
 1

System.Environment Class 1

 2

[ILAsm] 3
.class public sealed Environment extends System.Object 4

[C#] 5
public sealed class Environment 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Provides the current settings for, and information about, the execution environment. 15

Inherits From: System.Object 16
 17
Library: BCL 18
 19
Thread Safety: All public static members of this type are safe for multithreaded operations. 20
No instance members are guaranteed to be thread safe. 21
 22
Description 23

[Note: Use this class to retrieve the following information: 24

· Command line arguments 25

· Exit codes 26

· Environment variable settings 27

· Contents of the call stack 28

· Time since last system boot 29

· Version of the execution engine 30

] 31

32

 2

 Environment.Exit(System.Int32) Method 1

[ILAsm] 2
.method public hidebysig static void Exit(int32 exitCode) 3

[C#] 4
public static void Exit(int exitCode) 5

Summary 6

Terminates the current process and sets the process exit code to the specified value. 7

Parameters 8
 9
 10

Parameter Description

exitCode A System.Int32 value that is provided to the operating system.

 11
Description 12

This method causes an executing program to halt. 13

Exceptions 14
 15
 16

Exception Condition

System.Security.SecurityException The immediate caller does not have the required
permission.

 17
Permissions 18
 19
 20

Permission Description

System.Security.Permissions.
SecurityPermission

Requires unmanaged code permission. See
System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode.

 3

 1
 2

3

 4

 Environment.GetCommandLineArgs() Method 1

[ILAsm] 2
.method public hidebysig static string[] GetCommandLineArgs() 3

[C#] 4
public static string[] GetCommandLineArgs() 5

Summary 6

Returns the arguments specified on the command line. 7

Return Value 8
 9

Returns a System.String array. Each System.String in the array contains a single 10
command line argument. 11

Description 12

The first element in the array contains the filename of the executing program. If the 13
filename is not available, the first element is equal to System.String.Empty. The 14
remaining elements contain any additional tokens entered on the command line. 15
 16
[Note: The program filename can, but is not required to, include path information. 17
 18
To obtain the command line as a single System.String, use the 19
System.Environment.CommandLine property. 20
 21
] 22

23

 5

 1

Environment.GetEnvironmentVariable(System2

.String) Method 3

[ILAsm] 4
.method public hidebysig static string GetEnvironmentVariable(string 5
variable) 6

[C#] 7
public static string GetEnvironmentVariable(string variable) 8

Summary 9

Returns the value of the specified environment variable. 10

Parameters 11
 12
 13

Parameter Description

variable A System.String containing the name of an environment variable.

 14
Return Value 15
 16

A System.String containing the current setting of variable, or null. 17

Description 18

If variable contains a valid name for an environment variable, and if the caller has 19
sufficient permissions, this method returns the current setting for variable. Environment 20
variable names are case-insensitive. 21
 22
If variable specifies an invalid name or the system does not support environment 23
variables, this method returns null. 24
 25
[Note: To obtain names and settings for all environment variables, use the 26
System.Environment.GetEnvironmentVariables method.] 27
 28
 29

Exceptions 30
 31
 32

 6

Exception Condition

System.ArgumentNullException variable is a null reference.

System.Security.SecurityException The caller does not have the required permission.

 1
Permissions 2
 3
 4

Permission Description

System.Security.Permissions.
EnvironmentPermission

Requires permission to read environment variables.
See System.Security.Permissions.
EnvironmentPermissionAccess.Read.

 5
 6

7

 7

 Environment.GetEnvironmentVariables() 1

Method 2

[ILAsm] 3
.method public hidebysig static class System.Collections.IDictionary 4
GetEnvironmentVariables() 5

[C#] 6
public static IDictionary GetEnvironmentVariables() 7

Summary 8

Returns all environment variables and their current settings. 9

Return Value 10
 11

A System.Collections.IDictionary object containing environment variable names 12
and settings, or null if the system does not support environment variables. 13

Description 14

The names and settings for the environment variables are stored in the returned 15
System.Collections.IDictionary object as keys and values, respectively. 16
 17
[Note: To obtain the setting of a single environment variable, use the 18
System.Environment.GetEnvironmentVariable method.] 19
 20
 21

Exceptions 22
 23
 24

Exception Condition

System.Security.SecurityException The caller does not have the required permission.

 25
Example 26
 27

The following example prints the names and values of all environment variables defined 28
in the environment. 29
 30
[C#] 31

using System; 32

 8

using System.Collections; 1
 2
class EnvTest:Object { 3
 public static void Main() { 4
 Console.WriteLine("Environment Variables"); 5
 IDictionary envars = 6
 Environment.GetEnvironmentVariables(); 7
 IDictionaryEnumerator varEnumerator = 8
 envars.GetEnumerator(); 9
 while(varEnumerator.MoveNext() != false) { 10
 Console.WriteLine("{0}={1}", 11
 varEnumerator.Key, 12
 varEnumerator.Value); 13
 } 14
 } 15
} 16
 17
The output will vary depending on your system. 18

Permissions 19
 20
 21

Permission Description

System.Security.Permissions.
EnvironmentPermission

Requires permission to read environment variables.
See System.Security.Permissions.
EnvironmentPermissionAccess.Read.

 22
 23

24

 9

 Environment.CommandLine Property 1

[ILAsm] 2
.property string CommandLine { public hidebysig static specialname string 3
get_CommandLine() } 4

[C#] 5
public static string CommandLine { get; } 6

Summary 7

Gets the information entered on the command line when the current process was 8
started. 9

Property Value 10
 11

A System.String containing the command line arguments. 12

Description 13

This property is read-only. 14
 15
This property provides access to the program name and any arguments specified on the 16
command line when the current process was started. 17
 18
If the environment does not support a program name, as can be the case with compact 19
devices, then the program name is equal to System.String.Empty. 20
 21
The format of the information returned by this property is implementation-specific. 22
 23
[Note: The program name can, but is not required to, include path information. 24
 25
Use the System.Environment.GetCommandLineArgs method to retrieve the command 26
line information parsed and stored in an array of strings. 27
 28
] 29

30

 10

 Environment.ExitCode Property 1

[ILAsm] 2
.property int32 ExitCode { public hidebysig static specialname int32 3
get_ExitCode() public hidebysig static specialname void set_ExitCode(int32 4
value) } 5

[C#] 6
public static int ExitCode { get; set; } 7

Summary 8

Gets or sets the exit code of a process. 9

Property Value 10
 11

A System.Int32 value returned by a process. The default value is zero. 12

Description 13

When a process exits, if the process does not return a value, the value of 14
System.Environment.ExitCode is returned. If the value of this property is not set by an 15
application, zero is returned. 16
 17
On operating systems that do not support process exit codes, CLI implementations are 18
required to fully support getting and setting values for this property. 19

20

 11

 Environment.HasShutdownStarted Property 1

[ILAsm] 2
.property bool HasShutdownStarted { public hidebysig static specialname 3
instance bool get_HasShutdownStarted() } 4

[C#] 5
public static bool HasShutdownStarted { get; } 6

Summary 7

Gets a value indicating whether an application has started to shut down. 8

Property Value 9
 10

A System.Boolean where true indicates the shutdown process has started; otherwise 11
false. 12

Description 13

This property is read-only. 14
 15
[Note: This property is for use inside the finalizer of an application. If the shutdown 16
process has started, static members should not be accessed; they might have been 17
cleaned up by the garbage collector. If the member has been cleaned up, any access 18
attempt will cause an exception to be thrown. 19
 20
System.Console.Out is a special case that is always available after the shutdown 21
process has started. 22
 23
] 24

25

 12

 Environment.NewLine Property 1

[ILAsm] 2
.property string NewLine { public hidebysig static specialname string 3
get_NewLine() } 4

[C#] 5
public static string NewLine { get; } 6

Summary 7

Gets the newline string for the current platform. 8

Property Value 9
 10

A System.String containing the characters required to write a newline. 11

Description 12

This property is read-only. 13
 14
[Note: This property is intended for platform-independent formatting of multi-line 15
strings. This value is automatically appended to text when using WriteLine methods, 16
such as System.Console.WriteLine.] 17
 18
 19

Example 20
 21

The following example demonstrates using the System.Environment.NewLine property. 22
The string returned by System.Environment.NewLine is inserted between "Hello" and 23
"World", causing a line break between the words in the output. 24
 25
[C#] 26

using System; 27
class TestClass { 28
 public static void Main() { 29
 Console.WriteLine("Hello,{0}World", 30
 Environment.NewLine); 31
 } 32
} 33
The output is 34
 35
Hello, 36
 37
 38

 13

World 1
 2

3

 14

 Environment.StackTrace Property 1

[ILAsm] 2
.property string StackTrace { public hidebysig static specialname string 3
get_StackTrace() } 4

[C#] 5
public static string StackTrace { get; } 6

Summary 7

Returns a string representation of the state of the call stack. 8

Property Value 9
 10

A System.String containing a description of the methods currently in the call stack. 11
This value can be System.String.Empty. 12

Description 13

This property is read-only. 14
 15
[Note: An example of how the System.String returned by this property might be 16
formatted follows, where one line of information is provided for each method on the call 17
stack: 18
 19
at FullClassName.MethodName(MethodParms) in FileName:line LineNumber 20
 21
FullClassName, MethodName, MethodParms, FileName, and LineNumber are defined as 22
follows: 23

Item Description

FullClassName The fully qualified name of the class.

MethodName The name of the method.

MethodParms The list of parameter type/name pairs. Each pair is separated by a comma
(,). This information is omitted if MethodName takes zero parameters.

FileName The name of the source file where the MethodName method is declared. This
information is omitted if debug symbols are not available.

LineNumber
The number of the line in FileName that contains the source code from
MethodName for the instruction that is on the call stack. This information is
omitted if debug symbols are not available.

 15

 1
The literal "at" is preceded by a single space. 2
 3
The literals "in" and ":line" are omitted if debug symbols are not available. 4
 5
The method calls are described in reverse chronological order (the most recent method 6
call is described first). 7
 8
System.Environment.StackTrace might not report as many method calls as expected, 9
due to code transformations that occur during optimization. 10
 11
] 12

Example 13
 14

The following example gets the System.Environment.StackTrace property from within 15
a series of nested calls. 16
 17
[C#] 18

using System; 19
public class TestCallStack { 20
 public void MyMethod1 () { 21
 MyMethod2(); 22
 } 23
 public void MyMethod2 () { 24
 MyMethod3(); 25
 } 26
 public void MyMethod3 () { 27
 Console.WriteLine("TestCallStack: {0}", 28
 Environment.StackTrace); 29
 } 30
 public static void Main() { 31
 TestCallStack t = new TestCallStack(); 32
 t.MyMethod1(); 33
 } 34
} 35
Without debug symbols the output is 36
 37
TestCallStack: at System.Environment.GetStackTrace(Exception e) 38
 39
 40
at System.Environment.GetStackTrace(Exception e) 41
 42
 43
at System.Environment.get_StackTrace() 44
 45
 46
at TestCallStack.Main() 47
 48
 49

 16

With debug symbols the output is 1
 2
TestCallStack: at System.Environment.GetStackTrace(Exception e) 3
 4
 5
at System.Environment.GetStackTrace(Exception e) 6
 7
 8
at System.Environment.get_StackTrace() 9
 10
 11
at TestCallStack.MyMethod3() in c:\ECMAExamples\envstack.cs:line 10 12
 13
 14
at TestCallStack.MyMethod2() in c:\ECMAExamples\envstack.cs:line 8 15
 16
 17
at TestCallStack.MyMethod1() in c:\ECMAExamples\envstack.cs:line 5 18
 19
 20
at TestCallStack.Main() in c:\ECMAExamples\envstack.cs:line 15 21
 22

23

 17

 Environment.TickCount Property 1

[ILAsm] 2
.property int32 TickCount { public hidebysig static specialname int32 3
get_TickCount() } 4

[C#] 5
public static int TickCount { get; } 6

Summary 7

Gets the number of milliseconds elapsed since the system was started. 8

Property Value 9
 10

A System.Int32 value containing the amount of time in milliseconds that has passed 11
since the last time the computer was started. 12

Description 13

This property is read-only. 14
 15
The resolution of the System.Environment.TickCount property cannot be less than 500 16
milliseconds. 17
 18
The value of this property is derived from the system timer. 19
 20
The System.Environment.TickCount property handles an overflow condition by 21
resetting its value to zero. The minimum value returned by 22
System.Environment.TickCount is 0. 23
 24
[Note: System.Environment.TickCount is measured in milliseconds, not in "ticks". 25
 26
The System.Environment.TickCount reaches its maximum value after approximately 27
24.8 days of continuous up time. 28
 29
For applications that require a finer granularity or a larger maximum time than 30
System.Environment.TickCount supports, see System.DateTime.Now. 31
 32
] 33

34

 18

 Environment.Version Property 1

[ILAsm] 2
.property class System.Version Version { public hidebysig static 3
specialname class System.Version get_Version() } 4

[C#] 5
public static Version Version { get; } 6

Summary 7

Gets the current version of the execution engine. 8

Property Value 9
 10

A System.Version object that contains the major, minor, build, and revision numbers of 11
the execution engine. 12

Description 13

This property is read-only. 14

 15

