworkStream.BeginWrite(System.Byte[], 1

System.Int32, System.Int32, 2

System.AsyncCallback, System.Object) 3

Method 4

[ILAsm] 5
.method public hidebysig virtual class System.IAsyncResult 6
BeginWrite(class System.Byte[] buffer, int32 offset, int32 size, class 7
System.AsyncCallback callback, object state) 8

[C#] 9
public override IAsyncResult BeginWrite(byte[] buffer, int offset, int 10
size, AsyncCallback callback, object state) 11

Summary 12

Begins an asynchronous operation to write data to the current instance. 13

Parameters 14
 15
 16

Parameter Description

buffer A System.Byte array containing data to write to the stream.

offset
A System.Int32 containing the zero-based position in buffer containing the
starting location of the data to write.

size A System.Int32 containing the number of bytes to write to the stream.

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 17
Return Value 18
 19

A System.IAsyncResult instance that contains information about the asynchronous 20
operation. 21

Description 22

 15

To release resources allocated by the System.Net.Sockets.NetworkStream.BeginWrite 1
method, call the System.Net.Sockets.NetworkStream.EndWrite method, and specify 2
the System.IAsyncResult object returned by this method. 3
 4
[Note: The System.Net.Sockets.NetworkStream.EndWrite method should be called 5
exactly once for each call to the System.Net.Sockets.NetworkStream.BeginWrite 6
method.] 7
 8
 9
 10
If the callback parameter is not null, the method referenced by callback is invoked 11
when the asynchronous operation completes. The System.IAsyncResult object 12
returned by this method is passed as the argument to the method referenced by 13
callback. The method referenced by callback can retrieve the results of the operation by 14
calling the System.Net.Sockets.NetworkStream.EndWrite method. 15
 16
The state parameter can be any object that the caller wishes to have available for the 17
duration of the asynchronous operation. This object is available via the 18
System.IAsyncResult.AsyncState property of the object returned by this method. 19
 20
[Note: This method overrides System.IO.Stream.BeginWrite. 21
 22
] 23

Exceptions 24
 25
 26

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.IO.IOException An error occurred while accessing the
underlying socket.

 16

[Note: Any exception thrown by the
System.Net.Sockets.Socket.BeginSend
method is caught and rethrown as an
IOException with the original exception stored
in the System.Exception.InnerException
property.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the 5
System.Net.Sockets.Socket class overview. 6

7

 17

 NetworkStream.Close() Method 1

[ILAsm] 2
.method public hidebysig virtual void Close() 3

[C#] 4
public override void Close() 5

Summary 6

Closes the stream and, if owned by the current instance, the underlying socket. 7

Description 8

This method calls System.Net.Sockets.NetworkStream.Dispose(true), which frees 9
both managed and unmanaged resources used by the current instance. When the 10
underlying socket is owned by the current instance, the 11
System.Net.Sockets.Socket.Close method of the socket is called, which frees both 12
managed and unmanaged resources used by the socket. 13
 14
[Note: Ownership of a socket is specified using the 15
System.Net.Sockets.NetworkStream constructor. 16
 17
This method overrides System.IO.Stream.Close. 18
 19
] 20

21

 18

 NetworkStream.Dispose(System.Boolean) 1

Method 2

[ILAsm] 3
.method family hidebysig virtual void Dispose(bool disposing) 4

[C#] 5
protected virtual void Dispose(bool disposing) 6

Summary 7

Releases the unmanaged resources used by the current instance and optionally releases 8
the managed resources. 9

Parameters 10
 11
 12

Parameter Description

disposing
A System.Boolean. Specify true to release both managed and unmanaged
resources; specify false to release only unmanaged resources.

 13
Description 14

[Note: Ownership of a socket is specified using the 15
System.Net.Sockets.NetworkStream constructor. 16
 17
The System.Net.Sockets.NetworkStream.Close method calls this method with the 18
disposing parameter set to true. The finalizer calls this method with the disposing 19
parameter set to false. 20
 21
] 22

Behaviors 23

This method closes the current System.Net.Sockets.NetworkStream instance releasing 24
all unmanaged resources allocated by the current instance. When the underlying socket 25
is owned by the current instance, the System.Net.Sockets.Socket.Close method of 26
the socket is called, which frees the managed and unmanaged resources used by the 27
socket. When the disposing parameter is true, this method also releases all resources 28
held by any other managed objects allocated by the current instance. 29

 30

Default 31

 19

This method closes the current System.Net.Sockets.NetworkStream instance releasing 1
all unmanaged resources allocated by the current instance. When the underlying socket 2
is owned by the current instance, the System.Net.Sockets.Socket.Close method of 3
the socket is called, which frees the managed and unmanaged resources used by the 4
socket. 5

 6

How and When to Override 7

The System.Net.Sockets.Socket.Dispose method can be called multiple times by 8
other objects. When overriding this method, do not reference objects that have been 9
previously disposed in an earlier call. 10

 11

Usage 12

Use this method to release resources allocated by the current instance. 13

 14

15

 20

 1

NetworkStream.EndRead(System.IAsyncResu2

lt) Method 3

[ILAsm] 4
.method public hidebysig virtual int32 EndRead(class System.IAsyncResult 5
asyncResult) 6

[C#] 7
public override int EndRead(IAsyncResult asyncResult) 8

Summary 9

Ends an asynchronous call to read data from the current instance. 10

Parameters 11
 12
 13

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

 14
Return Value 15
 16

A System.Int32 containing the number of bytes read from the stream. 17

Description 18

This method blocks if the asynchronous operation has not completed. 19
 20
The System.Net.Sockets.NetworkStream.EndRead method completes an asynchronous 21
request that was started with a call to the 22
System.Net.Sockets.NetworkStream.BeginRead method. The object specified for the 23
asyncResult parameter is required to be the same object as was returned by the 24
System.Net.Sockets.NetworkStream.BeginRead method call that began the request. 25
 26
If the System.Net.Sockets.NetworkStream.EndRead method is invoked via the 27
System.AsyncCallback delegate specified to the 28
System.Net.Sockets.NetworkStream.BeginRead method, the asyncResult parameter is 29
the System.IAsyncResult argument passed to the delegate's method. 30
 31
[Note: This method overrides System.IO.Stream.EndRead. 32

 21

 1
] 2

Exceptions 3
 4
 5

Exception Condition

System.ArgumentNullException asyncResult is null.

System.IO.IOException

An error occurred while accessing the underlying
socket. [Note: This method catches all exceptions
thrown by the
System.Net.Sockets.Socket.EndReceive method.]

System.ObjectDisposedException The current instance has been disposed.

 6
Example 7
 8

For an outline of an asynchronous operation, see the 9
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the 10
System.Net.Sockets.Socket class overview. 11

12

 22

 1

NetworkStream.EndWrite(System.IAsyncRes2

ult) Method 3

[ILAsm] 4
.method public hidebysig virtual void EndWrite(class System.IAsyncResult 5
asyncResult) 6

[C#] 7
public override void EndWrite(IAsyncResult asyncResult) 8

Summary 9

Ends an asynchronous call to write data to the current instance. 10

Parameters 11
 12
 13

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

 14
Description 15

This method blocks if the asynchronous operation has not completed. 16
 17
The System.Net.Sockets.NetworkStream.EndWrite method completes an 18
asynchronous request that was started with a call to the 19
System.Net.Sockets.NetworkStream.BeginWrite method. The object specified for the 20
asyncResult parameter is required to be the same object as was returned by the 21
System.Net.Sockets.NetworkStream.BeginWrite method call that began the request. 22
 23
If the System.Net.Sockets.NetworkStream.EndWrite method is invoked via the 24
System.AsyncCallback delegate specified to the 25
System.Net.Sockets.NetworkStream.BeginWrite method, the asyncResult parameter 26
is the System.IAsyncResult argument passed to the delegate's method. 27
 28
[Note: This method overrides System.IO.Stream.EndWrite. 29
 30
] 31

Exceptions 32
 33
 34

 23

Exception Condition

System.ArgumentNullException asyncResult is null.

System.IO.IOException

An error occurred while accessing the underlying
socket. [Note: This method catches all exceptions
thrown by the System.Net.Sockets.Socket.EndSend
method.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the 5
System.Net.Sockets.Socket class overview. 6

7

 24

 NetworkStream.Finalize() Method 1

[ILAsm] 2
.method family hidebysig virtual void Finalize() 3

[C#] 4
~NetworkStream() 5

Summary 6

Frees unmanaged resources used by the current instance. 7

Description 8

[Note: Application code does not call this method; it is automatically invoked during 9
garbage collection unless finalization by the garbage collector has been disabled. For 10
more information, see System.GC.SuppressFinalize, and System.Object.Finalize. 11
 12
This method calls System.Net.Sockets.NetworkStream.Dispose(false), which frees 13
unmanaged resources used by the current instance. When the underlying socket is 14
owned by the current instance, it is closed and the managed and unmanaged resources 15
used by the socket are freed. 16
 17
Ownership of a socket is specified using the System.Net.Sockets.NetworkStream 18
constructor. 19
 20
This method overrides System.Object.Finalize. 21
 22
] 23

24

 25

 NetworkStream.Flush() Method 1

[ILAsm] 2
.method public hidebysig virtual void Flush() 3

[C#] 4
public override void Flush() 5

Summary 6

This method is reserved for future use. 7

Description 8

Calling this method does not throw an exception. 9
 10
[Note: This method overrides System.IO.Stream.Flush. 11
 12
] 13

14

 26

 NetworkStream.Read(System.Byte[], 1

System.Int32, System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual int32 Read(class System.Byte[] buffer, 4
int32 offset, int32 size) 5

[C#] 6
public override int Read(byte[] buffer, int offset, int size) 7

Summary 8

Reads data from the current instance and stores it in a data buffer. 9

Parameters 10
 11
 12

Parameter Description

buffer A System.Byte array to store data read from the stream.

offset
A System.Int32 containing the zero-based position in buffer at which to begin
storing the data.

size A System.Int32 containing the number of bytes to read.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes read from the stream. 16

Description 17

When no incoming data is available, this method blocks and waits for data to arrive. 18
 19
If the remote socket was shut down gracefully (System.Net.Sockets.Socket.Shutdown 20
was called on the socket or the System.Net.Sockets.SocketOptionName.Linger option 21
was enabled and System.Net.Sockets.Socket.Close was called on the socket) and all 22
data was received, this method immediately returns zero. 23
 24
[Note: This method overrides System.IO.Stream.Read. 25
 26
] 27

 27

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.IO.IOException

An error occurred while accessing the
underlying socket. [Note: This method catches
all exceptions thrown by the
System.Net.Sockets.Socket.Receive
method.]

System.ObjectDisposedException The current instance has been disposed.

 4
 5

6

 28

 NetworkStream.Seek(System.Int64, 1

System.IO.SeekOrigin) Method 2

[ILAsm] 3
.method public hidebysig virtual int64 Seek(int64 offset, valuetype 4
System.IO.SeekOrigin origin) 5

[C#] 6
public override long Seek(long offset, SeekOrigin origin) 7

Summary 8

Throws a System.NotSupportedException. 9

Parameters 10
 11
 12

Parameter Description

offset This parameter is not used.

origin This parameter is not used.

 13
Description 14

[Note: The System.IO.Stream base class uses this method to set the current position in 15
the stream. This functionality is not supported in the 16
System.Net.Sockets.NetworkStream class. 17
 18
This method overrides System.IO.Stream.Seek. 19
 20
] 21

Exceptions 22
 23
 24

Exception Condition

System.NotSupportedException Any call to this method.

 25
 26

27

 29

 NetworkStream.SetLength(System.Int64) 1

Method 2

[ILAsm] 3
.method public hidebysig virtual void SetLength(int64 value) 4

[C#] 5
public override void SetLength(long value) 6

Summary 7

Throws a System.NotSupportedException. 8

Parameters 9
 10
 11

Parameter Description

value This parameter is not used.

 12
Description 13

[Note: The System.IO.Stream base class uses this method to set the length of the data 14
available on the stream. This functionality is not supported in the 15
System.Net.Sockets.NetworkStream class. 16
 17
This method overrides System.IO.Stream.SetLength. 18
 19
] 20

Exceptions 21
 22
 23

Exception Condition

System.NotSupportedException Any call to this method.

 24
 25

26

 30

 NetworkStream.Write(System.Byte[], 1

System.Int32, System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual void Write(class System.Byte[] buffer, 4
int32 offset, int32 size) 5

[C#] 6
public override void Write(byte[] buffer, int offset, int size) 7

Summary 8

Writes data from a specific area of a data buffer to the current instance. 9

Parameters 10
 11
 12

Parameter Description

buffer A System.Byte array containing data to write to the stream.

offset
A System.Int32 containing the zero-based position in buffer containing the
starting location of the data to write.

size A System.Int32 containing the number of bytes to write to the stream.

 13
Description 14

When no buffer space is available within the underlying protocol, this method blocks 15
unless the socket is in non-blocking mode. 16
 17
[Note: This method overrides System.IO.Stream.Write. 18
 19
] 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentNullException buffer is null.

 31

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.IO.IOException

An error occurred while accessing the
underlying socket. [Note: This method catches
all exceptions thrown by the
System.Net.Sockets.Socket.Send method.]

System.ObjectDisposedException The current instance has been disposed.

 1
 2

3

 32

 NetworkStream.CanRead Property 1

[ILAsm] 2
.property bool CanRead { public hidebysig virtual specialname bool 3
get_CanRead() } 4

[C#] 5
public override bool CanRead { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream supports reading. 8

Property Value 9
 10

true indicates that the current stream supports reading; false. indicates that the 11
current stream does not support reading. 12

Description 13

This property is read-only. 14
 15
The value of this property is initially set by the System.Net.Sockets.NetworkStream 16
constructors. 17
 18
[Note: This property overrides System.IO.Stream.CanRead. 19
 20
] 21

22

 33

 NetworkStream.CanSeek Property 1

[ILAsm] 2
.property bool CanSeek { public hidebysig virtual specialname bool 3
get_CanSeek() } 4

[C#] 5
public override bool CanSeek { get; } 6

Summary 7

Returns the System.Boolean value false to indicate that the 8
System.Net.Sockets.NetworkStream class cannot access a specific location in the data 9
stream. 10

Property Value 11
 12

false. 13

Description 14

This property is read-only. 15
 16
[Note: This property overrides System.IO.Stream.CanSeek. 17
 18
] 19

20

 34

 NetworkStream.CanWrite Property 1

[ILAsm] 2
.property bool CanWrite { public hidebysig virtual specialname bool 3
get_CanWrite() } 4

[C#] 5
public override bool CanWrite { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream supports writing. 8

Property Value 9
 10

true indicates that the current stream supports writing; false indicates that the current 11
stream does not support writing. 12

Description 13

This property is read-only. 14
 15
The value of this property is set by the System.Net.Sockets.NetworkStream 16
constructors. 17
 18
[Note: This property overrides System.IO.Stream.CanWrite. 19
 20
] 21

22

 35

 NetworkStream.DataAvailable Property 1

[ILAsm] 2
.property bool DataAvailable { public hidebysig virtual specialname bool 3
get_DataAvailable() } 4

[C#] 5
public virtual bool DataAvailable { get; } 6

Summary 7

Gets a System.Boolean value indicating whether data is available to be read from the 8
underlying socket buffer. 9

Property Value 10
 11

true indicates that data is available to be read; false indicates that there is no data 12
available to be read. 13

Description 14

This property is read-only. 15

Behaviors 16

As described above. 17

 18

Default 19

Accessing this property causes a call to the System.Net.Sockets.Socket.Available 20
method of the underlying System.Net.Sockets.Socket instance. If the Available 21
method returns a non-zero value, indicating data is available to be read, this property 22
returns true; otherwise, this property returns false. 23

 24

How and When to Override 25

Override this property to determine if data is available to be read in the underlying 26
socket buffer. 27

 28

 36

Exceptions 1
 2
 3

Exception Condition

System.ObjectDisposedException The current instance has been disposed.

 4
 5

6

 37

 NetworkStream.Length Property 1

[ILAsm] 2
.property int64 Length { public hidebysig virtual specialname int64 3
get_Length() } 4

[C#] 5
public override long Length { get; } 6

Summary 7

Throws a System.NotSupportedException. 8

Description 9

[Note: The System.IO.Stream base class implements this property to return the length 10
of the data available on the stream. This functionality is not supported in the 11
System.Net.Sockets.NetworkStream class. 12
 13
This property overrides System.IO.Stream.Length. 14
 15
] 16

Exceptions 17
 18
 19

Exception Condition

System.NotSupportedException Any attempt to access this property.

 20
 21

22

 38

 NetworkStream.Position Property 1

[ILAsm] 2
.property int64 Position { public hidebysig virtual specialname int64 3
get_Position() public hidebysig virtual specialname void 4
set_Position(int64 value) } 5

[C#] 6
public override long Position { get; set; } 7

Summary 8

Throws a System.NotSupportedException. 9

Description 10

[Note: The System.IO.Stream base class implements this property to return or set the 11
current position in the stream. This functionality is not supported in the 12
System.Net.Sockets.NetworkStream class. 13
 14
This property overrides System.IO.Stream.Position. 15
 16
] 17

Exceptions 18
 19
 20

Exception Condition

System.NotSupportedException Any attempt to access this property.

 21
 22

	Behaviors
	Default
	How and When to Override
	Usage
	Behaviors
	Default
	How and When to Override

