
 1

System.Security.CodeAccessPermission Class 1

 2

[ILAsm] 3
.class public abstract serializable CodeAccessPermission extends 4
System.Object implements System.Security.IPermission 5

[C#] 6
public abstract class CodeAccessPermission: IPermission 7

Assembly Info: 8

· Name: mscorlib 9
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 10
· Version: 2.0.x.x 11
· Attributes: 12

o CLSCompliantAttribute(true) 13

Implements: 14

· System.Security.IPermission 15

Summary 16
 17

Serves as the base class for all code access permissions. 18

Inherits From: System.Object 19
 20
Library: BCL 21
 22
Thread Safety: All public static members of this type are safe for multithreaded operations. 23
No instance members are guaranteed to be thread safe. 24
 25
Description 26

[Note: Classes derived from System.Security.CodeAccessPermission are required to 27
override the following methods of the System.Security.CodeAccessPermission class: 28

· System.Security.CodeAccessPermission.Copy - Creates a 29
System.Security.IPermission object of the same type and containing the same 30
values as the current instance. 31

· System.Security.CodeAccessPermission.FromXml - Reconstructs the state of a 32
System.Security.CodeAccessPermission object using an XML encoding. 33

 2

· System.Security.CodeAccessPermission.Intersect - Returns a 1
System.Security.IPermission object that is the intersection of the current instance 2
and the specified object. 3

· System.Security.CodeAccessPermission.IsSubsetOf - Determines if the current 4
instance is a subset of the specified object. 5

· System.Security.CodeAccessPermission.ToXml - Creates an XML encoding of the 6
current instance. 7

· System.Security.CodeAccessPermission.Union - Returns a 8
System.Security.IPermission object that is the union of the current instance and 9
the specified object. 10

In addition, classes derived from System.Security.CodeAccessPermission are required to 11
implement a constructor that takes a System.Security.Permissions.PermissionState as 12
its only parameter. 13
 14
] 15
 16
The XML encoding of a System.Security.CodeAccessPermission instance is defined below 17
in EBNF format. The following conventions are used: 18

· All non-literals in the grammar below are shown in normal type. 19

· All literals are in bold font. 20

The following meta-language symbols are used: 21

· '*' represents a meta-language symbol suffixing an expression that can appear zero 22
or more times. 23

· '?' represents a meta-language symbol suffixing an expression that can appear zero 24
or one time. 25

· '+' represents a meta-language symbol suffixing an expression that can appear one 26
or more times. 27

· '(',')' is used to group literals, non-literals, or a mixture of literals and non-literals. 28

· '|' denotes an exclusive disjunction between two expressions. 29

· '::= ' denotes a production rule where a left hand non-literal is replaced by a right 30
hand expression containing literals, non-literals, or both. 31

ClassName is the name of the class implementing the permission, such as 32
System.Security.Permissions.EnvironmentPermission. 33
 34

 3

AssemblyName is the name of the assembly that contains the class implementing the 1
permission, such as mscorlib. 2
 3
Version is the three part version number indicating the version of the assembly 4
implementing the permission, such as 1.0.1. 5
 6
StrongNamePublicKeyToken is the strong name public key token constituting the strong 7
name of the assembly that implements the permission. 8
 9
PermissionAttributes is any attribute and attribute value on the 10
System.Security.IPermission element used by the permission to represent a particular 11
permission state, for example, unrestricted="true". 12
 13
PermissionXML is any valid XML used by the permission to represent permission state. 14
 15
The XML encoding of a System.Security.CodeAccessPermission instance is as follows: 16
 17
CodeAccessPermissionXML::= 18
 19
 20
<IPermission class=" 21
 22
 23
ClassName, 24
 25
 26
AssemblyName, 27
 28
 29
Version=Version, 30
 31
 32
Culture=neutral, 33
 34
 35
PublicKeyToken=StrongNamePublicKeyToken" 36
 37
 38
version="1" 39
 40
 41
(PermissionAttributes)* 42
 43
 44
> 45
 46
 47
(PermissionXML)? 48

 4

 1
 2
</IPermission> 3
 4

5

 5

 CodeAccessPermission() Constructor 1

[ILAsm] 2
family rtspecialname specialname instance void .ctor() 3

[C#] 4
protected CodeAccessPermission() 5

Summary 6

Constructs a new instance of the System.Security.CodeAccessPermission class. 7

8

 6

 CodeAccessPermission.Assert() Method 1

[ILAsm] 2
.method public final hidebysig virtual void Assert() 3

[C#] 4
public void Assert() 5

Summary 6

Asserts that calling code can access the resource identified by the current instance 7
through the code that calls this method, even if callers have not been granted 8
permission to access the resource. 9

Description 10

Calling System.Security.CodeAccessPermission.Assert stops the permission check 11
on callers that are after the code performing the assert. An assertion is effective only if 12
the code that calls System.Security.CodeAccessPermission.Assert passes the 13
security check for the permission that it is asserting. 14
 15
[Note: Even if the callers that are after the code performing the assert do not have the 16
requisite permissions, they can still access resources through the code that calls this 17
method. Because the assertion only applies to the callers of the code performing the 18
assert, a security check for the asserted permission can still fail if the code calling 19
System.Security.CodeAccessPermission.Assert has not itself been granted that 20
permission. 21
 22
A call to System.Security.CodeAccessPermission.Assert is effective until the code 23
containing the call returns to its caller. 24
 25
Caution: Because calling System.Security.CodeAccessPermission.Assert removes 26
the requirement that all code be granted permission to access the specified resource, it 27
can open up security vulnerabilities if used incorrectly or inappropriately. 28
 29
] 30

Exceptions 31
 32
 33

Exception Condition

System.Security.SecurityException
The calling code does not have
System.Security.Permissions.SecurityPermissionFlag.

Assertion.

 34
Permissions 35

 7

 1
 2

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to call
System.Security.CodeAccessPermission.Assert. See
System.Security.Permissions.SecurityPermissionFlag.

Assertion.

 3
 4

5

 8

 CodeAccessPermission.Copy() Method 1

[ILAsm] 2
.method public hidebysig virtual abstract class 3
System.Security.IPermission Copy() 4

[C#] 5
public abstract IPermission Copy() 6

Summary 7

Returns a System.Security.CodeAccessPermission containing the same values as the 8
current instance. 9

Return Value 10
 11

A new System.Security.CodeAccessPermission instance that is value equal to the 12
current instance. 13

Description 14

[Note: This method is implemented to support the System.Security.IPermission 15
interface.] 16
 17
 18

Behaviors 19

The object returned by this method is required be the same type as the current instance 20
and to represent the same access to resources as the current instance. 21

 22

How and When to Override 23

Override this method to create a copy an instance in a type derived from 24
System.Security.CodeAccessPermission. 25

 26

Usage 27

Use this method to obtain a copy of the current instance that has values identical to 28
those of the current instance. 29

 30

31

 9

 CodeAccessPermission.Demand() Method 1

[ILAsm] 2
.method public final hidebysig virtual void Demand() 3

[C#] 4
public void Demand() 5

Summary 6

Forces a System.Security.SecurityException if all callers do not have the permission 7
specified by the current instance. 8

Description 9

The permissions of the code that calls this method are not examined; the check begins 10
from the immediate caller of that code and continues until all callers have been checked, 11
one of the callers invokes System.Security.CodeAccessPermission.Assert, or a caller 12
has been found that is not granted the demanded permission, in which case a 13
System.Security.SecurityException is thrown. 14
 15
[Note: System.Security.CodeAccessPermission.Demand is typically used by shared 16
libraries to ensure that callers have permission to access a resource. For example, a 17
method in a shared library calls System.Security.CodeAccessPermission.Demand for 18
the necessary System.Security.Permissions.FileIOPermission before performing a 19
file operation requested by the caller. 20
 21
This method is implemented to support the System.Security.IPermission interface. 22
 23
] 24

Exceptions 25
 26
 27

Exception Condition

System.Security.SecurityException

A caller does not have the permission specified by
the current instance.

-or-

A caller has called
System.Security.CodeAccessPermission.Deny for
the resource protected by the current instance.

 28
 29

 10

1

 11

 CodeAccessPermission.Deny() Method 1

[ILAsm] 2
.method public final hidebysig virtual void Deny() 3

[C#] 4
public void Deny() 5

Summary 6

Denies access to the resources specified by the current instance through the code that 7
calls this method. 8

Description 9

This method prevents callers from accessing the protected resource through the code 10
that calls this method, even if those callers have been granted permission to access it. 11
 12
The call to System.Security.CodeAccessPermission.Deny is effective until the calling 13
code returns. 14
 15
[Note: System.Security.CodeAccessPermission.Deny is ignored for a permission not 16
granted because a demand for that permission will not succeed. 17
 18
System.Security.CodeAccessPermission.Deny can limit the liability of the 19
programmer or prevent accidental security vulnerabilities because it prevents the 20
method that calls System.Security.CodeAccessPermission.Deny from being used to 21
access the resource protected by the denied permission. 22
 23
] 24

25

 12

 1

CodeAccessPermission.FromXml(System.Secu2

rity.SecurityElement) Method 3

[ILAsm] 4
.method public hidebysig virtual abstract void FromXml(class 5
System.Security.SecurityElement elem) 6

[C#] 7
public abstract void FromXml(SecurityElement elem) 8

Summary 9

Reconstructs the state of a System.Security.CodeAccessPermission object using the 10
specified XML encoding. 11

Parameters 12
 13
 14

Parameter Description

elem
A System.Security.SecurityElement instance containing the XML encoding to
use to reconstruct the state of a System.Security.CodeAccessPermission
object.

 15
Description 16

Behaviors 17

The values of the current instance are set to the values of the permission object 18
encoded in elem. 19

 20

How and When to Override 21

Override this method to reconstruct subclasses of 22
System.Security.CodeAccessPermission. 23

 24

Usage 25

This method is called by the system. 26

 13

 1
 2
[Note: For the XML encoding for this class, see the 3
System.Security.CodeAccessPermission class page.] 4
 5
 6

Exceptions 7
 8
 9

Exception Condition

System.ArgumentException

elem does not contain the XML encoding for a instance of
the same type as the current instance.

-or-

The version number of elem is not valid.

 10
 11

12

 14

 1

CodeAccessPermission.Intersect(System.Sec2

urity.IPermission) Method 3

[ILAsm] 4
.method public hidebysig virtual abstract class 5
System.Security.IPermission Intersect(class System.Security.IPermission 6
target) 7

[C#] 8
public abstract IPermission Intersect(IPermission target) 9

Summary 10

Returns a System.Security.CodeAccessPermission object that is the intersection of 11
the current instance and the specified object. 12

Parameters 13
 14
 15

Parameter Description

target
A System.Security.CodeAccessPermission instance to intersect with the
current instance.

 16
Return Value 17
 18

A new System.Security.CodeAccessPermission instance that represents the 19
intersection of the current instance and target. If the intersection is empty or target is 20
null, returns null. 21

Description 22

[Note: This method is implemented to support the System.Security.IPermission 23
interface.] 24
 25
 26

Behaviors 27

As described above. 28

 29

 15

How and When to Override 1

Override this method to provide a mechanism for creating an intersection of two 2
System.Security.IPermission objects that are of the same type and are derived from 3
System.Security.CodeAccessPermission. 4

 5

Usage 6

The intersection of two permissions is a permission that secures the resources and 7
operations secured by both permissions. Specifically, it represents the minimum 8
permission such that any demand that passes both permissions will also pass their 9
intersection. 10

 11

Exceptions 12
 13
 14

Exception Condition

System.ArgumentException
target is not null and is not a
System.Security.CodeAccessPermission object.

 15
 16

17

 16

 1

CodeAccessPermission.IsSubsetOf(System.Se2

curity.IPermission) Method 3

[ILAsm] 4
.method public hidebysig virtual abstract bool IsSubsetOf(class 5
System.Security.IPermission target) 6

[C#] 7
public abstract bool IsSubsetOf(IPermission target) 8

Summary 9

Determines whether the current instance is a subset of the specified object. 10

Parameters 11
 12
 13

Parameter Description

target
A System.Security.CodeAccessPermission instance that is to be tested for
the subset relationship.

 14
Return Value 15
 16

true if the current instance is a subset of target; otherwise, false. If the current 17
instance is unrestricted, and target is not, returns false. If target is unrestricted, 18
returns true. 19

Description 20

[Note: This method is implemented to support the System.Security.IPermission 21
interface.] 22
 23
 24

Behaviors 25

As described above. 26

 27

How and When to Override 28

 17

Override this method to implement the test for the subset relationship in types derived 1
from System.Security.CodeAccessPermission. 2

 3

Usage 4

The current instance is a subset of target if the current instance specifies a set of 5
accesses to resources that is wholly contained by target. For example, a permission that 6
represents read access to a file is a subset of a permission that represents read and 7
write access to the file. 8
 9
If this method returns true, the current instance does not describe a level of access to a 10
set of resources that is not already described by target. 11

Exceptions 12
 13
 14

Exception Condition

System.ArgumentException
target is not null and is not of type
System.Security.CodeAccessPermission.

 15
 16

17

 18

 CodeAccessPermission.ToString() Method 1

[ILAsm] 2
.method public hidebysig virtual string ToString() 3

[C#] 4
public override string ToString() 5

Summary 6

Returns the XML representation of the state of the current instance. 7

Return Value 8
 9

A System.String containing the XML representation of the state of the current instance. 10

Description 11

[Note: The XML representation of the current instance is obtained by first calling 12
System.Security.CodeAccessPermission.ToXml, then calling 13
System.Object.ToString on the object returned by that method. 14
 15
This method overrides System.Object.ToString. 16
 17
] 18

19

 19

 CodeAccessPermission.ToXml() Method 1

[ILAsm] 2
.method public hidebysig virtual abstract class 3
System.Security.SecurityElement ToXml() 4

[C#] 5
public abstract SecurityElement ToXml() 6

Summary 7

Returns the XML encoding of the current instance. 8

Return Value 9
 10

A System.Security.SecurityElement containing an XML encoding of the state of the 11
current instance. 12

Behaviors 13

The object returned by this method is required to use the XML encoding for the 14
System.Security.CodeAccessPermission class as defined on the class page. The state 15
of the current instance is required to be reproducible by invoking 16
System.Security.CodeAccessPermission.FromXml on an instance of 17
System.Security.CodeAccessPermission using the object returned by this method. 18

 19

How and When to Override 20

Override this method to return an object containing the XML encoding for types derived 21
from System.Security.CodeAccessPermission. 22

 23

Usage 24

This method is called by the system. 25

 26

27

 20

 1

CodeAccessPermission.Union(System.Securit2

y.IPermission) Method 3

[ILAsm] 4
.method public hidebysig virtual class System.Security.IPermission 5
Union(class System.Security.IPermission other) 6

[C#] 7
public virtual IPermission Union(IPermission other) 8

Summary 9

Returns a System.Security.CodeAccessPermission object that is the union of the 10
current instance and the specified object. 11

Parameters 12
 13
 14

Parameter Description

other
A System.Security.IPermission object of the same type as the current
instance to be combined with the current instance.

 15
Return Value 16
 17

If other is null, returns a copy of the current instance using the 18
System.Security.IPermission.Copy method. 19

Description 20

[Note: This method is implemented to support the System.Security.IPermission 21
interface.] 22
 23
 24

Behaviors 25

This method returns a new System.Security.CodeAccessPermission instance that 26
represents the union of the current instance and other. If the current instance or other 27
is unrestricted, returns a System.Security.CodeAccessPermission instance that is 28
unrestricted. If other is null, returns a copy of the current instance using the 29
System.Security.IPermission.Copy method. 30

 21

 1

Default 2

If other is not null, this method throws a System.NotSupportedException exception; 3
otherwise, returns a copy of the current instance. 4

 5

How and When to Override 6

Override this method to provide a mechanism for creating the union of two 7
System.Security.IPermission objects that are of the same type and are derived from 8
System.Security.CodeAccessPermission. 9

 10

Usage 11

The result of a call to System.Security.CodeAccessPermission.Union is a permission 12
that represents all of the access to resources represented by both the current instance 13
and other. Any demand that passes either permission passes their union. 14

 15

Exceptions 16
 17
 18

Exception Condition

System.ArgumentException
other is not of type
System.Security.CodeAccessPermission.

System.NotSupportedException other is not null.

 19
 20

	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	Default
	How and When to Override
	Usage

