
System.Net.Sockets.Socket Class

[ILAsm]
.class public Socket extends System.Object implements System.IDisposable
[C#]
public class Socket: IDisposable
Assembly Info:
· Name: System

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Implements:
· System.IDisposable

Summary

Creates a communication endpoint through which an application sends or receives data across a network.

Inherits From: System.Object

Library: Networking

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.

Description
This class enables a System.Net.Sockets.Socket instance to communicate with another socket across a network. The communication can be through connection-oriented and connectionless protocols using either data streams or datagrams (discrete message packets).

Message-oriented protocols preserve message boundaries and require that for each System.Net.Sockets.Socket.Send method call there is one corresponding System.Net.Sockets.Socket.Receive method call. For stream-oriented protocols, data is transmitted without regards to message boundaries. In this case, for example, multiple System.Net.Sockets.Socket.Receive method calls might be necessary to retrieve all the data from one System.Net.Sockets.Socket.Send method call. The protocol is set in the Socket class constructor.

A System.Net.Sockets.Socket instance has a local and a remote endpoint associated with it. The local endpoint contains the connection information for the current socket instance. The remote endpoint contains the connection information for the socket that the current instance communicates with. The endpoints are required to be an instance of a type derived from the System.Net.EndPoint class. For the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) protocols, an endpoint includes the address family, an Internet Protocol (IP) address, and a port number. For connection-oriented protocols (for example, TCP), the remote endpoint does not have to be specified when transferring data. For connectionless protocols (for example, UDP), the remote endpoint is required to be specified.

Methods are provided for both synchronous and asynchronous operations. A synchronous method can operate in blocking mode, in which it waits (blocks) until the operation is complete before returning, or in non-blocking mode, where it returns immediately, possibly before the operation has completed. The blocking mode is set through the System.Net.Sockets.Socket.Blocking property.

An asynchronous method returns immediately and, by convention, relies on a delegate to complete the operation. Asynchronous methods have names which correspond to their synchronous counterparts prefixed with either 'Begin' or End'. For example, the synchronous System.Net.Sockets.Socket.Accept method has asynchronous counterpart methods named System.Net.Sockets.Socket.BeginAccept and System.Net.Sockets.Socket.EndAccept. The example for the System.Net.Sockets.Socket.BeginAccept method shows the basic steps for using an asynchronous operation. A complete working example follows this discussion.

Connection-oriented protocols commonly use the client/server model. In this model, one of the sockets is set up as a server, and one or more sockets are set up as clients. A general procedure demonstrating the synchronous communication process for this model is as follows.

On the server-side:

1. Create a socket to listen for incoming connection requests.

2. Set the local endpoint using the System.Net.Sockets.Socket.Bind method.

3. Put the socket in the listening state using the System.Net.Sockets.Socket.Listen method.

4. At this point incoming connection requests from a client are placed in a queue.

5. Use the System.Net.Sockets.Socket.Accept method to create a server socket for a connection request issued by a client-side socket. This sets the remote endpoint.

6. Use the System.Net.Sockets.Socket.Send and System.Net.Sockets.Socket.Receive methods to communicate with the client socket.

7. When communication is finished, terminate the connection using the System.Net.Sockets.Socket.Shutdown method.

8. Release the resources allocated by the server socket using the System.Net.Sockets.Socket.Close method.

9. Release the resources allocated by the listener socket using the System.Net.Sockets.Socket.Close method.

On the client-side:

1. Create the client socket.

2. Connect to the server socket using the System.Net.Sockets.Socket.Connect method. This sets both the local and remote endpoints for the client socket.

3. Use the System.Net.Sockets.Socket.Send and System.Net.Sockets.Socket.Receive methods to communicate with the server socket.

4. When communication is finished, terminate the connection using the System.Net.Sockets.Socket.Shutdown method.

5. Release the resources allocated by the client socket using the System.Net.Sockets.Socket.Close method.

The shutdown step in the previous procedure is not necessary but ensures that any pending data is not lost. If the System.Net.Sockets.Socket.Shutdown method is not called, the System.Net.Sockets.Socket.Close method shuts down the connection either gracefully or by force. A graceful closure attempts to transfer all pending data before the connection is terminated. Use the System.Net.Sockets.SocketOptionName.Linger socket option to specify a graceful closure for a socket.

[Note: This implementation is based on the UNIX sockets implementation in the Berkeley Software Distribution (BSD, release 4.3) from the University of California at Berkeley.

]

Example

The following examples provide a client/server application that demonstrates the use of asynchronous communication between sockets. Run the client and server on different consoles.

The following code is for the server application. Start this application before the client application.

[C#]
using System;

using System.Threading;

using System.Text;

using System.Net;

using System.Net.Sockets;

public class Server

{

 // used to pass state information to delegate

 internal class StateObject

 {

 internal byte[] sBuffer;

 internal Socket sSocket;

 internal StateObject(int size, Socket sock) {

 sBuffer = new byte[size];

 sSocket = sock;

 }

 }

 static void Main()

 {

 IPAddress ipAddress =

 Dns.Resolve(Dns.GetHostName()).AddressList[0];

 IPEndPoint ipEndpoint =

 new IPEndPoint(ipAddress, 1800);

 Socket listenSocket =

 new Socket(AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

 listenSocket.Bind(ipEndpoint);

 listenSocket.Listen(1);

 IAsyncResult asyncAccept = listenSocket.BeginAccept(

 new AsyncCallback(Server.acceptCallback),

 listenSocket);

 // could call listenSocket.EndAccept(asyncAccept) here

 // instead of in the callback method, but since

 // EndAccept blocks, the behavior would be similar to

 // calling the synchronous Accept method

 Console.Write("Connection in progress.");

 if(writeDot(asyncAccept) == true)

 {

 // allow time for callbacks to

 // finish before the program ends

 Thread.Sleep(3000);

 }

 }

 public static void

 acceptCallback(IAsyncResult asyncAccept) {

 Socket listenSocket = (Socket)asyncAccept.AsyncState;

 Socket serverSocket =

 listenSocket.EndAccept(asyncAccept);

 // arriving here means the operation completed

 // (asyncAccept.IsCompleted = true) but not

 // necessarily successfully

 if(serverSocket.Connected == false)

 {

 Console.WriteLine(".server is not connected.");

 return;

 }

 else Console.WriteLine(".server is connected.");

 listenSocket.Close();

 StateObject stateObject =

 new StateObject(16, serverSocket);

 // this call passes the StateObject because it

 // needs to pass the buffer as well as the socket

 IAsyncResult asyncReceive =

 serverSocket.BeginReceive(

 stateObject.sBuffer,

 0,

 stateObject.sBuffer.Length,

 SocketFlags.None,

 new AsyncCallback(receiveCallback),

 stateObject);

 Console.Write("Receiving data.");

 writeDot(asyncReceive);

 }

 public static void

 receiveCallback(IAsyncResult asyncReceive) {

 StateObject stateObject =

 (StateObject)asyncReceive.AsyncState;

 int bytesReceived =

 stateObject.sSocket.EndReceive(asyncReceive);

 Console.WriteLine(

 ".{0} bytes received: {1}",

 bytesReceived.ToString(),

 Encoding.ASCII.GetString(stateObject.sBuffer));

 byte[] sendBuffer =

 Encoding.ASCII.GetBytes("Goodbye");

 IAsyncResult asyncSend =

 stateObject.sSocket.BeginSend(

 sendBuffer,

 0,

 sendBuffer.Length,

 SocketFlags.None,

 new AsyncCallback(sendCallback),

 stateObject.sSocket);

 Console.Write("Sending response.");

 writeDot(asyncSend);

 }

 public static void sendCallback(IAsyncResult asyncSend) {

 Socket serverSocket = (Socket)asyncSend.AsyncState;

 int bytesSent = serverSocket.EndSend(asyncSend);

 Console.WriteLine(

 ".{0} bytes sent.{1}{1}Shutting down.",

 bytesSent.ToString(),

 Environment.NewLine);

 serverSocket.Shutdown(SocketShutdown.Both);

 serverSocket.Close();

 }

 // times out after 20 seconds but operation continues

 internal static bool writeDot(IAsyncResult ar)

 {

 int i = 0;

 while(ar.IsCompleted == false)

 {

 if(i++ > 40)

 {

 Console.WriteLine("Timed out.");

 return false;

 }

 Console.Write(".");

 Thread.Sleep(500);

 }

 return true;

 }

}

The following code is for the client application. When starting the application, supply the hostname of the console running the server application as an input parameter (for example, ProgramName hostname).

[C#]
using System;

using System.Threading;

using System.Text;

using System.Net;

using System.Net.Sockets;

public class Client {

 // used to pass state information to delegate

 class StateObject

 {

 internal byte[] sBuffer;

 internal Socket sSocket;

 internal StateObject(int size, Socket sock) {

 sBuffer = new byte[size];

 sSocket = sock;

 }

 }

 static void Main(string[] argHostName)

 {

 IPAddress ipAddress =

 Dns.Resolve(argHostName[0]).AddressList[0];

 IPEndPoint ipEndpoint =

 new IPEndPoint(ipAddress, 1800);

 Socket clientSocket = new Socket(

 AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

 IAsyncResult asyncConnect = clientSocket.BeginConnect(

 ipEndpoint,

 new AsyncCallback(connectCallback),

 clientSocket);

 Console.Write("Connection in progress.");

 if(writeDot(asyncConnect) == true)

 {

 // allow time for callbacks to

 // finish before the program ends

 Thread.Sleep(3000);

 }

 }

 public static void

 connectCallback(IAsyncResult asyncConnect) {

 Socket clientSocket =

 (Socket)asyncConnect.AsyncState;

 clientSocket.EndConnect(asyncConnect);

 // arriving here means the operation completed

 // (asyncConnect.IsCompleted = true) but not

 // necessarily successfully

 if(clientSocket.Connected == false)

 {

 Console.WriteLine(".client is not connected.");

 return;

 }

 else Console.WriteLine(".client is connected.");

 byte[] sendBuffer = Encoding.ASCII.GetBytes("Hello");

 IAsyncResult asyncSend = clientSocket.BeginSend(

 sendBuffer,

 0,

 sendBuffer.Length,

 SocketFlags.None,

 new AsyncCallback(sendCallback),

 clientSocket);

 Console.Write("Sending data.");

 writeDot(asyncSend);

 }

 public static void sendCallback(IAsyncResult asyncSend)

 {

 Socket clientSocket = (Socket)asyncSend.AsyncState;

 int bytesSent = clientSocket.EndSend(asyncSend);

 Console.WriteLine(

 ".{0} bytes sent.",

 bytesSent.ToString());

 StateObject stateObject =

 new StateObject(16, clientSocket);

 // this call passes the StateObject because it

 // needs to pass the buffer as well as the socket

 IAsyncResult asyncReceive =

 clientSocket.BeginReceive(

 stateObject.sBuffer,

 0,

 stateObject.sBuffer.Length,

 SocketFlags.None,

 new AsyncCallback(receiveCallback),

 stateObject);

 Console.Write("Receiving response.");

 writeDot(asyncReceive);

 }

 public static void

 receiveCallback(IAsyncResult asyncReceive) {

 StateObject stateObject =

 (StateObject)asyncReceive.AsyncState;

 int bytesReceived =

 stateObject.sSocket.EndReceive(asyncReceive);

 Console.WriteLine(

 ".{0} bytes received: {1}{2}{2}Shutting down.",

 bytesReceived.ToString(),

 Encoding.ASCII.GetString(stateObject.sBuffer),

 Environment.NewLine);

 stateObject.sSocket.Shutdown(SocketShutdown.Both);

 stateObject.sSocket.Close();

 }

 // times out after 2 seconds but operation continues

 internal static bool writeDot(IAsyncResult ar)

 {

 int i = 0;

 while(ar.IsCompleted == false)

 {

 if(i++ > 20)

 {

 Console.WriteLine("Timed out.");

 return false;

 }

 Console.Write(".");

 Thread.Sleep(100);

 }

 return true;

 }

}

The output of the server application is

Connection in progress...........server is connected.

Receiving data......5 bytes received: Hello

Sending response....7 bytes sent.

Shutting down.

The output of the client application is

Connection in progress......client is connected.

Sending data......5 bytes sent.

Receiving response......7 bytes received: Goodbye

Shutting down.

 Socket(System.Net.Sockets.AddressFamily, System.Net.Sockets.SocketType, System.Net.Sockets.ProtocolType) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(valuetype System.Net.Sockets.AddressFamily addressFamily, valuetype System.Net.Sockets.SocketType socketType, valuetype System.Net.Sockets.ProtocolType protocolType)
[C#]
public Socket(AddressFamily addressFamily, SocketType socketType, ProtocolType protocolType)
Summary
Constructs and initializes a new instance of the System.Net.Sockets.Socket class.

Parameters

	Parameter
	Description

	addressFamily
	One of the values defined in the System.Net.Sockets.AddressFamily enumeration.

	socketType
	One of the values defined in the System.Net.Sockets.SocketType enumeration.

	protocolType
	One of the values defined in the System.Net.Sockets.ProtocolType enumeration.

Description
The addressFamily parameter specifies the addressing scheme used by the current instance, the socketType parameter specifies the socket type of the current instance, and the protocolType parameter specifies the protocol used by the current instance. The three parameters are not independent. Some address families restrict which protocols are used, and often the socket type is determined by the protocol. When the specified values are not a valid combination, a System.Net.Sockets.SocketException exception is thrown.

Using the Unknown member of either the System.Net.Sockets.AddressFamily or System.Net.Sockets.ProtocolType enumeration, results in a System.Net.Sockets.SocketException exception being thrown.

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	The combination of addressFamily, socketType, and protocolType is invalid.

-or-

An error occurred while creating the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

 Socket.Accept() Method
[ILAsm]
.method public hidebysig instance class System.Net.Sockets.Socket Accept()
[C#]
public Socket Accept()
Summary
Creates and initializes a new System.Net.Sockets.Socket instance and connects it to an incoming connection request.

Return Value

A new connected System.Net.Sockets.Socket instance.
Description
This method is used only on the server-side of connection-oriented protocols. It extracts the first connection request from the queue of pending requests, creates a new System.Net.Sockets.Socket instance, and connects this instance to the socket associated with the request.

The System.Net.Sockets.Socket.Blocking property of the socket determines the behavior of this method when there are no pending connection requests. When false, this method will throw a System.Net.Sockets.SocketException. When true, this method blocks.

The following properties of the new System.Net.Sockets.Socket instance returned by this method have values identical to the corresponding properties of the current instance:

· System.Net.Sockets.Socket.AddressFamily
· System.Net.Sockets.Socket.Blocking
· System.Net.Sockets.Socket.LocalEndPoint
· System.Net.Sockets.Socket.ProtocolType
· System.Net.Sockets.Socket.SocketType
The System.Net.Sockets.Socket.RemoteEndPoint property of the new instance is set to the local endpoint of the first request in the input queue. The System.Net.Sockets.Socket.Connected property is set to true.

Exceptions

	Exception
	Condition

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	An error occurred while accessing the listening socket or while creating the new socket.

-or-

The System.Net.Sockets.Socket.Blocking property is set to false.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.BeginAccept(System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig instance class System.IAsyncResult BeginAccept(class System.AsyncCallback callback, object state)
[C#]
public IAsyncResult BeginAccept(AsyncCallback callback, object state)
Summary
Begins an asynchronous operation to accept an incoming connection request.

Parameters

	Parameter
	Description

	callback
	A System.AsyncCallback delegate, or null.

	state
	An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the asynchronous operation.
Description
To retrieve the results of the operation and release resources allocated by the System.Net.Sockets.Socket.BeginAccept method, call the System.Net.Sockets.Socket.EndAccept method, and specify the System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndAccept method should be called exactly once for each call to the System.Net.Sockets.Socket.BeginAccept method.]

If the callback parameter is not null, the method referenced by callback is invoked when the asynchronous operation completes. The System.IAsyncResult object returned by this method is passed as the argument to the method referenced by callback. The method referenced by callback can retrieve the results of the operation by calling the System.Net.Sockets.Socket.EndAccept method.

The state parameter can be any object that the caller wishes to have available for the duration of the asynchronous operation. This object is available via the System.IAsyncResult.AsyncState property of the object returned by this method.

To determine the connection status, check the System.Net.Sockets.Socket.Connected property, or use either the System.Net.Sockets.Socket.Poll or System.Net.Sockets.Socket.Select method.

[Note: For more information, see System.Net.Sockets.Socket.Accept, the synchronous version of this method.

]

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accepting the connection. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

The following excerpt from the System.Net.Sockets.Socket class overview example outlines an asynchronous accept operation.

[C#]
public class Server

{

 static void Main()

 {

 .

 .

 .

 listenSocket.BeginAccept(

 new AsyncCallback(Server.acceptCallback),

 listenSocket);

 .

 .

 .

 // EndAccept can be called here

 .

 .

 .

 }

 public static void

 acceptCallback(IAsyncResult asyncAccept)

 {

 Socket listenSocket =

 (Socket)asyncAccept.AsyncState;

 Socket serverSocket =

 listenSocket.EndAccept(asyncAccept);

 serverSocket.BeginReceive(...);

 .

 .

 .

 }

}

 Socket.BeginConnect(System.Net.EndPoint, System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig instance class System.IAsyncResult BeginConnect(class System.Net.EndPoint remoteEP, class System.AsyncCallback callback, object state)
[C#]
public IAsyncResult BeginConnect(EndPoint remoteEP, AsyncCallback callback, object state)
Summary
Begins an asynchronous operation to associate the current instance with a remote endpoint.

Parameters

	Parameter
	Description

	remoteEP
	The System.Net.EndPoint associated with the socket to connect to.

	callback
	A System.AsyncCallback delegate, or null.

	state
	An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the asynchronous operation.
Description
To release resources allocated by the System.Net.Sockets.Socket.BeginConnect method, call the System.Net.Sockets.Socket.EndConnect method, and specify the System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndConnect method should be called exactly once for each call to the System.Net.Sockets.Socket.BeginConnect method.]

If the callback parameter is not null, the method referenced by callback is invoked when the asynchronous operation completes. The System.IAsyncResult object returned by this method is passed as the argument to the method referenced by callback. The method referenced by callback can retrieve the results of the operation by calling the System.Net.Sockets.Socket.EndConnect method.

The state parameter can be any object that the caller wishes to have available for the duration of the asynchronous operation. This object is available via the System.IAsyncResult.AsyncState property of the object returned by this method.

To determine the connection status, check the System.Net.Sockets.Socket.Connected property, or use either the System.Net.Sockets.Socket.Poll or System.Net.Sockets.Socket.Select method.

[Note: For more information, see System.Net.Sockets.Socket.Connect, the synchronous version of this method.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	remoteEP is null.

	System.Net.Sockets.SocketException
	An error occurred while making the connection. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

	System.Security.SecurityException
	A caller higher in the call stack does not have permission for the requested operation.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, which uses the System.Net.Sockets.Socket.BeginConnect method, see the System.Net.Sockets.Socket class overview.
Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to make a connection to the endpoint defined by remoteEP. [Note: See System.Net.NetworkAccess.Connect.]

 Socket.BeginReceive(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags, System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig instance class System.IAsyncResult BeginReceive(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.AsyncCallback callback, object state)
[C#]
public IAsyncResult BeginReceive(byte[] buffer, int offset, int size, SocketFlags socketFlags, AsyncCallback callback, object state)
Summary
Begins an asynchronous operation to receive data from a socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	offset
	A System.Int32 containing the zero-based position in buffer to begin storing the received data.

	size
	A System.Int32 containing the number of bytes to receive.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

	callback
	A System.AsyncCallback delegate, or null.

	state
	An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the asynchronous operation.
Description
To retrieve the results of the operation and release resources allocated by the System.Net.Sockets.Socket.BeginReceive method, call the System.Net.Sockets.Socket.EndReceive method, and specify the System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndReceive method should be called exactly once for each call to the System.Net.Sockets.Socket.BeginReceive method.]

If the callback parameter is not null, the method referenced by callback is invoked when the asynchronous operation completes. The System.IAsyncResult object returned by this method is passed as the argument to the method referenced by callback. The method referenced by callback can retrieve the results of the operation by calling the System.Net.Sockets.Socket.EndReceive method.

The state parameter can be any object that the caller wishes to have available for the duration of the asynchronous operation. This object is available via the System.IAsyncResult.AsyncState property of the object returned by this method.

[Note: For more information, see System.Net.Sockets.Socket.Receive, the synchronous version of this method.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, which uses the System.Net.Sockets.Socket.BeginReceive method, see the System.Net.Sockets.Socket class overview.
 Socket.BeginReceiveFrom(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags, System.Net.EndPoint&, System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig instance class System.IAsyncResult BeginReceiveFrom(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint& remoteEP, class System.AsyncCallback callback, object state)
[C#]
public IAsyncResult BeginReceiveFrom(byte[] buffer, int offset, int size, SocketFlags socketFlags, ref EndPoint remoteEP, AsyncCallback callback, object state)
Summary
Begins an asynchronous operation to receive data from a socket and, for connectionless protocols, store the endpoint associated with the socket that sent the data.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	offset
	A System.Int32 containing the zero-based position in buffer to begin storing the received data.

	size
	A System.Int32 containing the number of bytes to receive.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

	remoteEP
	An instance of a class derived from the System.Net.EndPoint class, which contains the endpoint associated with the socket that sent the data.

	callback
	A System.AsyncCallback delegate, or null.

	state
	An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the asynchronous operation.
Description
To retrieve the results of the operation and release resources allocated by the System.Net.Sockets.Socket.BeginReceiveFrom method, call the System.Net.Sockets.Socket.EndReceiveFrom method, and specify the System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndReceiveFrom method should be called exactly once for each call to the System.Net.Sockets.Socket.BeginReceiveFrom method.]

If the callback parameter is not null, the method referenced by callback is invoked when the asynchronous operation completes. The System.IAsyncResult object returned by this method is passed as the argument to the method referenced by callback. The method referenced by callback can retrieve the results of the operation by calling the System.Net.Sockets.Socket.EndReceiveFrom method.

The state parameter can be any object that the caller wishes to have available for the duration of the asynchronous operation. This object is available via the System.IAsyncResult.AsyncState property of the object returned by this method.

[Note: For more information, see System.Net.Sockets.Socket.ReceiveFrom, the synchronous version of this method.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

-or-

remoteEP is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, see System.Net.Sockets.Socket.
Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept a connection on the endpoint defined by the System.Net.Sockets.Socket.LocalEndPoint property of the current instance. See System.Net.NetworkAccess.Accept.

Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.BeginSend(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags, System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig instance class System.IAsyncResult BeginSend(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.AsyncCallback callback, object state)
[C#]
public IAsyncResult BeginSend(byte[] buffer, int offset, int size, SocketFlags socketFlags, AsyncCallback callback, object state)
Summary
Begins an asynchronous operation to send data to a connected socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array storing data to send to the socket.

	offset
	A System.Int32 containing the zero-based position in buffer containing the starting location of the data to send.

	size
	A System.Int32 containing the number of bytes to send.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

	callback
	A System.AsyncCallback delegate, or null.

	state
	An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the asynchronous operation.
Description
To retrieve the results of the operation and release resources allocated by the System.Net.Sockets.Socket.BeginSend method, call the System.Net.Sockets.Socket.EndSend method, and specify the System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndSend method should be called exactly once for each call to the System.Net.Sockets.Socket.BeginSend method.]

If the callback parameter is not null, the method referenced by callback is invoked when the asynchronous operation completes. The System.IAsyncResult object returned by this method is passed as the argument to the method referenced by callback. The method referenced by callback can retrieve the results of the operation by calling the System.Net.Sockets.Socket.EndSend method.

The state parameter can be any object that the caller wishes to have available for the duration of the asynchronous operation. This object is available via the System.IAsyncResult.AsyncState property of the object returned by this method.

[Note: For more information, see System.Net.Sockets.Socket.Send, the synchronous version of this method.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, which uses the System.Net.Sockets.Socket.BeginSend method, see the System.Net.Sockets.Socket class overview.
 Socket.BeginSendTo(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags, System.Net.EndPoint, System.AsyncCallback, System.Object) Method
[ILAsm]
.method public hidebysig instance class System.IAsyncResult BeginSendTo(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint remoteEP, class System.AsyncCallback callback, object state)
[C#]
public IAsyncResult BeginSendTo(byte[] buffer, int offset, int size, SocketFlags socketFlags, EndPoint remoteEP, AsyncCallback callback, object state)
Summary
Begins an asynchronous operation to send data to the socket associated with the specified endpoint.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array storing data to send to the socket.

	offset
	A System.Int32 containing the zero-based position in buffer to begin sending data.

	size
	A System.Int32 containing the number of bytes to send.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

	remoteEP
	The System.Net.EndPoint associated with the socket to receive the data.

	callback
	A System.AsyncCallback delegate, or null.

	state
	An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the asynchronous operation.
Description
To retrieve the results of the operation and release resources allocated by the System.Net.Sockets.Socket.BeginSendTo method, call the System.Net.Sockets.Socket.EndSendTo method, and specify the System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndSendTo method should be called exactly once for each call to the System.Net.Sockets.Socket.BeginSendTo method.]

If the callback parameter is not null, the method referenced by callback is invoked when the asynchronous operation completes. The System.IAsyncResult object returned by this method is passed as the argument to the method referenced by callback. The method referenced by callback can retrieve the results of the operation by calling the System.Net.Sockets.Socket.EndSendTo method.

The state parameter can be any object that the caller wishes to have available for the duration of the asynchronous operation. This object is available via the System.IAsyncResult.AsyncState property of the object returned by this method.

[Note: For more information, see System.Net.Sockets.Socket.SendTo, the synchronous version of this method.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

-or-

remoteEP is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the System.Net.Sockets.Socket class overview.
Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.Bind(System.Net.EndPoint) Method
[ILAsm]
.method public hidebysig instance void Bind(class System.Net.EndPoint localEP)
[C#]
public void Bind(EndPoint localEP)
Summary
Associates the current instance with a local endpoint.

Parameters

	Parameter
	Description

	localEP
	The local System.Net.EndPoint to be associated with the socket.

Description
This method sets the System.Net.Sockets.Socket.LocalEndPoint property of the current instance to localEP.

[Note: For connection-oriented protocols, this method is generally used only on the server-side and is required to be called before the first call to the System.Net.Sockets.Socket.Listen method. On the client-side, binding is usually performed implicitly by the System.Net.Sockets.Socket.Connect method.

For connectionless protocols, the System.Net.Sockets.Socket.ConnectSystem.Net.Sockets.Socket.SendTo, and System.Net.Sockets.Socket.BeginSendTo methods bind the current instance to the local endpoint if the current instance has not previously been bound.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	localEP is null.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

	System.Security.SecurityException
	A caller in the call stack does not have the required permission.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept connections on the endpoint defined by localEP. See System.Net.NetworkAccess.Accept.

 Socket.Close() Method
[ILAsm]
.method public hidebysig instance void Close()
[C#]
public void Close()
Summary
Closes the current instance and releases all managed and unmanaged resources allocated by the current instance.

Description
This method calls the System.Net.Sockets.Socket.Dispose(System.Boolean) method with the argument set to true, which frees both managed and unmanaged resources used by the current instance.

The socket attempts to perform a graceful closure when the System.Net.Sockets.SocketOptionName.Linger socket option is enabled and set to a non-zero linger time. In all other cases, closure is forced and any pending data is lost.

 Socket.Connect(System.Net.EndPoint) Method
[ILAsm]
.method public hidebysig instance void Connect(class System.Net.EndPoint remoteEP)
[C#]
public void Connect(EndPoint remoteEP)
Summary
Associates the current instance with a remote endpoint.

Parameters

	Parameter
	Description

	remoteEP
	The System.Net.EndPoint associated with the socket to connect to.

Description
This method sets the System.Net.Sockets.Socket.RemoteEndPoint property of the current instance to remoteEP.

[Note: For connection-oriented protocols, this method establishes a connection between the current instance and the socket associated with remoteEP. This method is used only on the client-side. The System.Net.Sockets.Socket.Accept method establishes the connection on the server-side. Once the connection has been made, data can be sent using the System.Net.Sockets.Socket.Send method, and received using the System.Net.Sockets.Socket.Receive method.

For connectionless protocols, the System.Net.Sockets.Socket.Connect method can be used from both client and server-sides, allowing the use of the System.Net.Sockets.Socket.Send method instead of the System.Net.Sockets.Socket.SendTo method. The System.Net.Sockets.Socket.RemoteEndPoint property is set to remoteEP and the System.Net.Sockets.Socket.LocalEndPoint property is set to a value determined by the protocol; however, a connection is not established. Subsequent data is required to be received on the endpoint set in the System.Net.Sockets.Socket.LocalEndPoint property.

]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	remoteEP is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

	System.Security.SecurityException
	A caller in the call stack does not have the required permission.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.Dispose(System.Boolean) Method
[ILAsm]
.method family hidebysig virtual void Dispose(bool disposing)
[C#]
protected virtual void Dispose(bool disposing)
Summary
Closes the current instance, releases the unmanaged resources allocated by the current instance, and optionally releases the managed resources.

Parameters

	Parameter
	Description

	disposing
	A System.Boolean. Specify true to release both managed and unmanaged resources; false to release only unmanaged resources.

Behaviors

This method closes the current System.Net.Sockets.Socket instance and releases all unmanaged resources allocated by the current instance. When disposing is true, this method also releases all resources held by any managed objects allocated by the current instance.

Default

This method closes the current System.Net.Sockets.Socket instance but does not release any managed resources.

How and When to Override

The System.Net.Sockets.Socket.Dispose method can be called multiple times by other objects. When overriding this method, do not reference objects that have been previously disposed in an earlier call.

Usage

Use this method to release resources allocated by the current instance.

 Socket.EndAccept(System.IAsyncResult) Method
[ILAsm]
.method public hidebysig instance class System.Net.Sockets.Socket EndAccept(class System.IAsyncResult asyncResult)
[C#]
public Socket EndAccept(IAsyncResult asyncResult)
Summary
Ends an asynchronous call to accept an incoming connection request.

Parameters

	Parameter
	Description

	asyncResult
	A System.IAsyncResult object that holds the state information for the asynchronous operation.

Return Value

A new connected System.Net.Sockets.Socket instance.
Description
This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndAccept method completes an asynchronous request that was started with a call to the System.Net.Sockets.Socket.BeginAccept method. The object specified for the asyncResult parameter is required to be the same object as was returned by the System.Net.Sockets.Socket.BeginAccept method call that began the request.

If the System.Net.Sockets.Socket.EndAccept method is invoked via the System.AsyncCallback delegate specified to the System.Net.Sockets.Socket.BeginAccept method, the asyncResult parameter is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by the current instance from a call to the System.Net.Sockets.Socket.BeginAccept method.

	System.InvalidOperationException
	System.Net.Sockets.Socket.EndAccept was previously called for this operation.

	System.Net.Sockets.SocketException
	An error occurred during the operation. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, which uses the System.Net.Sockets.Socket.EndAccept method, see the System.Net.Sockets.Socket class overview.
 Socket.EndConnect(System.IAsyncResult) Method
[ILAsm]
.method public hidebysig instance void EndConnect(class System.IAsyncResult asyncResult)
[C#]
public void EndConnect(IAsyncResult asyncResult)
Summary
Ends an asynchronous call to associate the current instance with a remote endpoint.

Parameters

	Parameter
	Description

	asyncResult
	A System.IAsyncResult object that holds the state information for the asynchronous operation.

Description
This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndConnect method completes an asynchronous request that was started with a call to the System.Net.Sockets.Socket.BeginConnect method. The object specified for the asyncResult parameter is required to be the same object as was returned by the System.Net.Sockets.Socket.BeginConnect method call that began the request.

If the System.Net.Sockets.Socket.EndConnect method is invoked via the System.AsyncCallback delegate specified to the System.Net.Sockets.Socket.BeginConnect method, the asyncResult parameter is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by the current instance from a call to the System.Net.Sockets.Socket.BeginConnect method.

	System.InvalidOperationException
	System.Net.Sockets.Socket.EndConnect was previously called for this operation.

	System.Net.Sockets.SocketException
	An error occurred during the operation. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, which uses the System.Net.Sockets.Socket.EndConnect method, see the System.Net.Sockets.Socket class overview.
 Socket.EndReceive(System.IAsyncResult) Method
[ILAsm]
.method public hidebysig instance int32 EndReceive(class System.IAsyncResult asyncResult)
[C#]
public int EndReceive(IAsyncResult asyncResult)
Summary
Ends an asynchronous call to receive data from a socket.

Parameters

	Parameter
	Description

	asyncResult
	A System.IAsyncResult object that holds the state information for the asynchronous operation.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndReceive method completes an asynchronous request that was started with a call to the System.Net.Sockets.Socket.BeginReceive method. The object specified for the asyncResult parameter is required to be the same object as was returned by the System.Net.Sockets.Socket.BeginReceive method call that began the request.

If the System.Net.Sockets.Socket.EndReceive method is invoked via the System.AsyncCallback delegate specified to the System.Net.Sockets.Socket.BeginReceive method, the asyncResult parameter is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by the current instance from a call to the System.Net.Sockets.Socket.BeginReceive method.

	System.InvalidOperationException
	System.Net.Sockets.Socket.EndReceive was previously called for this operation.

	System.Net.Sockets.SocketException
	An error occurred during the operation. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, which uses the System.Net.Sockets.Socket.EndReceive method, see the System.Net.Sockets.Socket class overview.
 Socket.EndReceiveFrom(System.IAsyncResult, System.Net.EndPoint&) Method
[ILAsm]
.method public hidebysig instance int32 EndReceiveFrom(class System.IAsyncResult asyncResult, class System.Net.EndPoint& endPoint)
[C#]
public int EndReceiveFrom(IAsyncResult asyncResult, ref EndPoint endPoint)
Summary
Ends an asynchronous call to receive data from a socket and store the endpoint associated with the socket that sent the data.

Parameters

	Parameter
	Description

	asyncResult
	A System.IAsyncResult object that holds the state information for the asynchronous operation.

	endPoint
	A reference to the System.Net.EndPoint associated with the socket that sent the data.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndReceiveFrom method completes an asynchronous request that was started with a call to the System.Net.Sockets.Socket.BeginReceiveFrom method. The object specified for the asyncResult parameter is required to be the same object as was returned by the System.Net.Sockets.Socket.BeginReceiveFrom method call that began the request.

If the System.Net.Sockets.Socket.EndReceiveFrom method is invoked via the System.AsyncCallback delegate specified to the System.Net.Sockets.Socket.BeginReceiveFrom method, the asyncResult parameter is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by the current instance from a call to the System.Net.Sockets.Socket.BeginReceiveFrom method.

	System.InvalidOperationException
	System.Net.Sockets.Socket.EndReceiveFrom was previously called for this operation.

	System.Net.Sockets.SocketException
	An error occurred during the operation. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the System.Net.Sockets.Socket class overview.
 Socket.EndSend(System.IAsyncResult) Method
[ILAsm]
.method public hidebysig instance int32 EndSend(class System.IAsyncResult asyncResult)
[C#]
public int EndSend(IAsyncResult asyncResult)
Summary
Ends an asynchronous call to send data to a connected socket.

Parameters

	Parameter
	Description

	asyncResult
	A System.IAsyncResult object that holds the state information for the asynchronous operation.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndSend method completes an asynchronous request that was started with a call to the System.Net.Sockets.Socket.BeginSend method. The object specified for the asyncResult parameter is required to be the same object as was returned by the System.Net.Sockets.Socket.BeginSend method call that began the request.

If the System.Net.Sockets.Socket.EndSend method is invoked via the System.AsyncCallback delegate specified to the System.Net.Sockets.Socket.BeginSend method, the asyncResult parameter is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by the current instance from a call to the System.Net.Sockets.Socket.BeginSend method.

	System.InvalidOperationException
	System.Net.Sockets.Socket.EndSend was previously called for this operation.

	System.Net.Sockets.SocketException
	An error occurred during the operation. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, which uses the System.Net.Sockets.Socket.EndSend method, see the System.Net.Sockets.Socket class overview.
 Socket.EndSendTo(System.IAsyncResult) Method
[ILAsm]
.method public hidebysig instance int32 EndSendTo(class System.IAsyncResult asyncResult)
[C#]
public int EndSendTo(IAsyncResult asyncResult)
Summary
Ends an asynchronous call to send data to a socket associated with a specified endpoint.

Parameters

	Parameter
	Description

	asyncResult
	A System.IAsyncResult object that holds the state information for the asynchronous operation.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndSendTo method completes an asynchronous request that was started with a call to the System.Net.Sockets.Socket.BeginSendTo method. The object specified for the asyncResult parameter is required to be the same object as was returned by the System.Net.Sockets.Socket.BeginSendTo method call that began the request.

If the System.Net.Sockets.Socket.EndSendTo method is invoked via the System.AsyncCallback delegate specified to the System.Net.Sockets.Socket.BeginSendTo method, the asyncResult parameter is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	asyncResult is null.

	System.ArgumentException
	asyncResult was not returned by the current instance from a call to the System.Net.Sockets.Socket.SendTo method.

	System.InvalidOperationException
	System.Net.Sockets.Socket.EndSendTo was previously called for this operation.

	System.Net.Sockets.SocketException
	An error occurred during the operation. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the System.Net.Sockets.Socket class overview.
 Socket.Finalize() Method
[ILAsm]
.method family hidebysig virtual void Finalize()
[C#]
~Socket()
Summary
Closes the current instance and releases unmanaged resources allocated by the current instance.

Description
[Note: Application code does not call this method; it is automatically invoked during garbage collection unless finalization by the garbage collector has been disabled. For more information, see System.GC.SuppressFinalize, and System.Object.Finalize.

This method calls System.Net.Sockets.NetworkStream.Dispose(false) to free unmanaged resources used by the current instance.

This method overrides System.Object.Finalize.

]

 Socket.GetHashCode() Method
[ILAsm]
.method public hidebysig virtual int32 GetHashCode()
[C#]
public override int GetHashCode()
Summary
Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for the current instance.
Description
The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object.GetHashCode.]

 Socket.GetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName) Method
[ILAsm]
.method public hidebysig instance object GetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel optionLevel, valuetype System.Net.Sockets.SocketOptionName optionName)
[C#]
public object GetSocketOption(SocketOptionLevel optionLevel, SocketOptionName optionName)
Summary
Retrieves an object containing the value of the specified socket option.

Parameters

	Parameter
	Description

	optionLevel
	One of the values defined in the System.Net.Sockets.SocketOptionLevel enumeration.

	optionName
	One of the values defined in the System.Net.Sockets.SocketOptionName enumeration.

Return Value

The following table describes the values returned by this method.
	optionName
	Return value

	Linger
	An instance of the System.Net.Sockets.LingerOption class.

	AddMembership

-or-

DropMembership
	An instance of the System.Net.Sockets.MulticastOption class.

	All other values defined in the System.Net.Sockets.SocketOptionName enumeration.
	A System.Int32 containing the value of the option.

Description
Socket options determine the behavior of the current instance.

optionLevel and optionName are not independent. See the System.Net.Sockets.Socket.SetSocketOption(SocketOptionLevel, SocketOptionName, Int32) method for a listing of the values of the System.Net.Sockets.SocketOptionName enumeration grouped by System.Net.Sockets.SocketOptionLevel.

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Example

The following example gets the state of the linger option and the size of the receive buffer, changes the values of both, then gets the new values.

[C#]
using System;

using System.Net.Sockets;

class OptionTest{

 public static void Main() {

 // Get the current option values.

 Socket someSocket =

 new Socket(AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

 LingerOption lingerOp =

 (LingerOption)someSocket.GetSocketOption(

 SocketOptionLevel.Socket,

 SocketOptionName.Linger);

 int receiveBuffer =

 (int)someSocket.GetSocketOption(

 SocketOptionLevel.Socket,

 SocketOptionName.ReceiveBuffer);

 Console.WriteLine(

 "Linger option is {0} and set to {1} seconds.",

 lingerOp.Enabled.ToString(),

 lingerOp.LingerTime.ToString());

 Console.WriteLine(

 "Size of the receive buffer is {0} bytes.",

 receiveBuffer.ToString());

 // Change the options.

 lingerOp = new LingerOption(true, 10);

 someSocket.SetSocketOption(

 SocketOptionLevel.Socket,

 SocketOptionName.Linger,

 lingerOp);

 someSocket.SetSocketOption(

 SocketOptionLevel.Socket,

 SocketOptionName.ReceiveBuffer,

 2048);

 Console.WriteLine(

 "The SetSocketOption method has been called.");

 // Get the new option values.

 lingerOp =

 (LingerOption)someSocket.GetSocketOption(

 SocketOptionLevel.Socket,

 SocketOptionName.Linger);

 receiveBuffer =

 (int)someSocket.GetSocketOption(

 SocketOptionLevel.Socket,

 SocketOptionName.ReceiveBuffer);

 Console.WriteLine(

 "Linger option is now {0} and set to {1} seconds.",

 lingerOp.Enabled.ToString(),

 lingerOp.LingerTime.ToString());

 Console.WriteLine(

 "Size of the receive buffer is now {0} bytes.",

 receiveBuffer.ToString());

 }

}

The output is

Linger option is False and set to 0 seconds.

Size of the receive buffer is 8192 bytes.

The SetSocketOption method has been called.

Linger option is now True and set to 10 seconds.

Size of the receive buffer is now 2048 bytes.

 Socket.GetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Byte[]) Method
[ILAsm]
.method public hidebysig instance void GetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel optionLevel, valuetype System.Net.Sockets.SocketOptionName optionName, class System.Byte[] optionValue)
[C#]
public void GetSocketOption(SocketOptionLevel optionLevel, SocketOptionName optionName, byte[] optionValue)
Summary
Retrieves the value of the specified socket option.

Parameters

	Parameter
	Description

	optionLevel
	One of the values defined in the System.Net.Sockets.SocketOptionLevel enumeration.

	optionName
	One of the values defined in the System.Net.Sockets.SocketOptionName enumeration.

	optionValue
	A System.Byte array that receives the value of the specified socket option.

Description
Socket options determine the behavior of the current instance.

Upon successful completion, the array specified by the optionValue parameter contains the value of the specified socket option.

When the length of the optionValue array is smaller than the number of bytes required to store the value of the specified socket option, a System.Net.Sockets.SocketException exception is thrown.

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	optionValue is too small to store the value of the specified socket option.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.GetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Int32) Method
[ILAsm]
.method public hidebysig instance class System.Byte[] GetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel optionLevel, valuetype System.Net.Sockets.SocketOptionName optionName, int32 optionLength)
[C#]
public byte[] GetSocketOption(SocketOptionLevel optionLevel, SocketOptionName optionName, int optionLength)
Summary
Retrieves the value of the specified socket option.

Parameters

	Parameter
	Description

	optionLevel
	One of the values defined in the System.Net.Sockets.SocketOptionLevel enumeration.

	optionName
	One of the values defined in the System.Net.Sockets.SocketOptionName enumeration.

	optionLength
	A System.Int32 containing the maximum length, in bytes, of the value of the specified socket option.

Return Value

A System.Byte array containing the value of the specified socket option.
Description
Socket options determine the behavior of the current instance.

The optionLength parameter is used to allocate an array to store the value of the specified option. When this value is smaller than the number of bytes required to store the value of the specified option, a System.Net.Sockets.SocketException exception is thrown. When this value is greater than or equal to the number of bytes required to store the value of the specified option, the array returned by this method is allocated to be exactly the required length.

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	optionLength is smaller than the number of bytes required to store the value of the specified socket option.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.IOControl(System.Int32, System.Byte[], System.Byte[]) Method
[ILAsm]
.method public hidebysig instance int32 IOControl(int32 ioControlCode, class System.Byte[] optionInValue, class System.Byte[] optionOutValue)
[C#]
public int IOControl(int ioControlCode, byte[] optionInValue, byte[] optionOutValue)
Summary
Provides low-level access to the socket, the transport protocol, or the communications subsystem.

Parameters

	Parameter
	Description

	ioControlCode
	A System.Int32 containing the control code of the operation to perform.

	optionInValue
	A System.Byte array containing the input data required by the operation.

	optionOutValue
	A System.Byte array containing the output data supplied by the operation.

Return Value

A System.Int32 containing the length of the optionOutValue array after the method returns.
Description
If an attempt is made to change the blocking mode of the current instance, an exception is thrown. Use the System.Net.Sockets.Socket.Blocking property to change the blocking mode.

The control codes and their requirements are implementation defined. Do not use this method if platform independence is a requirement.

[Note: Input data is not required for all control codes. Output data is not supplied by all control codes and, if not supplied, the return value is 0.]

Exceptions

	Exception
	Condition

	System.InvalidOperationException
	An attempt was made to change the blocking mode.

[Note: Use the System.Net.Sockets.Socket.Blocking property to change the blocking mode.

]

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

Example

The following example gets the number of bytes of available data to be read and writes the result to the console on a Windows system. The remote endpoint (remoteEndpoint) to connect to might need to be changed to a value that is valid on the current system.

[C#]
using System;

using System.Net;

using System.Net.Sockets;

class App {

 static void Main() {

 IPAddress remoteAddress =

 Dns.Resolve(Dns.GetHostName()).AddressList[0];

 IPEndPoint remoteEndpoint =

 new IPEndPoint(remoteAddress, 80);

 Socket someSocket =

 new Socket(AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

 someSocket.Connect(remoteEndpoint);

 int fionRead = 0x4004667F;

 byte[]inValue = {0x00, 0x00, 0x00, 0x00};

 byte[]outValue = {0x00, 0x00, 0x00, 0x00};

 someSocket.IOControl(fionRead, inValue, outValue);

 uint bytesAvail = BitConverter.ToUInt32(outValue, 0);

 Console.WriteLine(

 "There are {0} bytes available to be read.",

 bytesAvail.ToString());

 }

}

The output is

There are 0 bytes available to be read.

Permissions

	Permission
	Description

	System.Security.Permissions. SecurityPermission
	Requires permission to access unmanaged code. See System.Security.Permissions.SecurityPermissionFlag. UnmanagedCode.

 Socket.Listen(System.Int32) Method
[ILAsm]
.method public hidebysig instance void Listen(int32 backlog)
[C#]
public void Listen(int backlog)
Summary
Places the current instance into the listening state where it waits for incoming connection requests.

Parameters

	Parameter
	Description

	backlog
	A System.Int32 containing the maximum length of the queue of pending connections.

Description
Once this method is called, incoming connection requests are placed in a queue. The maximum size of the queue is specified by the backlog parameter. The size of the queue is limited to legal values by the underlying protocol. Illegal values of the backlog parameter are replaced with a legal value, which is implementation defined.

If a connection request arrives and the queue is full, a System.Net.Sockets.SocketException is thrown on the client.

A socket in the listening state has no remote endpoint associated with it. Attempting to access the System.Net.Sockets.Socket.RemoteEndPoint property throws a System.Net.Sockets.SocketException exception.

This method is ignored if called more than once on the current instance.

[Note: This method is used only on the server-side of connection-oriented protocols. Call the System.Net.Sockets.Socket.Bind method before this method is called the first time. Call the System.Net.Sockets.Socket.Listen method before the first call to the System.Net.Sockets.Socket.Accept method.

]

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	The System.Net.Sockets.Socket.Connected property of the current instance is true.-or-

Bind has not been called on the current instance.-or-

An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.Poll(System.Int32, System.Net.Sockets.SelectMode) Method
[ILAsm]
.method public hidebysig instance bool Poll(int32 microSeconds, valuetype System.Net.Sockets.SelectMode mode)
[C#]
public bool Poll(int microSeconds, SelectMode mode)
Summary
Determines the read, write, or error status of the current instance.

Parameters

	Parameter
	Description

	microSeconds
	A System.Int32 containing the time to wait for a response, in microseconds. Set the microSeconds parameter to a negative value to wait indefinitely for a response.

	mode
	One of the values defined in the System.Net.Sockets.SelectMode enumeration.

Return Value

A System.Boolean where true indicates the current instance satisfies at least one of the conditions in the following table corresponding to the specified System.Net.Sockets.SelectMode value; otherwise, false. false is returned if the status of the current instance cannot be determined within the time specified by microSeconds.
	SelectMode value
	Condition

	SelectRead
	Data is available for reading (includes out-of-band data if the System.Net.Sockets.SocketOptionName.OutOfBandInline value defined in the System.Net.Sockets.SocketOptionName enumeration is set).

-or-

The socket is in the listening state with a pending connection, and the System.Net.Sockets.Socket.Accept method has been called and is guaranteed to succeed without blocking.

-or-

The connection has been closed, reset, or terminated.

	SelectWrite
	Data can be sent.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being processed and the connection has succeeded.

	SelectError
	The System.Net.Sockets.SocketOptionName.OutOfBandInline value defined in the System.Net.Sockets.SocketOptionName enumeration is not set and out-of-band data is available.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being processed and the connection has failed.

Exceptions

	Exception
	Condition

	System.NotSupportedException
	mode is not one of the values defined in the System.Net.Sockets.SelectMode enumeration.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.Receive(System.Byte[], System.Int32, System.Net.Sockets.SocketFlags) Method
[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[] buffer, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags)
[C#]
public int Receive(byte[] buffer, int size, SocketFlags socketFlags)
Summary
Receives data from a socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	size
	A System.Int32 containing the number of bytes to receive.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0, size, socketFlags).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentOutOfRangeException
	size < 0.

-or-

size > buffer.Length.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept connections. See System.Net.NetworkAccess.Accept.

 Socket.Receive(System.Byte[], System.Net.Sockets.SocketFlags) Method
[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[] buffer, valuetype System.Net.Sockets.SocketFlags socketFlags)
[C#]
public int Receive(byte[] buffer, SocketFlags socketFlags)
Summary
Receives data from a socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0, buffer.Length, socketFlags).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept connections. [Note: See System.Net.NetworkAccess.Accept.]

 Socket.Receive(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags) Method
[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags)
[C#]
public int Receive(byte[] buffer, int offset, int size, SocketFlags socketFlags)
Summary
Receives data from a socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	offset
	A System.Int32 containing the zero-based position in buffer to begin storing the received data.

	size
	A System.Int32 containing the number of bytes to receive.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

Return Value

A System.Int32 containing the number of bytes received.
Description
The System.Net.Sockets.Socket.LocalEndPoint property is required to be set before this method is called.

The System.Net.Sockets.Socket.Blocking property of the socket determines the behavior of this method when no incoming data is available. When false, the System.Net.Sockets.SocketException exception is thrown. When true, this method blocks and waits for data to arrive.

For System.Net.Sockets.SocketType.Stream socket types, if the remote socket was shut down gracefully, and all data was received, this method immediately returns zero, regardless of the blocking state.

For message-oriented sockets, if the message is larger than the size of buffer, the buffer is filled with the first part of the message, and the System.Net.Sockets.SocketException exception is thrown. For unreliable protocols, the excess data is lost; for reliable protocols, the data is retained by the service provider.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of the socketFlags parameter and the socket is configured for in-line reception of out-of-band (OOB) data (using the System.Net.Sockets.SocketOptionName.OutOfBandInline socket option) and OOB data is available, only OOB data is returned.

When the System.Net.Sockets.SocketFlags.Peek flag is specified as part of the socketFlags parameter, available data is copied into buffer but is not removed from the system buffer.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

The System.Net.Sockets.Socket.LocalEndPoint property was not set.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept a connection on the endpoint defined by the System.Net.Sockets.Socket.LocalEndPoint property of the current instance. See System.Net.NetworkAccess.Accept.

 Socket.Receive(System.Byte[]) Method
[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[] buffer)
[C#]
public int Receive(byte[] buffer)
Summary
Receives data from a socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0, buffer.Length, System.Net.Sockets.SocketFlags.None).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept connections. See System.Net.NetworkAccess.Accept.

 Socket.ReceiveFrom(System.Byte[], System.Net.EndPoint&) Method
[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] buffer, class System.Net.EndPoint& remoteEP)
[C#]
public int ReceiveFrom(byte[] buffer, ref EndPoint remoteEP)
Summary
Receives data from a socket and, for connectionless protocols, stores the endpoint associated with the socket that sent the data.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	remoteEP
	A reference to the System.Net.EndPoint associated with the socket that sent the data.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer, 0, buffer.Length, System.Net.Sockets.SocketFlags.None, remoteEP).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept connections from the endpoint defined by remoteEP. See System.Net.NetworkAccess.Accept.

 Socket.ReceiveFrom(System.Byte[], System.Net.Sockets.SocketFlags, System.Net.EndPoint&) Method
[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] buffer, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint& remoteEP)
[C#]
public int ReceiveFrom(byte[] buffer, SocketFlags socketFlags, ref EndPoint remoteEP)
Summary
Receives data from a socket and, for connectionless protocols, stores the endpoint associated with the socket that sent the data.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

	remoteEP
	A reference to the System.Net.EndPoint associated with the socket that sent the data.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer, 0, buffer.Length, socketFlags, remoteEP).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags specified an invalid value.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept connections from the endpoint defined by remoteEP. See System.Net.NetworkAccess.Accept.

 Socket.ReceiveFrom(System.Byte[], System.Int32, System.Net.Sockets.SocketFlags, System.Net.EndPoint&) Method
[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] buffer, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint& remoteEP)
[C#]
public int ReceiveFrom(byte[] buffer, int size, SocketFlags socketFlags, ref EndPoint remoteEP)
Summary
Receives data from a socket and, for connectionless protocols, stores the endpoint associated with the socket that sent the data.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	size
	A System.Int32 containing the number of bytes to receive.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

	remoteEP
	A reference to the System.Net.EndPoint associated with the socket that sent the data.

Return Value

A System.Int32 containing the number of bytes received.
Description
This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer, 0, size, socketFlags, remoteEP).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.ArgumentOutOfRangeException
	size < 0.

-or-

size > buffer.Length.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept connections from the endpoint defined by remoteEP. See System.Net.NetworkAccess.Accept.

 Socket.ReceiveFrom(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags, System.Net.EndPoint&) Method
[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint& remoteEP)
[C#]
public int ReceiveFrom(byte[] buffer, int offset, int size, SocketFlags socketFlags, ref EndPoint remoteEP)
Summary
Receives data from a socket and, for connectionless protocols, stores the endpoint associated with the socket that sent the data.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array to store data received from the socket.

	offset
	A System.Int32 containing the zero-based position in buffer to begin storing the received data.

	size
	A System.Int32 containing the number of bytes to receive.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.OutOfBand, or System.Net.Sockets.SocketFlags.Peek.

	remoteEP
	A reference to the System.Net.EndPoint associated with the socket that sent the data.

Return Value

A System.Int32 containing the number of bytes received.
Description
For connectionless protocols, when this method successfully completes, remoteEP contains the endpoint associated with the socket that sent the data.

For connection-oriented protocols, remoteEP is left unchanged.

The System.Net.Sockets.Socket.LocalEndPoint property is required to be set before this method is called or a System.Net.Sockets.SocketException is thrown.

The System.Net.Sockets.Socket.Blocking property of the socket determines the behavior of this method when no incoming data is available. When false, the System.Net.Sockets.SocketException exception is thrown. When true, this method blocks and waits for data to arrive.

For System.Net.Sockets.SocketType.Stream socket types, if the remote socket was shut down gracefully, and all data was received, this method immediately returns zero, regardless of the blocking state.

For message-oriented sockets, if the message is larger than the size of buffer, the buffer is filled with the first part of the message, and the System.Net.Sockets.SocketException exception is thrown. For unreliable protocols, the excess data is lost; for reliable protocols, the data is retained by the service provider.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of thesocketFlags parameter and the socket is configured for in-line reception of out-of-band (OOB) data (using the System.Net.Sockets.SocketOptionName.OutOfBandInline socket option) and OOB data is available, only OOB data is returned.

When the System.Net.Sockets.SocketFlags.Peek flag is specified as part of the socketFlags parameter, available data is copied into buffer but is not removed from the system buffer.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

The System.Net.Sockets.Socket.LocalEndPoint property was not set.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to accept a connection on the endpoint defined by the System.Net.Sockets.Socket.LocalEndPoint property of the current instance. See System.Net.NetworkAccess.Accept.

Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.Select(System.Collections.IList, System.Collections.IList, System.Collections.IList, System.Int32) Method
[ILAsm]
.method public hidebysig static void Select(class System.Collections.IList checkRead, class System.Collections.IList checkWrite, class System.Collections.IList checkError, int32 microSeconds)
[C#]
public static void Select(IList checkRead, IList checkWrite, IList checkError, int microSeconds)
Summary
Determines the read, write, or error status of a set of System.Net.Sockets.Socket instances.

Parameters

	Parameter
	Description

	checkRead
	A System.Collections.IList object containing the System.Net.Sockets.Socket instances to check for read status.

	checkWrite
	A System.Collections.IList object containing the System.Net.Sockets.Socket instances to check for write status.

	checkError
	A System.Collections.IList object containing the System.Net.Sockets.Socket instances to check for error status.

	microSeconds
	A System.Int32 that specifies the time to wait for a response, in microseconds. Specify a negative value to wait indefinitely for the status to be determined.

Description
Upon successful completion, this method removes all System.Net.Sockets.Socket instances from the specified list that do not satisfy one of the conditions associated with that list. The following table describes the conditions for each list.

	List
	Condition to remain in list

	checkRead
	Data is available for reading (includes out-of-band data if the System.Net.Sockets.SocketOptionName.OutOfBandInline value defined in the System.Net.Sockets.SocketOptionName enumeration is set).

-or-

The socket is in the listening state with a pending connection, and the System.Net.Sockets.Socket.Accept method has been called and is guaranteed to succeed without blocking.

-or-

The connection has been closed, reset, or terminated.

	checkWrite
	Data can be sent.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being processed and the connection has succeeded.

	checkError
	The System.Net.Sockets.SocketOptionName.OutOfBandInline value defined in the System.Net.Sockets.SocketOptionName enumeration is not set and out-of-band data is available.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being processed and the connection has failed.

[Note: To determine the status of a specific System.Net.Sockets.Socket instance, check whether the instance remains in the list after the method returns.]

When the method cannot determine the status of all the System.Net.Sockets.Socket instances within the time specified in the microseconds parameter, the method removes all the System.Net.Sockets.Socket instances from all the lists and returns.

At least one of checkRead, checkWrite, or checkError, is required to contain at least one System.Net.Sockets.Socket instance. The other parameters can be empty or null.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	All of the following parameters are null or empty: checkRead, checkWrite, and checkError.

	System.Net.Sockets.SocketException
	An error occurred while accessing one of the sockets. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

Example

The following example determines the status of the socket instance named socket3 and writes the result to the console.

[C#]
using System;

using System.Collections;

using System.Net.Sockets;

class SelectTest {

 public static void Main() {

 Socket socket1 =

 new Socket(AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

 Socket socket2 =

 new Socket(AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

 Socket socket3 =

 new Socket(AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

 ArrayList readList = new ArrayList();

 ArrayList writeList = new ArrayList();

 ArrayList errorList = new ArrayList();

 readList.Add(socket1);

 readList.Add(socket2);

 readList.Add(socket3);

 errorList.Add(socket1);

 errorList.Add(socket3);

 // readList.Contains(Socket3) returns true

 // if Socket3 is in ReadList.

 Console.WriteLine(

 "socket3 is placed in readList and errorList.");

 Console.WriteLine(

 "socket3 is {0}in readList.",

 readList.Contains(socket3) ? "": "not ");

 Console.WriteLine(

 "socket3 is {0}in writeList.",

 writeList.Contains(socket3) ? "": "not ");

 Console.WriteLine(

 "socket3 is {0}in errorList.",

 errorList.Contains(socket3) ? "": "not ");

 Socket.Select(readList, writeList, errorList, 10);

 Console.WriteLine("The Select method has been called.");

 Console.WriteLine(

 "socket3 is {0}in readList.",

 readList.Contains(socket3) ? "": "not ");

 Console.WriteLine(

 "socket3 is {0}in writeList.",

 writeList.Contains(socket3) ? "": "not ");

 Console.WriteLine(

 "socket3 is {0}in errorList.",

 errorList.Contains(socket3) ? "": "not ");

 }

}

The output is

socket3 is placed in readList and errorList.

socket3 is in readList.

socket3 is not in writeList.

socket3 is in errorList.

The Select method has been called.

socket3 is not in readList.

socket3 is not in writeList.

socket3 is not in errorList.

 Socket.Send(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags) Method
[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags)
[C#]
public int Send(byte[] buffer, int offset, int size, SocketFlags socketFlags)
Summary
Sends data to a connected socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

	offset
	A System.Int32 that specifies the zero-based position in buffer that is the starting location of the data to send.

	size
	A System.Int32 containing the number of bytes to send.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

Return Value

A System.Int32 containing the number of bytes sent.
Description
For connection-oriented protocols, the System.Net.Sockets.Socket.LocalEndPoint property of the current instance is required to be set before calling this method.

For connectionless protocols, calling the System.Net.Sockets.Socket.Connect methods sets the System.Net.Sockets.Socket.RemoteEndPoint property and allows the System.Net.Sockets.Socket.Send method to be used instead of the System.Net.Sockets.Socket.SendTo method.

When the System.Net.Sockets.SocketFlags.DontRoute flag is specified as part of the socketFlags parameter, the sent data is not routed.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of the socketFlags parameter, only out-of-band (OOB) data is sent.

When the System.Net.Sockets.Socket.Blocking property of the current instance is set to true and buffer space is not available within the underlying protocol, this method blocks.

For message-oriented sockets, when size is greater than the maximum message size of the underlying protocol, no data is sent and the System.Net.Sockets.SocketException exception is thrown.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.Send(System.Byte[]) Method
[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[] buffer)
[C#]
public int Send(byte[] buffer)
Summary
Sends data to a connected socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0, buffer.Length, System.Net.Sockets.SocketFlags.None).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.Send(System.Byte[], System.Net.Sockets.SocketFlags) Method
[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[] buffer, valuetype System.Net.Sockets.SocketFlags socketFlags)
[C#]
public int Send(byte[] buffer, SocketFlags socketFlags)
Summary
Sends data to a connected socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0, buffer.Length, socketFlags).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.Send(System.Byte[], System.Int32, System.Net.Sockets.SocketFlags) Method
[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[] buffer, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags)
[C#]
public int Send(byte[] buffer, int size, SocketFlags socketFlags)
Summary
Sends data to a connected socket.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

	size
	A System.Int32 containing the number of bytes to send.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0, size, socketFlags).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentOutOfRangeException
	size < 0.

-or-

size > buffer.Length.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.SendTo(System.Byte[], System.Net.EndPoint) Method
[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, class System.Net.EndPoint remoteEP)
[C#]
public int SendTo(byte[] buffer, EndPoint remoteEP)
Summary
Sends data to the socket associated with the specified endpoint.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

	remoteEP
	The System.Net.EndPoint associated with the socket to receive the data.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0, buffer.Length, System.Net.Sockets.SocketFlags.None, remoteEP).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.SendTo(System.Byte[], System.Net.Sockets.SocketFlags, System.Net.EndPoint) Method
[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint remoteEP)
[C#]
public int SendTo(byte[] buffer, SocketFlags socketFlags, EndPoint remoteEP)
Summary
Sends data to the socket associated with the specified endpoint.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

	remoteEP
	The System.Net.EndPoint associated with the socket to receive the data.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0, buffer.Length, socketFlags, remoteEP).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.SendTo(System.Byte[], System.Int32, System.Net.Sockets.SocketFlags, System.Net.EndPoint) Method
[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint remoteEP)
[C#]
public int SendTo(byte[] buffer, int size, SocketFlags socketFlags, EndPoint remoteEP)
Summary
Sends data to the socket associated with the specified endpoint.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

	size
	A System.Int32 containing the number of bytes to send.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

	remoteEP
	The System.Net.EndPoint associated with the socket to receive the data.

Return Value

A System.Int32 containing the number of bytes sent.
Description
This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0, size, socketFlags, remoteEP).

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.ArgumentOutOfRangeException
	size < 0.

-or-

size > buffer.Length.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.SendTo(System.Byte[], System.Int32, System.Int32, System.Net.Sockets.SocketFlags, System.Net.EndPoint) Method
[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class System.Net.EndPoint remoteEP)
[C#]
public int SendTo(byte[] buffer, int offset, int size, SocketFlags socketFlags, EndPoint remoteEP)
Summary
Sends data to the socket associated with the specified endpoint.

Parameters

	Parameter
	Description

	buffer
	A System.Byte array containing data to send to the socket.

	offset
	A System.Int32 that specifies the zero-based position in buffer that is the starting location of the data to send.

	size
	A System.Int32 containing the number of bytes to send.

	socketFlags
	A bitwise combination of any of the following values defined in the System.Net.Sockets.SocketFlags enumeration: System.Net.Sockets.SocketFlags.None, System.Net.Sockets.SocketFlags.DontRoute, or System.Net.Sockets.SocketFlags.OutOfBand.

	remoteEP
	The System.Net.EndPoint associated with the socket to receive the data.

Return Value

A System.Int32 containing the number of bytes sent.
Description
For connected sockets using connectionless protocols, remoteEP overrides the endpoint specified in the System.Net.Sockets.Socket.RemoteEndPoint property.

For unconnected sockets using connectionless protocols, this method sets the System.Net.Sockets.Socket.LocalEndPoint property of the current instance to a value determined by the protocol. Subsequent data is required to be received on LocalEndPoint.

When the System.Net.Sockets.SocketFlags.DontRoute flag is specified as part of the socketFlags parameter, the sent data is not routed.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of the socketFlags parameter, only out-of-band (OOB) data is sent.

When the System.Net.Sockets.Socket.Blocking property of the current instance is set to true and buffer space is not available within the underlying protocol, this method blocks.

For message-oriented sockets, when size is greater than the maximum message size of the underlying protocol, no data is sent and the System.Net.Sockets.SocketException exception is thrown.

For connection-oriented sockets, the remoteEP parameter is ignored.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer or remoteEP is null.

	System.ArgumentOutOfRangeException
	offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

	System.InvalidOperationException
	An asynchronous call is pending and a blocking method has been called.

	System.Net.Sockets.SocketException
	socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Net.SocketPermission
	Requires permission to make a connection to the endpoint defined by remoteEP. See System.Net.NetworkAccess.Connect.

 Socket.SetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Object) Method
[ILAsm]
.method public hidebysig instance void SetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel optionLevel, valuetype System.Net.Sockets.SocketOptionName optionName, object optionValue)
[C#]
public void SetSocketOption(SocketOptionLevel optionLevel, SocketOptionName optionName, object optionValue)
Summary
Sets the System.Net.Sockets.SocketOptionName.AddMembership, System.Net.Sockets.SocketOptionName.DropMembership, or System.Net.Sockets.SocketOptionName.Linger socket options.

Parameters

	Parameter
	Description

	optionLevel
	Either the Socket or IP member of the System.Net.Sockets.SocketOptionLevel enumeration.

	optionName
	Either the Linger, AddMembership, or DropMembership member of the System.Net.Sockets.SocketOptionName enumeration.

	optionValue
	An instance of the System.Net.Sockets.LingerOption or System.Net.Sockets.MulticastOption class.

Description
Socket options determine the behavior of the current instance. Multiple options can be set on the current instance by calling this method multiple times.

The following table summarizes the valid combinations of input parameters.

	optionLevel/optionName
	optionValue

	Socket/Linger
	An instance of the System.Net.Sockets.LingerOption class.

	IP/AddMembership

- or -

IP/DropMembership
	An instance of the System.Net.Sockets.MulticastOption class.

When setting the System.Net.Sockets.SocketOptionName.Linger option, a System.ArgumentException exception is thrown if the System.Net.Sockets.LingerOption.LingerTime property of the System.Net.Sockets.LingerOption instance is less than zero or greater than System.UInt16.MaxValue.

[Note: For more information on the System.Net.Sockets.SocketOptionName.Linger option, see the System.Net.Sockets.LingerOption class and the System.Net.Sockets.Socket.Shutdown method.

For more information on the System.Net.Sockets.SocketOptionName.AddMembership and System.Net.Sockets.SocketOptionName.DropMembership options, see the System.Net.Sockets.MulticastOption class.

For socket options with values of type System.Int32 or System.Boolean, see the System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Int32) version of this method.

]

Exceptions

	Exception
	Condition

	System.ArgumentException
	optionLevel, optionName, or optionValue specified an invalid value.

	System.ArgumentNullException
	optionValue is null.

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Security.Permissions. SecurityPermission
	The System.Net.Sockets.SocketOptionName.AddMembership and System.Net.Sockets.SocketOptionName.DropMembership options require permission to access unmanaged code. See System.Security.Permissions.SecurityPermissionFlag. UnmanagedCode.

 Socket.SetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Byte[]) Method
[ILAsm]
.method public hidebysig instance void SetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel optionLevel, valuetype System.Net.Sockets.SocketOptionName optionName, class System.Byte[] optionValue)
[C#]
public void SetSocketOption(SocketOptionLevel optionLevel, SocketOptionName optionName, byte[] optionValue)
Summary
Sets socket options with values of type Byte[].

Parameters

	Parameter
	Description

	optionLevel
	One of the values defined in the System.Net.Sockets.SocketOptionLevel enumeration.

	optionName
	One of the values defined in the System.Net.Sockets.SocketOptionName enumeration.

	optionValue
	A System.Byte array containing the value of the option.

Description
Socket options determine the behavior of the current instance. Multiple options can be set on the current instance by calling this method multiple times.

[Note: For socket options with values of type System.Int32 or System.Boolean, see the System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Int32) version of this method.]

[Note: For the System.Net.Sockets.SocketOptionName.AddMembership, System.Net.Sockets.SocketOptionName.DropMembership, or System.Net.Sockets.SocketOptionName.Linger socket options, see the System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Object) version of this method.]

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Security.Permissions. SecurityPermission
	Requires permission to access unmanaged code. See System.Security.Permissions.SecurityPermissionFlag. UnmanagedCode.

 Socket.SetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Int32) Method
[ILAsm]
.method public hidebysig instance void SetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel optionLevel, valuetype System.Net.Sockets.SocketOptionName optionName, int32 optionValue)
[C#]
public void SetSocketOption(SocketOptionLevel optionLevel, SocketOptionName optionName, int optionValue)
Summary
Sets socket options with values of type System.Int32 and System.Boolean.

Parameters

	Parameter
	Description

	optionLevel
	One of the values defined in the System.Net.Sockets.SocketOptionLevel enumeration.

	optionName
	One of the values defined in the System.Net.Sockets.SocketOptionName enumeration.

	optionValue
	A System.Int32 containing the value of the option.

Description
Socket options determine the behavior of the current instance. Multiple options can be set on the current instance by calling this method multiple times.

For a socket option with a System.Boolean data type, specify a non-zero optionValue to enable the option, and an optionValue equal to zero to disable the option.

Socket options are grouped by level of protocol support. The following tables list the members of the System.Net.Sockets.SocketOptionName enumeration supported by each member of the System.Net.Sockets.SocketOptionLevel enumeration. Only members that have associated values of the System.Int32 and System.Boolean data types are listed.

The following table lists the members of the System.Net.Sockets.SocketOptionName enumeration supported by the Socket member of the System.Net.Sockets.SocketOptionLevel enumeration. Options that do not require permission to access unmanaged code are noted.

	SocketOptionName
	Description

	Broadcast
	A System.Boolean where true indicates broadcast messages are allowed to be sent to the socket.

	Debug
	A System.Boolean where true indicates to record debugging information.

	DontLinger
	A System.Boolean where true indicates to close the socket without lingering. This option does not require permission to access unmanaged code.

	DontRoute
	A System.Boolean where true indicates not to route data.

	Error
	A System.Int32 that contains the error code associated with the last socket error. The error code is cleared by this option. This option is read-only.

	KeepAlive
	A System.Boolean where true (the default) indicates to enable keep-alives, which allows a connection to remain open after a request has completed. This option does not require permission to access unmanaged code.

	OutOfBandInline
	A System.Boolean where true indicates to receive out-of-band data in the normal data stream.

	ReceiveBuffer
	A System.Int32 that specifies the total per-socket buffer space reserved for receives. This option does not require permission to access unmanaged code.

	ReceiveTimeout
	A System.Int32 that specifies the maximum time, in milliseconds, the System.Net.Sockets.Socket.Receive and System.Net.Sockets.Socket.ReceiveFrom methods will block when attempting to receive data. If data is not received within this time, a System.Net.Sockets.SocketException exception is thrown. This option does not require permission to access unmanaged code.

	ReuseAddress
	A System.Boolean where true allows the socket to be bound to an address that is already in use.

	SendBuffer
	A System.Int32 that specifies the total per-socket buffer space reserved for sends. This option does not require permission to access unmanaged code.

	SendTimeout
	A System.Int32 that specifies the maximum time, in milliseconds, the System.Net.Sockets.Socket.Send and System.Net.Sockets.Socket.SendTo methods will block when attempting to send data. If data is not sent within this time, a System.Net.Sockets.SocketException exception is thrown. This option does not require permission to access unmanaged code.

	Type
	One of the values defined in the System.Net.Sockets.SocketType enumeration. This option is read-only.

The following table lists the members of the System.Net.Sockets.SocketOptionName enumeration supported by the IP member of the System.Net.Sockets.SocketOptionLevel enumeration. These options require permission to access unmanaged code.

	SocketOptionName
	Description

	HeaderIncluded
	A System.Boolean where true indicates the application is providing the IP header for outgoing datagrams.

	IPOptions
	A System.Byte array that specifies IP options to be inserted into outgoing datagrams.

	IpTimeToLive
	A System.Int32 that specifies the time-to-live for datagrams. The time-to-live designates the number of networks on which the datagram is allowed to travel before being discarded by a router.

	MulticastInterface
	A System.Byte array that specifies the interface for outgoing multicast packets.

	MulticastLoopback
	A System.Boolean where true enables multicast loopback.

	MulticastTimeToLive
	A System.Int32 that specifies the time-to-live for multicast datagrams.

	TypeOfService
	A System.Int32 that specifies the type of service field in the IP header.

	UseLoopback
	A System.Boolean where true indicates to send a copy of the data back to the sender.

The following table lists the members of the System.Net.Sockets.SocketOptionName enumeration supported by the Tcp member of the System.Net.Sockets.SocketOptionLevel enumeration. These options do not require permission to access unmanaged code.

	SocketOptionName
	Description

	BsdUrgent
	A System.Boolean where true indicates to use urgent data as defined by IETF RFC 1222. Once enabled, this option cannot be disabled.

	Expedited
	A System.Boolean where true indicates to use expedited data as defined by IETF RFC 1222. Once enabled, this option cannot be disabled.

	NoDelay
	A System.Boolean where true indicates to disable the Nagle algorithm for send coalescing.

The following table lists the members of the System.Net.Sockets.SocketOptionName enumeration supported by the Udp member of the System.Net.Sockets.SocketOptionLevel enumeration. These options do not require permission to access unmanaged code.

	SocketOptionName
	Description

	ChecksumCoverage
	A System.Boolean that specifies UDP checksum coverage.

	NoChecksum
	A System.Boolean where true indicates to send UDP datagrams with the checksum set to zero.

[Note: For the AddMembership, DropMembership, and Linger members of the System.Net.Sockets.SocketOptionName enumeration, see the System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLevel, System.Net.Sockets.SocketOptionName, System.Object) version of this method.

]

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.Security.SecurityException
	A caller in the call stack does not have the required permissions.

	System.ObjectDisposedException
	The current instance has been disposed.

Permissions

	Permission
	Description

	System.Security.Permissions. SecurityPermission
	Some options require permission to access unmanaged code. All the options that do not require permission are noted in the tables in the Description section. All options not so noted require this permission. See System.Security.Permissions.SecurityPermissionFlag. UnmanagedCode.

 Socket.Shutdown(System.Net.Sockets.SocketShutdown) Method
[ILAsm]
.method public hidebysig instance void Shutdown(valuetype System.Net.Sockets.SocketShutdown how)
[C#]
public void Shutdown(SocketShutdown how)
Summary
Terminates the ability to send or receive data on a connected socket.

Parameters

	Parameter
	Description

	how
	One of the values defined in the System.Net.Sockets.SocketShutdown enumeration.

Description
When how is set to System.Net.Sockets.SocketShutdown.Send, the socket on the other end of the connection is notified that the current instance will not send any more data. If the System.Net.Sockets.Socket.Send method is subsequently called, a System.Net.Sockets.SocketException exception is thrown.

When how is set to System.Net.Sockets.SocketShutdown.Receive, the socket on the other end of the connection is notified that the current instance will not receive any more data. After all the data currently queued on the current instance is received, any subsequent calls to the System.Net.Sockets.Socket.Receive method cause a System.Net.Sockets.SocketException exception to be thrown.

Setting how to System.Net.Sockets.SocketShutdown.Both terminates both sends and receives as described above. Once this occurs, the socket cannot be used.

[Note: To free resources allocated by the current instance, call the System.Net.Sockets.Socket.Close method.

Expected common usage is for the System.Net.Sockets.Socket.Shutdown method to be called before the System.Net.Sockets.Socket.Close method to ensure that all pending data is sent or received.

]

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.System.IDisposable.Dispose() Method
[ILAsm]
.method private final hidebysig virtual void System.IDisposable.Dispose()
[C#]
void IDisposable.Dispose()
Summary
Implemented to support the System.IDisposable interface. [Note: For more information, see System.IDisposable.Dispose.]

 Socket.AddressFamily Property
[ILAsm]
.property valuetype System.Net.Sockets.AddressFamily AddressFamily { public hidebysig specialname instance valuetype System.Net.Sockets.AddressFamily get_AddressFamily() }
[C#]
public AddressFamily AddressFamily { get; }
Summary
Gets the address family of the current instance.

Property Value

One of the values defined in the System.Net.Sockets.AddressFamily enumeration.
Description
This property is read-only.

This property is set by the constructor for the current instance. The value of this property specifies the addressing scheme used by the current instance to resolve an address.

 Socket.Available Property
[ILAsm]
.property int32 Available { public hidebysig specialname instance int32 get_Available() }
[C#]
public int Available { get; }
Summary
Gets the amount of data available to be read in a single System.Net.Sockets.Socket.Receive or System.Net.Sockets.Socket.ReceiveFrom call.

Property Value

A System.Int32 containing the number of bytes of data that are available to be read.
Description
This property is read-only.

When the current instance is stream-oriented (for example, the System.Net.Sockets.SocketType.Stream socket type), the available data is generally the total amount of data queued on the current instance.

When the current instance is message-oriented (for example, the System.Net.Sockets.SocketType.Dgram socket type), the available data is the first message in the input queue.

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.Blocking Property
[ILAsm]
.property bool Blocking { public hidebysig specialname instance bool get_Blocking() public hidebysig specialname instance void set_Blocking(bool value) }
[C#]
public bool Blocking { get; set; }
Summary
Gets or sets a System.Boolean value that indicates whether the socket is in blocking mode.

Property Value

true indicates that the current instance is in blocking mode; false indicates that the current instance is in non-blocking mode.
Description
Blocking is when a method waits to complete an operation before returning. Sockets are created in blocking mode by default.

Exceptions

	Exception
	Condition

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.Connected Property
[ILAsm]
.property bool Connected { public hidebysig specialname instance bool get_Connected() }
[C#]
public bool Connected { get; }
Summary
Gets a System.Boolean value indicating whether the current instance is connected.

Property Value

true indicates that the current instance was connected at the time of the last I/O operation; false indicates that the current instance is not connected.
Description
This property is read-only.

When this property returns true, the current instance was connected at the time of the last I/O operation; it might not still be connected. When this property returns false, the current instance was never connected or is not currently connected.

The current instance is considered connected when the System.Net.Sockets.Socket.RemoteEndPoint property contains a valid endpoint.

[Note: The System.Net.Sockets.Socket.Accept and System.Net.Sockets.Socket.Connect methods, and their asynchronous counterparts set this property.]

 The following member must be implemented if the RuntimeInfrastructure library is present in the implementation.
Socket.Handle Property
[ILAsm]
.property valuetype System.IntPtr Handle { public hidebysig specialname instance valuetype System.IntPtr get_Handle() }
[C#]
public IntPtr Handle { get; }
Summary
Gets the operating system handle for the current instance.

Property Value

A System.IntPtr containing the operating system handle for the current instance.
Description
This property is read-only.

Permissions

	Permission
	Description

	System.Security.Permissions. SecurityPermission
	Requires permission to access unmanaged code. See System.Security.Permissions.SecurityPermissionFlag. UnmanagedCode.

 Socket.LocalEndPoint Property
[ILAsm]
.property class System.Net.EndPoint LocalEndPoint { public hidebysig specialname instance class System.Net.EndPoint get_LocalEndPoint() }
[C#]
public EndPoint LocalEndPoint { get; }
Summary
Gets the local endpoint associated with the current instance.

Property Value

The local System.Net.EndPoint associated with the current instance.
Description
This property is read-only.

This property contains the network connection information for the current instance.

[Note: The System.Net.Sockets.Socket.Bind and System.Net.Sockets.Socket.Accept methods, and their asynchronous counterparts set this property. If not previously set, the System.Net.Sockets.Socket.Connect and System.Net.Sockets.Socket.SendTo methods, and their asynchronous counterparts set this property.]

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.ProtocolType Property
[ILAsm]
.property valuetype System.Net.Sockets.ProtocolType ProtocolType { public hidebysig specialname instance valuetype System.Net.Sockets.ProtocolType get_ProtocolType() }
[C#]
public ProtocolType ProtocolType { get; }
Summary
Gets the protocol type of the current instance.

Property Value

One of the values defined in the System.Net.Sockets.ProtocolType enumeration.
Description
This property is read-only.

This property is set by the constructor for the current instance. The value of this property specifies the protocol used by the current instance.

 Socket.RemoteEndPoint Property
[ILAsm]
.property class System.Net.EndPoint RemoteEndPoint { public hidebysig specialname instance class System.Net.EndPoint get_RemoteEndPoint() }
[C#]
public EndPoint RemoteEndPoint { get; }
Summary
Gets the remote endpoint associated with the current instance.

Property Value

The remote System.Net.EndPoint associated with the current instance.
Description
This property is read-only.

This property contains the network connection information associated with the socket communicating with the current instance.

There is no remote endpoint associated with a socket in the listening state. An attempt to access the System.Net.Sockets.Socket.RemoteEndPoint property causes a System.Net.Sockets.SocketException exception to be thrown.

[Note: The System.Net.Sockets.Socket.Accept and System.Net.Sockets.Socket.Connect methods, and their asynchronous counterparts set this property.]

Exceptions

	Exception
	Condition

	System.Net.Sockets.SocketException
	An error occurred while accessing the socket. [Note: For additional information on causes of the SocketException, see the System.Net.Sockets.SocketException class.]

	System.ObjectDisposedException
	The current instance has been disposed.

 Socket.SocketType Property
[ILAsm]
.property valuetype System.Net.Sockets.SocketType SocketType { public hidebysig specialname instance valuetype System.Net.Sockets.SocketType get_SocketType() }
[C#]
public SocketType SocketType { get; }
Summary
Gets the socket type of the current instance.

Property Value

One of the values defined in the System.Net.Sockets.SocketType enumeration.
Description
This property is read-only.

This property is set by the constructor for the current instance.

PAGE
1

