
 1

System.Net.Sockets.Socket Class 1

 2

[ILAsm] 3
.class public Socket extends System.Object implements System.IDisposable 4

[C#] 5
public class Socket: IDisposable 6

Assembly Info: 7

· Name: System 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Implements: 13

· System.IDisposable 14

Summary 15
 16

Creates a communication endpoint through which an application sends or receives data 17
across a network. 18

Inherits From: System.Object 19
 20
Library: Networking 21
 22
Thread Safety: All public static members of this type are safe for multithreaded operations. 23
No instance members are guaranteed to be thread safe. 24
 25
Description 26

This class enables a System.Net.Sockets.Socket instance to communicate with 27
another socket across a network. The communication can be through connection-28
oriented and connectionless protocols using either data streams or datagrams (discrete 29
message packets). 30
 31
Message-oriented protocols preserve message boundaries and require that for each 32
System.Net.Sockets.Socket.Send method call there is one corresponding 33
System.Net.Sockets.Socket.Receive method call. For stream-oriented protocols, data 34
is transmitted without regards to message boundaries. In this case, for example, 35
multiple System.Net.Sockets.Socket.Receive method calls might be necessary to 36
retrieve all the data from one System.Net.Sockets.Socket.Send method call. The 37
protocol is set in the Socket class constructor. 38

 2

 1
A System.Net.Sockets.Socket instance has a local and a remote endpoint associated 2
with it. The local endpoint contains the connection information for the current socket 3
instance. The remote endpoint contains the connection information for the socket that 4
the current instance communicates with. The endpoints are required to be an instance of 5
a type derived from the System.Net.EndPoint class. For the Transmission Control 6
Protocol (TCP) and User Datagram Protocol (UDP) protocols, an endpoint includes the 7
address family, an Internet Protocol (IP) address, and a port number. For connection-8
oriented protocols (for example, TCP), the remote endpoint does not have to be 9
specified when transferring data. For connectionless protocols (for example, UDP), the 10
remote endpoint is required to be specified. 11
 12
Methods are provided for both synchronous and asynchronous operations. A 13
synchronous method can operate in blocking mode, in which it waits (blocks) until the 14
operation is complete before returning, or in non-blocking mode, where it returns 15
immediately, possibly before the operation has completed. The blocking mode is set 16
through the System.Net.Sockets.Socket.Blocking property. 17
 18
An asynchronous method returns immediately and, by convention, relies on a delegate 19
to complete the operation. Asynchronous methods have names which correspond to 20
their synchronous counterparts prefixed with either 'Begin' or End'. For example, the 21
synchronous System.Net.Sockets.Socket.Accept method has asynchronous 22
counterpart methods named System.Net.Sockets.Socket.BeginAccept and 23
System.Net.Sockets.Socket.EndAccept. The example for the 24
System.Net.Sockets.Socket.BeginAccept method shows the basic steps for using an 25
asynchronous operation. A complete working example follows this discussion. 26
 27
Connection-oriented protocols commonly use the client/server model. In this model, one 28
of the sockets is set up as a server, and one or more sockets are set up as clients. A 29
general procedure demonstrating the synchronous communication process for this 30
model is as follows. 31
 32
On the server-side: 33

1. Create a socket to listen for incoming connection requests. 34
2. Set the local endpoint using the System.Net.Sockets.Socket.Bind method. 35
3. Put the socket in the listening state using the System.Net.Sockets.Socket.Listen 36

method. 37
4. At this point incoming connection requests from a client are placed in a queue. 38
5. Use the System.Net.Sockets.Socket.Accept method to create a server socket for a 39

connection request issued by a client-side socket. This sets the remote endpoint. 40
6. Use the System.Net.Sockets.Socket.Send and 41

System.Net.Sockets.Socket.Receive methods to communicate with the client 42
socket. 43

7. When communication is finished, terminate the connection using the 44
System.Net.Sockets.Socket.Shutdown method. 45

8. Release the resources allocated by the server socket using the 46
System.Net.Sockets.Socket.Close method. 47

9. Release the resources allocated by the listener socket using the 48
System.Net.Sockets.Socket.Close method. 49

 3

On the client-side: 1

1. Create the client socket. 2
2. Connect to the server socket using the System.Net.Sockets.Socket.Connect 3

method. This sets both the local and remote endpoints for the client socket. 4
3. Use the System.Net.Sockets.Socket.Send and 5

System.Net.Sockets.Socket.Receive methods to communicate with the server 6
socket. 7

4. When communication is finished, terminate the connection using the 8
System.Net.Sockets.Socket.Shutdown method. 9

5. Release the resources allocated by the client socket using the 10
System.Net.Sockets.Socket.Close method. 11

The shutdown step in the previous procedure is not necessary but ensures that any pending 12
data is not lost. If the System.Net.Sockets.Socket.Shutdown method is not called, the 13
System.Net.Sockets.Socket.Close method shuts down the connection either gracefully or 14
by force. A graceful closure attempts to transfer all pending data before the connection is 15
terminated. Use the System.Net.Sockets.SocketOptionName.Linger socket option to 16
specify a graceful closure for a socket. 17
 18
[Note: This implementation is based on the UNIX sockets implementation in the Berkeley 19
Software Distribution (BSD, release 4.3) from the University of California at Berkeley. 20
 21
] 22

Example 23
 24

The following examples provide a client/server application that demonstrates the use of 25
asynchronous communication between sockets. Run the client and server on different 26
consoles. 27
 28
The following code is for the server application. Start this application before the client 29
application. 30
 31
[C#] 32

using System; 33
using System.Threading; 34
using System.Text; 35
using System.Net; 36
using System.Net.Sockets; 37
 38
public class Server 39
{ 40
 // used to pass state information to delegate 41
 internal class StateObject 42
 { 43
 internal byte[] sBuffer; 44
 internal Socket sSocket; 45
 internal StateObject(int size, Socket sock) { 46

 4

 sBuffer = new byte[size]; 1
 sSocket = sock; 2
 } 3
 } 4
 static void Main() 5
 { 6
 IPAddress ipAddress = 7
 Dns.Resolve(Dns.GetHostName()).AddressList[0]; 8
 9
 IPEndPoint ipEndpoint = 10
 new IPEndPoint(ipAddress, 1800); 11
 12
 Socket listenSocket = 13
 new Socket(AddressFamily.InterNetwork, 14
 SocketType.Stream, 15
 ProtocolType.Tcp); 16
 17
 listenSocket.Bind(ipEndpoint); 18
 listenSocket.Listen(1); 19
 IAsyncResult asyncAccept = listenSocket.BeginAccept(20
 new AsyncCallback(Server.acceptCallback), 21
 listenSocket); 22
 23
 // could call listenSocket.EndAccept(asyncAccept) here 24
 // instead of in the callback method, but since 25
 // EndAccept blocks, the behavior would be similar to 26
 // calling the synchronous Accept method 27
 28
 Console.Write("Connection in progress."); 29
 if(writeDot(asyncAccept) == true) 30
 { 31
 // allow time for callbacks to 32
 // finish before the program ends 33
 Thread.Sleep(3000); 34
 } 35
 } 36
 37
 public static void 38
 acceptCallback(IAsyncResult asyncAccept) { 39
 Socket listenSocket = (Socket)asyncAccept.AsyncState; 40
 Socket serverSocket = 41
 listenSocket.EndAccept(asyncAccept); 42
 43
 // arriving here means the operation completed 44
 // (asyncAccept.IsCompleted = true) but not 45
 // necessarily successfully 46
 if(serverSocket.Connected == false) 47
 { 48
 Console.WriteLine(".server is not connected."); 49
 return; 50
 } 51
 else Console.WriteLine(".server is connected."); 52
 53
 listenSocket.Close(); 54
 55
 StateObject stateObject = 56
 new StateObject(16, serverSocket); 57

 5

 1
 // this call passes the StateObject because it 2
 // needs to pass the buffer as well as the socket 3
 IAsyncResult asyncReceive = 4
 serverSocket.BeginReceive(5
 stateObject.sBuffer, 6
 0, 7
 stateObject.sBuffer.Length, 8
 SocketFlags.None, 9
 new AsyncCallback(receiveCallback), 10
 stateObject); 11
 12
 Console.Write("Receiving data."); 13
 writeDot(asyncReceive); 14
 } 15
 16
 public static void 17
 receiveCallback(IAsyncResult asyncReceive) { 18
 StateObject stateObject = 19
 (StateObject)asyncReceive.AsyncState; 20
 int bytesReceived = 21
 stateObject.sSocket.EndReceive(asyncReceive); 22
 23
 Console.WriteLine(24
 ".{0} bytes received: {1}", 25
 bytesReceived.ToString(), 26
 Encoding.ASCII.GetString(stateObject.sBuffer)); 27
 28
 byte[] sendBuffer = 29
 Encoding.ASCII.GetBytes("Goodbye"); 30
 IAsyncResult asyncSend = 31
 stateObject.sSocket.BeginSend(32
 sendBuffer, 33
 0, 34
 sendBuffer.Length, 35
 SocketFlags.None, 36
 new AsyncCallback(sendCallback), 37
 stateObject.sSocket); 38
 39
 Console.Write("Sending response."); 40
 writeDot(asyncSend); 41
 } 42
 43
 public static void sendCallback(IAsyncResult asyncSend) { 44
 Socket serverSocket = (Socket)asyncSend.AsyncState; 45
 int bytesSent = serverSocket.EndSend(asyncSend); 46
 Console.WriteLine(47
 ".{0} bytes sent.{1}{1}Shutting down.", 48
 bytesSent.ToString(), 49
 Environment.NewLine); 50
 51
 serverSocket.Shutdown(SocketShutdown.Both); 52
 serverSocket.Close(); 53
 } 54
 55
 // times out after 20 seconds but operation continues 56
 internal static bool writeDot(IAsyncResult ar) 57

 6

 { 1
 int i = 0; 2
 while(ar.IsCompleted == false) 3
 { 4
 if(i++ > 40) 5
 { 6
 Console.WriteLine("Timed out."); 7
 return false; 8
 } 9
 Console.Write("."); 10
 Thread.Sleep(500); 11
 } 12
 return true; 13
 } 14
} 15
 16
The following code is for the client application. When starting the application, supply the 17
hostname of the console running the server application as an input parameter (for example, 18
ProgramName hostname). 19
 20
[C#] 21

using System; 22
using System.Threading; 23
using System.Text; 24
using System.Net; 25
using System.Net.Sockets; 26
 27
public class Client { 28
 29
 // used to pass state information to delegate 30
 class StateObject 31
 { 32
 internal byte[] sBuffer; 33
 internal Socket sSocket; 34
 internal StateObject(int size, Socket sock) { 35
 sBuffer = new byte[size]; 36
 sSocket = sock; 37
 } 38
 } 39
 40
 static void Main(string[] argHostName) 41
 { 42
 IPAddress ipAddress = 43
 Dns.Resolve(argHostName[0]).AddressList[0]; 44
 45
 IPEndPoint ipEndpoint = 46
 new IPEndPoint(ipAddress, 1800); 47
 48
 Socket clientSocket = new Socket(49
 AddressFamily.InterNetwork, 50
 SocketType.Stream, 51
 ProtocolType.Tcp); 52
 53
 IAsyncResult asyncConnect = clientSocket.BeginConnect(54
 ipEndpoint, 55

 7

 new AsyncCallback(connectCallback), 1
 clientSocket); 2
 3
 Console.Write("Connection in progress."); 4
 if(writeDot(asyncConnect) == true) 5
 { 6
 // allow time for callbacks to 7
 // finish before the program ends 8
 Thread.Sleep(3000); 9
 } 10
 } 11
 12
 public static void 13
 connectCallback(IAsyncResult asyncConnect) { 14
 Socket clientSocket = 15
 (Socket)asyncConnect.AsyncState; 16
 clientSocket.EndConnect(asyncConnect); 17
 // arriving here means the operation completed 18
 // (asyncConnect.IsCompleted = true) but not 19
 // necessarily successfully 20
 if(clientSocket.Connected == false) 21
 { 22
 Console.WriteLine(".client is not connected."); 23
 return; 24
 } 25
 else Console.WriteLine(".client is connected."); 26
 27
 byte[] sendBuffer = Encoding.ASCII.GetBytes("Hello"); 28
 IAsyncResult asyncSend = clientSocket.BeginSend(29
 sendBuffer, 30
 0, 31
 sendBuffer.Length, 32
 SocketFlags.None, 33
 new AsyncCallback(sendCallback), 34
 clientSocket); 35
 36
 Console.Write("Sending data."); 37
 writeDot(asyncSend); 38
 } 39
 40
 public static void sendCallback(IAsyncResult asyncSend) 41
 { 42
 Socket clientSocket = (Socket)asyncSend.AsyncState; 43
 int bytesSent = clientSocket.EndSend(asyncSend); 44
 Console.WriteLine(45
 ".{0} bytes sent.", 46
 bytesSent.ToString()); 47
 48
 StateObject stateObject = 49
 new StateObject(16, clientSocket); 50
 51
 // this call passes the StateObject because it 52
 // needs to pass the buffer as well as the socket 53
 IAsyncResult asyncReceive = 54
 clientSocket.BeginReceive(55
 stateObject.sBuffer, 56
 0, 57

 8

 stateObject.sBuffer.Length, 1
 SocketFlags.None, 2
 new AsyncCallback(receiveCallback), 3
 stateObject); 4
 5
 Console.Write("Receiving response."); 6
 writeDot(asyncReceive); 7
 } 8
 9
 public static void 10
 receiveCallback(IAsyncResult asyncReceive) { 11
 StateObject stateObject = 12
 (StateObject)asyncReceive.AsyncState; 13
 14
 int bytesReceived = 15
 stateObject.sSocket.EndReceive(asyncReceive); 16
 17
 Console.WriteLine(18
 ".{0} bytes received: {1}{2}{2}Shutting down.", 19
 bytesReceived.ToString(), 20
 Encoding.ASCII.GetString(stateObject.sBuffer), 21
 Environment.NewLine); 22
 23
 stateObject.sSocket.Shutdown(SocketShutdown.Both); 24
 stateObject.sSocket.Close(); 25
 } 26
 27
 // times out after 2 seconds but operation continues 28
 internal static bool writeDot(IAsyncResult ar) 29
 { 30
 int i = 0; 31
 while(ar.IsCompleted == false) 32
 { 33
 if(i++ > 20) 34
 { 35
 Console.WriteLine("Timed out."); 36
 return false; 37
 } 38
 Console.Write("."); 39
 Thread.Sleep(100); 40
 } 41
 return true; 42
 } 43
} 44
 45
The output of the server application is 46
 47
Connection in progress...........server is connected. 48
 49
 50
Receiving data......5 bytes received: Hello 51
 52
 53
Sending response....7 bytes sent. 54
 55

 9

 1
Shutting down. 2
 3
 4
--- 5
 6
 7
The output of the client application is 8
 9
Connection in progress......client is connected. 10
 11
 12
Sending data......5 bytes sent. 13
 14
 15
Receiving response......7 bytes received: Goodbye 16
 17
 18
Shutting down. 19
 20

21

 10

 Socket(System.Net.Sockets.AddressFamily, 1

System.Net.Sockets.SocketType, 2

System.Net.Sockets.ProtocolType) 3

Constructor 4

[ILAsm] 5
public rtspecialname specialname instance void .ctor(valuetype 6
System.Net.Sockets.AddressFamily addressFamily, valuetype 7
System.Net.Sockets.SocketType socketType, valuetype 8
System.Net.Sockets.ProtocolType protocolType) 9

[C#] 10
public Socket(AddressFamily addressFamily, SocketType socketType, 11
ProtocolType protocolType) 12

Summary 13

Constructs and initializes a new instance of the System.Net.Sockets.Socket class. 14

Parameters 15
 16
 17

Parameter Description

addressFamily
One of the values defined in the System.Net.Sockets.AddressFamily
enumeration.

socketType
One of the values defined in the System.Net.Sockets.SocketType
enumeration.

protocolType
One of the values defined in the System.Net.Sockets.ProtocolType
enumeration.

 18
Description 19

The addressFamily parameter specifies the addressing scheme used by the current 20
instance, the socketType parameter specifies the socket type of the current instance, 21
and the protocolType parameter specifies the protocol used by the current instance. The 22
three parameters are not independent. Some address families restrict which protocols 23
are used, and often the socket type is determined by the protocol. When the specified 24
values are not a valid combination, a System.Net.Sockets.SocketException exception 25
is thrown. 26
 27
Using the Unknown member of either the System.Net.Sockets.AddressFamily or 28

 11

System.Net.Sockets.ProtocolType enumeration, results in a 1
System.Net.Sockets.SocketException exception being thrown. 2

Exceptions 3
 4
 5

Exception Condition

System.Net.Sockets.SocketException

The combination of addressFamily, socketType,
and protocolType is invalid.

-or-

An error occurred while creating the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

 6
 7

8

 12

 Socket.Accept() Method 1

[ILAsm] 2
.method public hidebysig instance class System.Net.Sockets.Socket Accept() 3

[C#] 4
public Socket Accept() 5

Summary 6

Creates and initializes a new System.Net.Sockets.Socket instance and connects it to 7
an incoming connection request. 8

Return Value 9
 10

A new connected System.Net.Sockets.Socket instance. 11

Description 12

This method is used only on the server-side of connection-oriented protocols. It extracts 13
the first connection request from the queue of pending requests, creates a new 14
System.Net.Sockets.Socket instance, and connects this instance to the socket 15
associated with the request. 16
 17
The System.Net.Sockets.Socket.Blocking property of the socket determines the 18
behavior of this method when there are no pending connection requests. When false, 19
this method will throw a System.Net.Sockets.SocketException. When true, this 20
method blocks. 21
 22
The following properties of the new System.Net.Sockets.Socket instance returned by 23
this method have values identical to the corresponding properties of the current 24
instance: 25

· System.Net.Sockets.Socket.AddressFamily 26

· System.Net.Sockets.Socket.Blocking 27

· System.Net.Sockets.Socket.LocalEndPoint 28

· System.Net.Sockets.Socket.ProtocolType 29

· System.Net.Sockets.Socket.SocketType 30

The System.Net.Sockets.Socket.RemoteEndPoint property of the new instance is set to 31
the local endpoint of the first request in the input queue. The 32
System.Net.Sockets.Socket.Connected property is set to true. 33

 13

Exceptions 1
 2
 3

Exception Condition

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the listening
socket or while creating the new socket.

-or-

The System.Net.Sockets.Socket.Blocking
property is set to false.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 4
 5

6

 14

 Socket.BeginAccept(System.AsyncCallback, 1

System.Object) Method 2

[ILAsm] 3
.method public hidebysig instance class System.IAsyncResult 4
BeginAccept(class System.AsyncCallback callback, object state) 5

[C#] 6
public IAsyncResult BeginAccept(AsyncCallback callback, object state) 7

Summary 8

Begins an asynchronous operation to accept an incoming connection request. 9

Parameters 10
 11
 12

Parameter Description

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 13
Return Value 14
 15

A System.IAsyncResult instance that contains information about the asynchronous 16
operation. 17

Description 18

To retrieve the results of the operation and release resources allocated by the 19
System.Net.Sockets.Socket.BeginAccept method, call the 20
System.Net.Sockets.Socket.EndAccept method, and specify the 21
System.IAsyncResult object returned by this method. 22
 23
[Note: The System.Net.Sockets.Socket.EndAccept method should be called exactly 24
once for each call to the System.Net.Sockets.Socket.BeginAccept method.] 25
 26
 27
 28
If the callback parameter is not null, the method referenced by callback is invoked 29
when the asynchronous operation completes. The System.IAsyncResult object 30
returned by this method is passed as the argument to the method referenced by 31
callback. The method referenced by callback can retrieve the results of the operation by 32

 15

calling the System.Net.Sockets.Socket.EndAccept method. 1
 2
The state parameter can be any object that the caller wishes to have available for the 3
duration of the asynchronous operation. This object is available via the 4
System.IAsyncResult.AsyncState property of the object returned by this method. 5
 6
To determine the connection status, check the System.Net.Sockets.Socket.Connected 7
property, or use either the System.Net.Sockets.Socket.Poll or 8
System.Net.Sockets.Socket.Select method. 9
 10
[Note: For more information, see System.Net.Sockets.Socket.Accept, the 11
synchronous version of this method. 12
 13
] 14

Exceptions 15
 16
 17

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accepting the connection.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 18
Example 19
 20

The following excerpt from the System.Net.Sockets.Socket class overview example 21
outlines an asynchronous accept operation. 22
 23
[C#] 24

public class Server 25
{ 26
 static void Main() 27
 { 28
 . 29
 . 30
 . 31
 listenSocket.BeginAccept(32
 new AsyncCallback(Server.acceptCallback), 33
 listenSocket); 34

 16

 . 1
 . 2
 . 3
 // EndAccept can be called here 4
 . 5
 . 6
 . 7
 } 8
 9
 public static void 10
 acceptCallback(IAsyncResult asyncAccept) 11
 { 12
 Socket listenSocket = 13
 (Socket)asyncAccept.AsyncState; 14
 15
 Socket serverSocket = 16
 listenSocket.EndAccept(asyncAccept); 17
 18
 serverSocket.BeginReceive(...); 19
 . 20
 . 21
 . 22
 } 23
} 24

25

 17

 Socket.BeginConnect(System.Net.EndPoint, 1

System.AsyncCallback, System.Object) 2

Method 3

[ILAsm] 4
.method public hidebysig instance class System.IAsyncResult 5
BeginConnect(class System.Net.EndPoint remoteEP, class 6
System.AsyncCallback callback, object state) 7

[C#] 8
public IAsyncResult BeginConnect(EndPoint remoteEP, AsyncCallback 9
callback, object state) 10

Summary 11

Begins an asynchronous operation to associate the current instance with a remote 12
endpoint. 13

Parameters 14
 15
 16

Parameter Description

remoteEP The System.Net.EndPoint associated with the socket to connect to.

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 17
Return Value 18
 19

A System.IAsyncResult instance that contains information about the asynchronous 20
operation. 21

Description 22

To release resources allocated by the System.Net.Sockets.Socket.BeginConnect 23
method, call the System.Net.Sockets.Socket.EndConnect method, and specify the 24
System.IAsyncResult object returned by this method. 25
 26
[Note: The System.Net.Sockets.Socket.EndConnect method should be called exactly 27
once for each call to the System.Net.Sockets.Socket.BeginConnect method.] 28

 18

 1
 2
 3
If the callback parameter is not null, the method referenced by callback is invoked 4
when the asynchronous operation completes. The System.IAsyncResult object 5
returned by this method is passed as the argument to the method referenced by 6
callback. The method referenced by callback can retrieve the results of the operation by 7
calling the System.Net.Sockets.Socket.EndConnect method. 8
 9
The state parameter can be any object that the caller wishes to have available for the 10
duration of the asynchronous operation. This object is available via the 11
System.IAsyncResult.AsyncState property of the object returned by this method. 12
 13
To determine the connection status, check the System.Net.Sockets.Socket.Connected 14
property, or use either the System.Net.Sockets.Socket.Poll or 15
System.Net.Sockets.Socket.Select method. 16
 17
[Note: For more information, see System.Net.Sockets.Socket.Connect, the 18
synchronous version of this method. 19
 20
] 21

Exceptions 22
 23
 24

Exception Condition

System.ArgumentNullException remoteEP is null.

System.Net.Sockets.SocketException

An error occurred while making the connection.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller higher in the call stack does not have
permission for the requested operation.

 25
Example 26
 27

 19

For an outline of an asynchronous operation, see the 1
System.Net.Sockets.Socket.BeginAccept method. For the complete example, which 2
uses the System.Net.Sockets.Socket.BeginConnect method, see the 3
System.Net.Sockets.Socket class overview. 4

Permissions 5
 6
 7

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the endpoint
defined by remoteEP. [Note: See
System.Net.NetworkAccess.Connect.]

 8
 9

10

 20

 Socket.BeginReceive(System.Byte[], 1

System.Int32, System.Int32, 2

System.Net.Sockets.SocketFlags, 3

System.AsyncCallback, System.Object) 4

Method 5

[ILAsm] 6
.method public hidebysig instance class System.IAsyncResult 7
BeginReceive(class System.Byte[] buffer, int32 offset, int32 size, 8
valuetype System.Net.Sockets.SocketFlags socketFlags, class 9
System.AsyncCallback callback, object state) 10

[C#] 11
public IAsyncResult BeginReceive(byte[] buffer, int offset, int size, 12
SocketFlags socketFlags, AsyncCallback callback, object state) 13

Summary 14

Begins an asynchronous operation to receive data from a socket. 15

Parameters 16
 17
 18

Parameter Description

buffer A System.Byte array to store data received from the socket.

offset
A System.Int32 containing the zero-based position in buffer to begin storing
the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 21

 1
Return Value 2
 3

A System.IAsyncResult instance that contains information about the asynchronous 4
operation. 5

Description 6

To retrieve the results of the operation and release resources allocated by the 7
System.Net.Sockets.Socket.BeginReceive method, call the 8
System.Net.Sockets.Socket.EndReceive method, and specify the 9
System.IAsyncResult object returned by this method. 10
 11
[Note: The System.Net.Sockets.Socket.EndReceive method should be called exactly 12
once for each call to the System.Net.Sockets.Socket.BeginReceive method.] 13
 14
 15
 16
If the callback parameter is not null, the method referenced by callback is invoked 17
when the asynchronous operation completes. The System.IAsyncResult object 18
returned by this method is passed as the argument to the method referenced by 19
callback. The method referenced by callback can retrieve the results of the operation by 20
calling the System.Net.Sockets.Socket.EndReceive method. 21
 22
The state parameter can be any object that the caller wishes to have available for the 23
duration of the asynchronous operation. This object is available via the 24
System.IAsyncResult.AsyncState property of the object returned by this method. 25
 26
[Note: For more information, see System.Net.Sockets.Socket.Receive, the 27
synchronous version of this method. 28
 29
] 30

Exceptions 31
 32
 33

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

 22

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, which 5
uses the System.Net.Sockets.Socket.BeginReceive method, see the 6
System.Net.Sockets.Socket class overview. 7

8

 23

 Socket.BeginReceiveFrom(System.Byte[], 1

System.Int32, System.Int32, 2

System.Net.Sockets.SocketFlags, 3

System.Net.EndPoint&, 4

System.AsyncCallback, System.Object) 5

Method 6

[ILAsm] 7
.method public hidebysig instance class System.IAsyncResult 8
BeginReceiveFrom(class System.Byte[] buffer, int32 offset, int32 size, 9
valuetype System.Net.Sockets.SocketFlags socketFlags, class 10
System.Net.EndPoint& remoteEP, class System.AsyncCallback callback, object 11
state) 12

[C#] 13
public IAsyncResult BeginReceiveFrom(byte[] buffer, int offset, int size, 14
SocketFlags socketFlags, ref EndPoint remoteEP, AsyncCallback callback, 15
object state) 16

Summary 17

Begins an asynchronous operation to receive data from a socket and, for connectionless 18
protocols, store the endpoint associated with the socket that sent the data. 19

Parameters 20
 21
 22

Parameter Description

buffer A System.Byte array to store data received from the socket.

offset
A System.Int32 containing the zero-based position in buffer to begin storing
the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

 24

remoteEP
An instance of a class derived from the System.Net.EndPoint class, which
contains the endpoint associated with the socket that sent the data.

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 1
Return Value 2
 3

A System.IAsyncResult instance that contains information about the asynchronous 4
operation. 5

Description 6

To retrieve the results of the operation and release resources allocated by the 7
System.Net.Sockets.Socket.BeginReceiveFrom method, call the 8
System.Net.Sockets.Socket.EndReceiveFrom method, and specify the 9
System.IAsyncResult object returned by this method. 10
 11
[Note: The System.Net.Sockets.Socket.EndReceiveFrom method should be called 12
exactly once for each call to the System.Net.Sockets.Socket.BeginReceiveFrom 13
method.] 14
 15
 16
 17
If the callback parameter is not null, the method referenced by callback is invoked 18
when the asynchronous operation completes. The System.IAsyncResult object 19
returned by this method is passed as the argument to the method referenced by 20
callback. The method referenced by callback can retrieve the results of the operation by 21
calling the System.Net.Sockets.Socket.EndReceiveFrom method. 22
 23
The state parameter can be any object that the caller wishes to have available for the 24
duration of the asynchronous operation. This object is available via the 25
System.IAsyncResult.AsyncState property of the object returned by this method. 26
 27
[Note: For more information, see System.Net.Sockets.Socket.ReceiveFrom, the 28
synchronous version of this method. 29
 30
] 31

Exceptions 32
 33
 34

Exception Condition

 25

System.ArgumentNullException

buffer is null.

-or-

remoteEP is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

 1
Example 2
 3

 26

For an outline of an asynchronous operation, see the 1
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see 2
System.Net.Sockets.Socket. 3

Permissions 4
 5
 6

Permission Description

System.Net.SocketPermission

Requires permission to accept a connection on the
endpoint defined by the
System.Net.Sockets.Socket.LocalEndPoint property of
the current instance. See
System.Net.NetworkAccess.Accept.

Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 7
 8

9

 27

 Socket.BeginSend(System.Byte[], 1

System.Int32, System.Int32, 2

System.Net.Sockets.SocketFlags, 3

System.AsyncCallback, System.Object) 4

Method 5

[ILAsm] 6
.method public hidebysig instance class System.IAsyncResult 7
BeginSend(class System.Byte[] buffer, int32 offset, int32 size, valuetype 8
System.Net.Sockets.SocketFlags socketFlags, class System.AsyncCallback 9
callback, object state) 10

[C#] 11
public IAsyncResult BeginSend(byte[] buffer, int offset, int size, 12
SocketFlags socketFlags, AsyncCallback callback, object state) 13

Summary 14

Begins an asynchronous operation to send data to a connected socket. 15

Parameters 16
 17
 18

Parameter Description

buffer A System.Byte array storing data to send to the socket.

offset
A System.Int32 containing the zero-based position in buffer containing the
starting location of the data to send.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 28

 1
Return Value 2
 3

A System.IAsyncResult instance that contains information about the asynchronous 4
operation. 5

Description 6

To retrieve the results of the operation and release resources allocated by the 7
System.Net.Sockets.Socket.BeginSend method, call the 8
System.Net.Sockets.Socket.EndSend method, and specify the System.IAsyncResult 9
object returned by this method. 10
 11
[Note: The System.Net.Sockets.Socket.EndSend method should be called exactly once 12
for each call to the System.Net.Sockets.Socket.BeginSend method.] 13
 14
 15
 16
If the callback parameter is not null, the method referenced by callback is invoked 17
when the asynchronous operation completes. The System.IAsyncResult object 18
returned by this method is passed as the argument to the method referenced by 19
callback. The method referenced by callback can retrieve the results of the operation by 20
calling the System.Net.Sockets.Socket.EndSend method. 21
 22
The state parameter can be any object that the caller wishes to have available for the 23
duration of the asynchronous operation. This object is available via the 24
System.IAsyncResult.AsyncState property of the object returned by this method. 25
 26
[Note: For more information, see System.Net.Sockets.Socket.Send, the synchronous 27
version of this method. 28
 29
] 30

Exceptions 31
 32
 33

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

 29

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, which 5
uses the System.Net.Sockets.Socket.BeginSend method, see the 6
System.Net.Sockets.Socket class overview. 7

8

 30

 Socket.BeginSendTo(System.Byte[], 1

System.Int32, System.Int32, 2

System.Net.Sockets.SocketFlags, 3

System.Net.EndPoint, System.AsyncCallback, 4

System.Object) Method 5

[ILAsm] 6
.method public hidebysig instance class System.IAsyncResult 7
BeginSendTo(class System.Byte[] buffer, int32 offset, int32 size, 8
valuetype System.Net.Sockets.SocketFlags socketFlags, class 9
System.Net.EndPoint remoteEP, class System.AsyncCallback callback, object 10
state) 11

[C#] 12
public IAsyncResult BeginSendTo(byte[] buffer, int offset, int size, 13
SocketFlags socketFlags, EndPoint remoteEP, AsyncCallback callback, object 14
state) 15

Summary 16

Begins an asynchronous operation to send data to the socket associated with the 17
specified endpoint. 18

Parameters 19
 20
 21

Parameter Description

buffer A System.Byte array storing data to send to the socket.

offset
A System.Int32 containing the zero-based position in buffer to begin sending
data.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP The System.Net.EndPoint associated with the socket to receive the data.

 31

callback A System.AsyncCallback delegate, or null.

state An application-defined object, or null.

 1
Return Value 2
 3

A System.IAsyncResult instance that contains information about the asynchronous 4
operation. 5

Description 6

To retrieve the results of the operation and release resources allocated by the 7
System.Net.Sockets.Socket.BeginSendTo method, call the 8
System.Net.Sockets.Socket.EndSendTo method, and specify the 9
System.IAsyncResult object returned by this method. 10
 11
[Note: The System.Net.Sockets.Socket.EndSendTo method should be called exactly 12
once for each call to the System.Net.Sockets.Socket.BeginSendTo method.] 13
 14
 15
 16
If the callback parameter is not null, the method referenced by callback is invoked 17
when the asynchronous operation completes. The System.IAsyncResult object 18
returned by this method is passed as the argument to the method referenced by 19
callback. The method referenced by callback can retrieve the results of the operation by 20
calling the System.Net.Sockets.Socket.EndSendTo method. 21
 22
The state parameter can be any object that the caller wishes to have available for the 23
duration of the asynchronous operation. This object is available via the 24
System.IAsyncResult.AsyncState property of the object returned by this method. 25
 26
[Note: For more information, see System.Net.Sockets.Socket.SendTo, the 27
synchronous version of this method. 28
 29
] 30

Exceptions 31
 32
 33

Exception Condition

System.ArgumentNullException
buffer is null.

-or-

 32

remoteEP is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the 5
System.Net.Sockets.Socket class overview. 6

 33

Permissions 1
 2
 3

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 4
 5

6

 34

 Socket.Bind(System.Net.EndPoint) Method 1

[ILAsm] 2
.method public hidebysig instance void Bind(class System.Net.EndPoint 3
localEP) 4

[C#] 5
public void Bind(EndPoint localEP) 6

Summary 7

Associates the current instance with a local endpoint. 8

Parameters 9
 10
 11

Parameter Description

localEP The local System.Net.EndPoint to be associated with the socket.

 12
Description 13

This method sets the System.Net.Sockets.Socket.LocalEndPoint property of the 14
current instance to localEP. 15
 16
[Note: For connection-oriented protocols, this method is generally used only on the 17
server-side and is required to be called before the first call to the 18
System.Net.Sockets.Socket.Listen method. On the client-side, binding is usually 19
performed implicitly by the System.Net.Sockets.Socket.Connect method. 20
 21
For connectionless protocols, the 22
System.Net.Sockets.Socket.ConnectSystem.Net.Sockets.Socket.SendTo, and 23
System.Net.Sockets.Socket.BeginSendTo methods bind the current instance to the 24
local endpoint if the current instance has not previously been bound. 25
 26
] 27

Exceptions 28
 29
 30

Exception Condition

System.ArgumentNullException localEP is null.

 35

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permission.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission
Requires permission to accept connections on the
endpoint defined by localEP. See
System.Net.NetworkAccess.Accept.

 5
 6

7

 36

 Socket.Close() Method 1

[ILAsm] 2
.method public hidebysig instance void Close() 3

[C#] 4
public void Close() 5

Summary 6

Closes the current instance and releases all managed and unmanaged resources 7
allocated by the current instance. 8

Description 9

This method calls the System.Net.Sockets.Socket.Dispose(System.Boolean) method 10
with the argument set to true, which frees both managed and unmanaged resources 11
used by the current instance. 12
 13
The socket attempts to perform a graceful closure when the 14
System.Net.Sockets.SocketOptionName.Linger socket option is enabled and set to a 15
non-zero linger time. In all other cases, closure is forced and any pending data is lost. 16

17

 37

 Socket.Connect(System.Net.EndPoint) 1

Method 2

[ILAsm] 3
.method public hidebysig instance void Connect(class System.Net.EndPoint 4
remoteEP) 5

[C#] 6
public void Connect(EndPoint remoteEP) 7

Summary 8

Associates the current instance with a remote endpoint. 9

Parameters 10
 11
 12

Parameter Description

remoteEP The System.Net.EndPoint associated with the socket to connect to.

 13
Description 14

This method sets the System.Net.Sockets.Socket.RemoteEndPoint property of the 15
current instance to remoteEP. 16
 17
[Note: For connection-oriented protocols, this method establishes a connection between 18
the current instance and the socket associated with remoteEP. This method is used only 19
on the client-side. The System.Net.Sockets.Socket.Accept method establishes the 20
connection on the server-side. Once the connection has been made, data can be sent 21
using the System.Net.Sockets.Socket.Send method, and received using the 22
System.Net.Sockets.Socket.Receive method. 23
 24
For connectionless protocols, the System.Net.Sockets.Socket.Connect method can be 25
used from both client and server-sides, allowing the use of the 26
System.Net.Sockets.Socket.Send method instead of the 27
System.Net.Sockets.Socket.SendTo method. The 28
System.Net.Sockets.Socket.RemoteEndPoint property is set to remoteEP and the 29
System.Net.Sockets.Socket.LocalEndPoint property is set to a value determined by 30
the protocol; however, a connection is not established. Subsequent data is required to 31
be received on the endpoint set in the System.Net.Sockets.Socket.LocalEndPoint 32
property. 33
 34
] 35

 38

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permission.

 4
Permissions 5
 6
 7

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 8
 9

10

 39

 Socket.Dispose(System.Boolean) Method 1

[ILAsm] 2
.method family hidebysig virtual void Dispose(bool disposing) 3

[C#] 4
protected virtual void Dispose(bool disposing) 5

Summary 6

Closes the current instance, releases the unmanaged resources allocated by the current 7
instance, and optionally releases the managed resources. 8

Parameters 9
 10
 11

Parameter Description

disposing
A System.Boolean. Specify true to release both managed and unmanaged
resources; false to release only unmanaged resources.

 12
 13

Behaviors 14

This method closes the current System.Net.Sockets.Socket instance and releases all 15
unmanaged resources allocated by the current instance. When disposing is true, this 16
method also releases all resources held by any managed objects allocated by the current 17
instance. 18

 19

Default 20

This method closes the current System.Net.Sockets.Socket instance but does not 21
release any managed resources. 22

 23

How and When to Override 24

The System.Net.Sockets.Socket.Dispose method can be called multiple times by 25
other objects. When overriding this method, do not reference objects that have been 26
previously disposed in an earlier call. 27

 40

 1

Usage 2

Use this method to release resources allocated by the current instance. 3

 4

5

 41

 Socket.EndAccept(System.IAsyncResult) 1

Method 2

[ILAsm] 3
.method public hidebysig instance class System.Net.Sockets.Socket 4
EndAccept(class System.IAsyncResult asyncResult) 5

[C#] 6
public Socket EndAccept(IAsyncResult asyncResult) 7

Summary 8

Ends an asynchronous call to accept an incoming connection request. 9

Parameters 10
 11
 12

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

 13
Return Value 14
 15

A new connected System.Net.Sockets.Socket instance. 16

Description 17

This method blocks if the asynchronous operation has not completed. 18
 19
The System.Net.Sockets.Socket.EndAccept method completes an asynchronous 20
request that was started with a call to the System.Net.Sockets.Socket.BeginAccept 21
method. The object specified for the asyncResult parameter is required to be the same 22
object as was returned by the System.Net.Sockets.Socket.BeginAccept method call 23
that began the request. 24
 25
If the System.Net.Sockets.Socket.EndAccept method is invoked via the 26
System.AsyncCallback delegate specified to the 27
System.Net.Sockets.Socket.BeginAccept method, the asyncResult parameter is the 28
System.IAsyncResult argument passed to the delegate's method. 29

Exceptions 30
 31
 32

 42

Exception Condition

System.ArgumentNullException asyncResult is null.

System.ArgumentException

asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginAccept
method.

System.InvalidOperationException
System.Net.Sockets.Socket.EndAccept was
previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation. [Note: For
additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, which 5
uses the System.Net.Sockets.Socket.EndAccept method, see the 6
System.Net.Sockets.Socket class overview. 7

8

 43

 Socket.EndConnect(System.IAsyncResult) 1

Method 2

[ILAsm] 3
.method public hidebysig instance void EndConnect(class 4
System.IAsyncResult asyncResult) 5

[C#] 6
public void EndConnect(IAsyncResult asyncResult) 7

Summary 8

Ends an asynchronous call to associate the current instance with a remote endpoint. 9

Parameters 10
 11
 12

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

 13
Description 14

This method blocks if the asynchronous operation has not completed. 15
 16
The System.Net.Sockets.Socket.EndConnect method completes an asynchronous 17
request that was started with a call to the System.Net.Sockets.Socket.BeginConnect 18
method. The object specified for the asyncResult parameter is required to be the same 19
object as was returned by the System.Net.Sockets.Socket.BeginConnect method call 20
that began the request. 21
 22
If the System.Net.Sockets.Socket.EndConnect method is invoked via the 23
System.AsyncCallback delegate specified to the 24
System.Net.Sockets.Socket.BeginConnect method, the asyncResult parameter is the 25
System.IAsyncResult argument passed to the delegate's method. 26

Exceptions 27
 28
 29

Exception Condition

System.ArgumentNullException asyncResult is null.

 44

System.ArgumentException

asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginConnect
method.

System.InvalidOperationException
System.Net.Sockets.Socket.EndConnect was
previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation. [Note: For
additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, which 5
uses the System.Net.Sockets.Socket.EndConnect method, see the 6
System.Net.Sockets.Socket class overview. 7

8

 45

 Socket.EndReceive(System.IAsyncResult) 1

Method 2

[ILAsm] 3
.method public hidebysig instance int32 EndReceive(class 4
System.IAsyncResult asyncResult) 5

[C#] 6
public int EndReceive(IAsyncResult asyncResult) 7

Summary 8

Ends an asynchronous call to receive data from a socket. 9

Parameters 10
 11
 12

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes received. 16

Description 17

This method blocks if the asynchronous operation has not completed. 18
 19
The System.Net.Sockets.Socket.EndReceive method completes an asynchronous 20
request that was started with a call to the System.Net.Sockets.Socket.BeginReceive 21
method. The object specified for the asyncResult parameter is required to be the same 22
object as was returned by the System.Net.Sockets.Socket.BeginReceive method call 23
that began the request. 24
 25
If the System.Net.Sockets.Socket.EndReceive method is invoked via the 26
System.AsyncCallback delegate specified to the 27
System.Net.Sockets.Socket.BeginReceive method, the asyncResult parameter is the 28
System.IAsyncResult argument passed to the delegate's method. 29

Exceptions 30
 31
 32

 46

Exception Condition

System.ArgumentNullException asyncResult is null.

System.ArgumentException

asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginReceive
method.

System.InvalidOperationException
System.Net.Sockets.Socket.EndReceive was
previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation. [Note: For
additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, which 5
uses the System.Net.Sockets.Socket.EndReceive method, see the 6
System.Net.Sockets.Socket class overview. 7

8

 47

 1

Socket.EndReceiveFrom(System.IAsyncResult2

, System.Net.EndPoint&) Method 3

[ILAsm] 4
.method public hidebysig instance int32 EndReceiveFrom(class 5
System.IAsyncResult asyncResult, class System.Net.EndPoint& endPoint) 6

[C#] 7
public int EndReceiveFrom(IAsyncResult asyncResult, ref EndPoint endPoint) 8

Summary 9

Ends an asynchronous call to receive data from a socket and store the endpoint 10
associated with the socket that sent the data. 11

Parameters 12
 13
 14

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

endPoint
A reference to the System.Net.EndPoint associated with the socket that sent
the data.

 15
Return Value 16
 17

A System.Int32 containing the number of bytes received. 18

Description 19

This method blocks if the asynchronous operation has not completed. 20
 21
The System.Net.Sockets.Socket.EndReceiveFrom method completes an asynchronous 22
request that was started with a call to the 23
System.Net.Sockets.Socket.BeginReceiveFrom method. The object specified for the 24
asyncResult parameter is required to be the same object as was returned by the 25
System.Net.Sockets.Socket.BeginReceiveFrom method call that began the request. 26
 27
If the System.Net.Sockets.Socket.EndReceiveFrom method is invoked via the 28
System.AsyncCallback delegate specified to the 29

 48

System.Net.Sockets.Socket.BeginReceiveFrom method, the asyncResult parameter is 1
the System.IAsyncResult argument passed to the delegate's method. 2

Exceptions 3
 4
 5

Exception Condition

System.ArgumentNullException asyncResult is null.

System.ArgumentException

asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginReceiveFrom
method.

System.InvalidOperationException
System.Net.Sockets.Socket.EndReceiveFrom
was previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation. [Note: For
additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 6
Example 7
 8

For an outline of an asynchronous operation, see the 9
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the 10
System.Net.Sockets.Socket class overview. 11

12

 49

 Socket.EndSend(System.IAsyncResult) 1

Method 2

[ILAsm] 3
.method public hidebysig instance int32 EndSend(class System.IAsyncResult 4
asyncResult) 5

[C#] 6
public int EndSend(IAsyncResult asyncResult) 7

Summary 8

Ends an asynchronous call to send data to a connected socket. 9

Parameters 10
 11
 12

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes sent. 16

Description 17

This method blocks if the asynchronous operation has not completed. 18
 19
The System.Net.Sockets.Socket.EndSend method completes an asynchronous request 20
that was started with a call to the System.Net.Sockets.Socket.BeginSend method. 21
The object specified for the asyncResult parameter is required to be the same object as 22
was returned by the System.Net.Sockets.Socket.BeginSend method call that began 23
the request. 24
 25
If the System.Net.Sockets.Socket.EndSend method is invoked via the 26
System.AsyncCallback delegate specified to the 27
System.Net.Sockets.Socket.BeginSend method, the asyncResult parameter is the 28
System.IAsyncResult argument passed to the delegate's method. 29

Exceptions 30
 31
 32

 50

Exception Condition

System.ArgumentNullException asyncResult is null.

System.ArgumentException

asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginSend
method.

System.InvalidOperationException
System.Net.Sockets.Socket.EndSend was
previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation. [Note: For
additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, which 5
uses the System.Net.Sockets.Socket.EndSend method, see the 6
System.Net.Sockets.Socket class overview. 7

8

 51

 Socket.EndSendTo(System.IAsyncResult) 1

Method 2

[ILAsm] 3
.method public hidebysig instance int32 EndSendTo(class 4
System.IAsyncResult asyncResult) 5

[C#] 6
public int EndSendTo(IAsyncResult asyncResult) 7

Summary 8

Ends an asynchronous call to send data to a socket associated with a specified endpoint. 9

Parameters 10
 11
 12

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes sent. 16

Description 17

This method blocks if the asynchronous operation has not completed. 18
 19
The System.Net.Sockets.Socket.EndSendTo method completes an asynchronous 20
request that was started with a call to the System.Net.Sockets.Socket.BeginSendTo 21
method. The object specified for the asyncResult parameter is required to be the same 22
object as was returned by the System.Net.Sockets.Socket.BeginSendTo method call 23
that began the request. 24
 25
If the System.Net.Sockets.Socket.EndSendTo method is invoked via the 26
System.AsyncCallback delegate specified to the 27
System.Net.Sockets.Socket.BeginSendTo method, the asyncResult parameter is the 28
System.IAsyncResult argument passed to the delegate's method. 29

Exceptions 30
 31
 32

 52

Exception Condition

System.ArgumentNullException asyncResult is null.

System.ArgumentException
asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.SendTo method.

System.InvalidOperationException
System.Net.Sockets.Socket.EndSendTo was
previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation. [Note: For
additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Example 2
 3

For an outline of an asynchronous operation, see the 4
System.Net.Sockets.Socket.BeginAccept method. For the complete example, see the 5
System.Net.Sockets.Socket class overview. 6

7

 53

 Socket.Finalize() Method 1

[ILAsm] 2
.method family hidebysig virtual void Finalize() 3

[C#] 4
~Socket() 5

Summary 6

Closes the current instance and releases unmanaged resources allocated by the current 7
instance. 8

Description 9

[Note: Application code does not call this method; it is automatically invoked during 10
garbage collection unless finalization by the garbage collector has been disabled. For 11
more information, see System.GC.SuppressFinalize, and System.Object.Finalize. 12
 13
This method calls System.Net.Sockets.NetworkStream.Dispose(false) to free 14
unmanaged resources used by the current instance. 15
 16
This method overrides System.Object.Finalize. 17
 18
] 19

20

 54

 Socket.GetHashCode() Method 1

[ILAsm] 2
.method public hidebysig virtual int32 GetHashCode() 3

[C#] 4
public override int GetHashCode() 5

Summary 6

Generates a hash code for the current instance. 7

Return Value 8
 9

A System.Int32 containing the hash code for the current instance. 10

Description 11

The algorithm used to generate the hash code is unspecified. 12
 13
[Note: This method overrides System.Object.GetHashCode.] 14
 15
 16

17

 55

 1

Socket.GetSocketOption(System.Net.Sockets.2

SocketOptionLevel, 3

System.Net.Sockets.SocketOptionName) 4

Method 5

[ILAsm] 6
.method public hidebysig instance object GetSocketOption(valuetype 7
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype 8
System.Net.Sockets.SocketOptionName optionName) 9

[C#] 10
public object GetSocketOption(SocketOptionLevel optionLevel, 11
SocketOptionName optionName) 12

Summary 13

Retrieves an object containing the value of the specified socket option. 14

Parameters 15
 16
 17

Parameter Description

optionLevel
One of the values defined in the System.Net.Sockets.SocketOptionLevel
enumeration.

optionName
One of the values defined in the System.Net.Sockets.SocketOptionName
enumeration.

 18
Return Value 19
 20

The following table describes the values returned by this method. 21

optionName Return value

Linger An instance of the
System.Net.Sockets.LingerOption class.

AddMembership

-or-

An instance of the
System.Net.Sockets.MulticastOption

 56

DropMembership

class.

All other values defined in the
System.Net.Sockets.SocketOptionName
enumeration.

A System.Int32 containing the value of the
option.

 1

Description 2

Socket options determine the behavior of the current instance. 3
 4
optionLevel and optionName are not independent. See the 5
System.Net.Sockets.Socket.SetSocketOption(SocketOptionLevel, 6
SocketOptionName, Int32) method for a listing of the values of the 7
System.Net.Sockets.SocketOptionName enumeration grouped by 8
System.Net.Sockets.SocketOptionLevel. 9

Exceptions 10
 11
 12

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 13
Example 14
 15

The following example gets the state of the linger option and the size of the receive 16
buffer, changes the values of both, then gets the new values. 17
 18
[C#] 19

using System; 20
using System.Net.Sockets; 21
 22

 57

class OptionTest{ 1
 2
 public static void Main() { 3
 4
 // Get the current option values. 5
 Socket someSocket = 6
 new Socket(AddressFamily.InterNetwork, 7
 SocketType.Stream, 8
 ProtocolType.Tcp); 9
 10
 LingerOption lingerOp = 11
 (LingerOption)someSocket.GetSocketOption(12
 SocketOptionLevel.Socket, 13
 SocketOptionName.Linger); 14
 15
 int receiveBuffer = 16
 (int)someSocket.GetSocketOption(17
 SocketOptionLevel.Socket, 18
 SocketOptionName.ReceiveBuffer); 19
 20
 Console.WriteLine(21
 "Linger option is {0} and set to {1} seconds.", 22
 lingerOp.Enabled.ToString(), 23
 lingerOp.LingerTime.ToString()); 24
 25
 Console.WriteLine(26
 "Size of the receive buffer is {0} bytes.", 27
 receiveBuffer.ToString()); 28
 29
 // Change the options. 30
 lingerOp = new LingerOption(true, 10); 31
 someSocket.SetSocketOption(32
 SocketOptionLevel.Socket, 33
 SocketOptionName.Linger, 34
 lingerOp); 35
 36
 someSocket.SetSocketOption(37
 SocketOptionLevel.Socket, 38
 SocketOptionName.ReceiveBuffer, 39
 2048); 40
 41
 Console.WriteLine(42
 "The SetSocketOption method has been called."); 43
 44
 // Get the new option values. 45
 lingerOp = 46
 (LingerOption)someSocket.GetSocketOption(47
 SocketOptionLevel.Socket, 48
 SocketOptionName.Linger); 49
 50
 receiveBuffer = 51
 (int)someSocket.GetSocketOption(52
 SocketOptionLevel.Socket, 53
 SocketOptionName.ReceiveBuffer); 54
 55
 Console.WriteLine(56
 "Linger option is now {0} and set to {1} seconds.", 57

 58

 lingerOp.Enabled.ToString(), 1
 lingerOp.LingerTime.ToString()); 2
 3
 Console.WriteLine(4
 "Size of the receive buffer is now {0} bytes.", 5
 receiveBuffer.ToString()); 6
 } 7
} 8
 9
The output is 10
 11
Linger option is False and set to 0 seconds. 12
 13
 14
Size of the receive buffer is 8192 bytes. 15
 16
 17
The SetSocketOption method has been called. 18
 19
 20
Linger option is now True and set to 10 seconds. 21
 22
 23
Size of the receive buffer is now 2048 bytes. 24
 25

26

 59

 1

Socket.GetSocketOption(System.Net.Sockets.2

SocketOptionLevel, 3

System.Net.Sockets.SocketOptionName, 4

System.Byte[]) Method 5

[ILAsm] 6
.method public hidebysig instance void GetSocketOption(valuetype 7
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype 8
System.Net.Sockets.SocketOptionName optionName, class System.Byte[] 9
optionValue) 10

[C#] 11
public void GetSocketOption(SocketOptionLevel optionLevel, 12
SocketOptionName optionName, byte[] optionValue) 13

Summary 14

Retrieves the value of the specified socket option. 15

Parameters 16
 17
 18

Parameter Description

optionLevel
One of the values defined in the System.Net.Sockets.SocketOptionLevel
enumeration.

optionName
One of the values defined in the System.Net.Sockets.SocketOptionName
enumeration.

optionValue A System.Byte array that receives the value of the specified socket option.

 19
Description 20

Socket options determine the behavior of the current instance. 21
 22
Upon successful completion, the array specified by the optionValue parameter contains 23
the value of the specified socket option. 24
 25
When the length of the optionValue array is smaller than the number of bytes required 26
to store the value of the specified socket option, a 27
System.Net.Sockets.SocketException exception is thrown. 28

 60

Exceptions 1
 2
 3

Exception Condition

System.Net.Sockets.SocketException

optionValue is too small to store the value of the
specified socket option.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 4
 5

6

 61

 1

Socket.GetSocketOption(System.Net.Sockets.2

SocketOptionLevel, 3

System.Net.Sockets.SocketOptionName, 4

System.Int32) Method 5

[ILAsm] 6
.method public hidebysig instance class System.Byte[] 7
GetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel 8
optionLevel, valuetype System.Net.Sockets.SocketOptionName optionName, 9
int32 optionLength) 10

[C#] 11
public byte[] GetSocketOption(SocketOptionLevel optionLevel, 12
SocketOptionName optionName, int optionLength) 13

Summary 14

Retrieves the value of the specified socket option. 15

Parameters 16
 17
 18

Parameter Description

optionLevel
One of the values defined in the System.Net.Sockets.SocketOptionLevel
enumeration.

optionName
One of the values defined in the System.Net.Sockets.SocketOptionName
enumeration.

optionLength
A System.Int32 containing the maximum length, in bytes, of the value of the
specified socket option.

 19
Return Value 20
 21

A System.Byte array containing the value of the specified socket option. 22

Description 23

Socket options determine the behavior of the current instance. 24
 25

 62

The optionLength parameter is used to allocate an array to store the value of the 1
specified option. When this value is smaller than the number of bytes required to store 2
the value of the specified option, a System.Net.Sockets.SocketException exception is 3
thrown. When this value is greater than or equal to the number of bytes required to 4
store the value of the specified option, the array returned by this method is allocated to 5
be exactly the required length. 6

Exceptions 7
 8
 9

Exception Condition

System.Net.Sockets.SocketException

optionLength is smaller than the number of bytes
required to store the value of the specified socket
option.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 10
 11

12

 63

 Socket.IOControl(System.Int32, 1

System.Byte[], System.Byte[]) Method 2

[ILAsm] 3
.method public hidebysig instance int32 IOControl(int32 ioControlCode, 4
class System.Byte[] optionInValue, class System.Byte[] optionOutValue) 5

[C#] 6
public int IOControl(int ioControlCode, byte[] optionInValue, byte[] 7
optionOutValue) 8

Summary 9

Provides low-level access to the socket, the transport protocol, or the communications 10
subsystem. 11

Parameters 12
 13
 14

Parameter Description

ioControlCode A System.Int32 containing the control code of the operation to perform.

optionInValue A System.Byte array containing the input data required by the operation.

optionOutValue A System.Byte array containing the output data supplied by the operation.

 15
Return Value 16
 17

A System.Int32 containing the length of the optionOutValue array after the method 18
returns. 19

Description 20

If an attempt is made to change the blocking mode of the current instance, an exception 21
is thrown. Use the System.Net.Sockets.Socket.Blocking property to change the 22
blocking mode. 23
 24
The control codes and their requirements are implementation defined. Do not use this 25
method if platform independence is a requirement. 26
 27
[Note: Input data is not required for all control codes. Output data is not supplied by all 28
control codes and, if not supplied, the return value is 0.] 29

 64

 1
 2

Exceptions 3
 4
 5

Exception Condition

System.InvalidOperationException

An attempt was made to change the blocking
mode.

[Note: Use the
System.Net.Sockets.Socket.Blocking property
to change the blocking mode.

]

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

 6
Example 7
 8

The following example gets the number of bytes of available data to be read and writes 9
the result to the console on a Windows system. The remote endpoint (remoteEndpoint) 10
to connect to might need to be changed to a value that is valid on the current system. 11
 12
[C#] 13

using System; 14
using System.Net; 15
using System.Net.Sockets; 16
 17
class App { 18
 19
 static void Main() { 20
 21

 65

 IPAddress remoteAddress = 1
 Dns.Resolve(Dns.GetHostName()).AddressList[0]; 2
 3
 IPEndPoint remoteEndpoint = 4
 new IPEndPoint(remoteAddress, 80); 5
 6
 Socket someSocket = 7
 new Socket(AddressFamily.InterNetwork, 8
 SocketType.Stream, 9
 ProtocolType.Tcp); 10
 11
 someSocket.Connect(remoteEndpoint); 12
 13
 int fionRead = 0x4004667F; 14
 byte[]inValue = {0x00, 0x00, 0x00, 0x00}; 15
 byte[]outValue = {0x00, 0x00, 0x00, 0x00}; 16
 17
 someSocket.IOControl(fionRead, inValue, outValue); 18
 19
 uint bytesAvail = BitConverter.ToUInt32(outValue, 0); 20
 21
 Console.WriteLine(22
 "There are {0} bytes available to be read.", 23
 bytesAvail.ToString()); 24
 } 25
} 26
 27
The output is 28
 29
There are 0 bytes available to be read. 30
 31

Permissions 32
 33
 34

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode.

 35
 36

37

 66

 Socket.Listen(System.Int32) Method 1

[ILAsm] 2
.method public hidebysig instance void Listen(int32 backlog) 3

[C#] 4
public void Listen(int backlog) 5

Summary 6

Places the current instance into the listening state where it waits for incoming 7
connection requests. 8

Parameters 9
 10
 11

Parameter Description

backlog
A System.Int32 containing the maximum length of the queue of pending
connections.

 12
Description 13

Once this method is called, incoming connection requests are placed in a queue. The 14
maximum size of the queue is specified by the backlog parameter. The size of the queue 15
is limited to legal values by the underlying protocol. Illegal values of the backlog 16
parameter are replaced with a legal value, which is implementation defined. 17
 18
If a connection request arrives and the queue is full, a 19
System.Net.Sockets.SocketException is thrown on the client. 20
 21
A socket in the listening state has no remote endpoint associated with it. Attempting to 22
access the System.Net.Sockets.Socket.RemoteEndPoint property throws a 23
System.Net.Sockets.SocketException exception. 24
 25
This method is ignored if called more than once on the current instance. 26
 27
[Note: This method is used only on the server-side of connection-oriented protocols. Call 28
the System.Net.Sockets.Socket.Bind method before this method is called the first 29
time. Call the System.Net.Sockets.Socket.Listen method before the first call to the 30
System.Net.Sockets.Socket.Accept method. 31
 32
] 33

 67

Exceptions 1
 2
 3

Exception Condition

System.Net.Sockets.SocketException

The System.Net.Sockets.Socket.Connected
property of the current instance is true.-or-

Bind has not been called on the current instance.-
or-

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 4
 5

6

 68

 Socket.Poll(System.Int32, 1

System.Net.Sockets.SelectMode) Method 2

[ILAsm] 3
.method public hidebysig instance bool Poll(int32 microSeconds, valuetype 4
System.Net.Sockets.SelectMode mode) 5

[C#] 6
public bool Poll(int microSeconds, SelectMode mode) 7

Summary 8

Determines the read, write, or error status of the current instance. 9

Parameters 10
 11
 12

Parameter Description

microSeconds
A System.Int32 containing the time to wait for a response, in microseconds.
Set the microSeconds parameter to a negative value to wait indefinitely for a
response.

mode
One of the values defined in the System.Net.Sockets.SelectMode
enumeration.

 13
Return Value 14
 15

A System.Boolean where true indicates the current instance satisfies at least one of the 16
conditions in the following table corresponding to the specified 17
System.Net.Sockets.SelectMode value; otherwise, false. false is returned if the 18
status of the current instance cannot be determined within the time specified by 19
microSeconds. 20

SelectMode
value Condition

SelectRead

Data is available for reading (includes out-of-band data if the
System.Net.Sockets.SocketOptionName.OutOfBandInline value defined in
the System.Net.Sockets.SocketOptionName enumeration is set).

-or-

 69

The socket is in the listening state with a pending connection, and the
System.Net.Sockets.Socket.Accept method has been called and is
guaranteed to succeed without blocking.

-or-

The connection has been closed, reset, or terminated.

SelectWrite

Data can be sent.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being
processed and the connection has succeeded.

SelectError

The System.Net.Sockets.SocketOptionName.OutOfBandInline value
defined in the System.Net.Sockets.SocketOptionName enumeration is not
set and out-of-band data is available.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being
processed and the connection has failed.

 1

Exceptions 2
 3
 4

Exception Condition

System.NotSupportedException
mode is not one of the values defined in the
System.Net.Sockets.SelectMode enumeration.

System.Net.Sockets.SocketException

An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

 70

System.ObjectDisposedException The current instance has been disposed.

 1
 2

3

 71

 Socket.Receive(System.Byte[], 1

System.Int32, 2

System.Net.Sockets.SocketFlags) Method 3

[ILAsm] 4
.method public hidebysig instance int32 Receive(class System.Byte[] 5
buffer, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags) 6

[C#] 7
public int Receive(byte[] buffer, int size, SocketFlags socketFlags) 8

Summary 9

Receives data from a socket. 10

Parameters 11
 12
 13

Parameter Description

buffer A System.Byte array to store data received from the socket.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

 14
Return Value 15
 16

A System.Int32 containing the number of bytes received. 17

Description 18

This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0, size, 19
socketFlags). 20

Exceptions 21
 22
 23

 72

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

size < 0.

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission
Requires permission to accept connections. See
System.Net.NetworkAccess.Accept.

 5
 6

 73

1

 74

 Socket.Receive(System.Byte[], 1

System.Net.Sockets.SocketFlags) Method 2

[ILAsm] 3
.method public hidebysig instance int32 Receive(class System.Byte[] 4
buffer, valuetype System.Net.Sockets.SocketFlags socketFlags) 5

[C#] 6
public int Receive(byte[] buffer, SocketFlags socketFlags) 7

Summary 8

Receives data from a socket. 9

Parameters 10
 11
 12

Parameter Description

buffer A System.Byte array to store data received from the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes received. 16

Description 17

This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0, 18
buffer.Length, socketFlags). 19

Exceptions 20
 21
 22

Exception Condition

 75

System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission
Requires permission to accept connections. [Note: See
System.Net.NetworkAccess.Accept.]

 5
 6

7

 76

 Socket.Receive(System.Byte[], 1

System.Int32, System.Int32, 2

System.Net.Sockets.SocketFlags) Method 3

[ILAsm] 4
.method public hidebysig instance int32 Receive(class System.Byte[] 5
buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags 6
socketFlags) 7

[C#] 8
public int Receive(byte[] buffer, int offset, int size, SocketFlags 9
socketFlags) 10

Summary 11

Receives data from a socket. 12

Parameters 13
 14
 15

Parameter Description

buffer A System.Byte array to store data received from the socket.

offset
A System.Int32 containing the zero-based position in buffer to begin storing
the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

 16
Return Value 17
 18

A System.Int32 containing the number of bytes received. 19

Description 20

 77

The System.Net.Sockets.Socket.LocalEndPoint property is required to be set before 1
this method is called. 2
 3
The System.Net.Sockets.Socket.Blocking property of the socket determines the 4
behavior of this method when no incoming data is available. When false, the 5
System.Net.Sockets.SocketException exception is thrown. When true, this method 6
blocks and waits for data to arrive. 7
 8
For System.Net.Sockets.SocketType.Stream socket types, if the remote socket was 9
shut down gracefully, and all data was received, this method immediately returns zero, 10
regardless of the blocking state. 11
 12
For message-oriented sockets, if the message is larger than the size of buffer, the buffer 13
is filled with the first part of the message, and the 14
System.Net.Sockets.SocketException exception is thrown. For unreliable protocols, 15
the excess data is lost; for reliable protocols, the data is retained by the service 16
provider. 17
 18
When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of the 19
socketFlags parameter and the socket is configured for in-line reception of out-of-band 20
(OOB) data (using the System.Net.Sockets.SocketOptionName.OutOfBandInline 21
socket option) and OOB data is available, only OOB data is returned. 22
 23
When the System.Net.Sockets.SocketFlags.Peek flag is specified as part of the 24
socketFlags parameter, available data is copied into buffer but is not removed from the 25
system buffer. 26

Exceptions 27
 28
 29

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

 78

size > buffer.Length - offset.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

The
System.Net.Sockets.Socket.LocalEndPoint
property was not set.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission

Requires permission to accept a connection on the
endpoint defined by the
System.Net.Sockets.Socket.LocalEndPoint property of
the current instance. See
System.Net.NetworkAccess.Accept.

 79

 1
 2

3

 80

 Socket.Receive(System.Byte[]) Method 1

[ILAsm] 2
.method public hidebysig instance int32 Receive(class System.Byte[] 3
buffer) 4

[C#] 5
public int Receive(byte[] buffer) 6

Summary 7

Receives data from a socket. 8

Parameters 9
 10
 11

Parameter Description

buffer A System.Byte array to store data received from the socket.

 12
Return Value 13
 14

A System.Int32 containing the number of bytes received. 15

Description 16

This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0, 17
buffer.Length, System.Net.Sockets.SocketFlags.None). 18

Exceptions 19
 20
 21

Exception Condition

System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException
An error occurred while accessing the socket.

[Note: For additional information on causes of the

 81

SocketException, see the
System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission
Requires permission to accept connections. See
System.Net.NetworkAccess.Accept.

 5
 6

7

 82

 Socket.ReceiveFrom(System.Byte[], 1

System.Net.EndPoint&) Method 2

[ILAsm] 3
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] 4
buffer, class System.Net.EndPoint& remoteEP) 5

[C#] 6
public int ReceiveFrom(byte[] buffer, ref EndPoint remoteEP) 7

Summary 8

Receives data from a socket and, for connectionless protocols, stores the endpoint 9
associated with the socket that sent the data. 10

Parameters 11
 12
 13

Parameter Description

buffer A System.Byte array to store data received from the socket.

remoteEP
A reference to the System.Net.EndPoint associated with the socket that sent
the data.

 14
Return Value 15
 16

A System.Int32 containing the number of bytes received. 17

Description 18

This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer, 0, 19
buffer.Length, System.Net.Sockets.SocketFlags.None, remoteEP). 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

 83

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission
Requires permission to accept connections from the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Accept.

 5
 6

7

 84

 Socket.ReceiveFrom(System.Byte[], 1

System.Net.Sockets.SocketFlags, 2

System.Net.EndPoint&) Method 3

[ILAsm] 4
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] 5
buffer, valuetype System.Net.Sockets.SocketFlags socketFlags, class 6
System.Net.EndPoint& remoteEP) 7

[C#] 8
public int ReceiveFrom(byte[] buffer, SocketFlags socketFlags, ref 9
EndPoint remoteEP) 10

Summary 11

Receives data from a socket and, for connectionless protocols, stores the endpoint 12
associated with the socket that sent the data. 13

Parameters 14
 15
 16

Parameter Description

buffer A System.Byte array to store data received from the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

remoteEP
A reference to the System.Net.EndPoint associated with the socket that sent
the data.

 17
Return Value 18
 19

A System.Int32 containing the number of bytes received. 20

Description 21

This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer, 0, 22
buffer.Length, socketFlags, remoteEP). 23

 85

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags specified an invalid value.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 4
Permissions 5
 6
 7

Permission Description

System.Net.SocketPermission
Requires permission to accept connections from the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Accept.

 8
 9

10

 86

 Socket.ReceiveFrom(System.Byte[], 1

System.Int32, 2

System.Net.Sockets.SocketFlags, 3

System.Net.EndPoint&) Method 4

[ILAsm] 5
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] 6
buffer, int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, 7
class System.Net.EndPoint& remoteEP) 8

[C#] 9
public int ReceiveFrom(byte[] buffer, int size, SocketFlags socketFlags, 10
ref EndPoint remoteEP) 11

Summary 12

Receives data from a socket and, for connectionless protocols, stores the endpoint 13
associated with the socket that sent the data. 14

Parameters 15
 16
 17

Parameter Description

buffer A System.Byte array to store data received from the socket.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

remoteEP
A reference to the System.Net.EndPoint associated with the socket that sent
the data.

 18
Return Value 19
 20

A System.Int32 containing the number of bytes received. 21

Description 22

 87

This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer, 0, size, 1
socketFlags, remoteEP). 2

Exceptions 3
 4
 5

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException

size < 0.

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 6
Permissions 7
 8
 9

 88

Permission Description

System.Net.SocketPermission
Requires permission to accept connections from the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Accept.

 1
 2

3

 89

 Socket.ReceiveFrom(System.Byte[], 1

System.Int32, System.Int32, 2

System.Net.Sockets.SocketFlags, 3

System.Net.EndPoint&) Method 4

[ILAsm] 5
.method public hidebysig instance int32 ReceiveFrom(class System.Byte[] 6
buffer, int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags 7
socketFlags, class System.Net.EndPoint& remoteEP) 8

[C#] 9
public int ReceiveFrom(byte[] buffer, int offset, int size, SocketFlags 10
socketFlags, ref EndPoint remoteEP) 11

Summary 12

Receives data from a socket and, for connectionless protocols, stores the endpoint 13
associated with the socket that sent the data. 14

Parameters 15
 16
 17

Parameter Description

buffer A System.Byte array to store data received from the socket.

offset
A System.Int32 containing the zero-based position in buffer to begin storing
the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

remoteEP
A reference to the System.Net.EndPoint associated with the socket that sent
the data.

 18
Return Value 19
 20

 90

A System.Int32 containing the number of bytes received. 1

Description 2

For connectionless protocols, when this method successfully completes, remoteEP 3
contains the endpoint associated with the socket that sent the data. 4
 5
For connection-oriented protocols, remoteEP is left unchanged. 6
 7
The System.Net.Sockets.Socket.LocalEndPoint property is required to be set before 8
this method is called or a System.Net.Sockets.SocketException is thrown. 9
 10
The System.Net.Sockets.Socket.Blocking property of the socket determines the 11
behavior of this method when no incoming data is available. When false, the 12
System.Net.Sockets.SocketException exception is thrown. When true, this method 13
blocks and waits for data to arrive. 14
 15
For System.Net.Sockets.SocketType.Stream socket types, if the remote socket was 16
shut down gracefully, and all data was received, this method immediately returns zero, 17
regardless of the blocking state. 18
 19
For message-oriented sockets, if the message is larger than the size of buffer, the buffer 20
is filled with the first part of the message, and the 21
System.Net.Sockets.SocketException exception is thrown. For unreliable protocols, 22
the excess data is lost; for reliable protocols, the data is retained by the service 23
provider. 24
 25
When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of 26
thesocketFlags parameter and the socket is configured for in-line reception of out-of-27
band (OOB) data (using the 28
System.Net.Sockets.SocketOptionName.OutOfBandInline socket option) and OOB 29
data is available, only OOB data is returned. 30
 31
When the System.Net.Sockets.SocketFlags.Peek flag is specified as part of the 32
socketFlags parameter, available data is copied into buffer but is not removed from the 33
system buffer. 34

Exceptions 35
 36
 37

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException
offset < 0.

-or-

 91

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

The
System.Net.Sockets.Socket.LocalEndPoint
property was not set.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

 92

System.Net.SocketPermission

Requires permission to accept a connection on the
endpoint defined by the
System.Net.Sockets.Socket.LocalEndPoint property of
the current instance. See
System.Net.NetworkAccess.Accept.

Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 1
 2

3

 93

 Socket.Select(System.Collections.IList, 1

System.Collections.IList, 2

System.Collections.IList, System.Int32) 3

Method 4

[ILAsm] 5
.method public hidebysig static void Select(class System.Collections.IList 6
checkRead, class System.Collections.IList checkWrite, class 7
System.Collections.IList checkError, int32 microSeconds) 8

[C#] 9
public static void Select(IList checkRead, IList checkWrite, IList 10
checkError, int microSeconds) 11

Summary 12

Determines the read, write, or error status of a set of System.Net.Sockets.Socket 13
instances. 14

Parameters 15
 16
 17

Parameter Description

checkRead
A System.Collections.IList object containing the
System.Net.Sockets.Socket instances to check for read status.

checkWrite
A System.Collections.IList object containing the
System.Net.Sockets.Socket instances to check for write status.

checkError
A System.Collections.IList object containing the
System.Net.Sockets.Socket instances to check for error status.

microSeconds
A System.Int32 that specifies the time to wait for a response, in
microseconds. Specify a negative value to wait indefinitely for the status to
be determined.

 18
Description 19

Upon successful completion, this method removes all System.Net.Sockets.Socket 20
instances from the specified list that do not satisfy one of the conditions associated with 21
that list. The following table describes the conditions for each list. 22

 94

List Condition to remain in list

checkRead

Data is available for reading (includes out-of-band data if the
System.Net.Sockets.SocketOptionName.OutOfBandInline value defined in
the System.Net.Sockets.SocketOptionName enumeration is set).

-or-

The socket is in the listening state with a pending connection, and the
System.Net.Sockets.Socket.Accept method has been called and is
guaranteed to succeed without blocking.

-or-

The connection has been closed, reset, or terminated.

checkWrite

Data can be sent.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being
processed and the connection has succeeded.

checkError

The System.Net.Sockets.SocketOptionName.OutOfBandInline value defined
in the System.Net.Sockets.SocketOptionName enumeration is not set and out-
of-band data is available.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being
processed and the connection has failed.

 1
[Note: To determine the status of a specific System.Net.Sockets.Socket instance, 2
check whether the instance remains in the list after the method returns.] 3
 4
 5
 6
When the method cannot determine the status of all the System.Net.Sockets.Socket 7
instances within the time specified in the microseconds parameter, the method removes 8
all the System.Net.Sockets.Socket instances from all the lists and returns. 9
 10
At least one of checkRead, checkWrite, or checkError, is required to contain at least one 11
System.Net.Sockets.Socket instance. The other parameters can be empty or null. 12

 95

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException
All of the following parameters are null or
empty: checkRead, checkWrite, and checkError.

System.Net.Sockets.SocketException

An error occurred while accessing one of the
sockets. [Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException class.]

 4
Example 5
 6

The following example determines the status of the socket instance named socket3 and 7
writes the result to the console. 8
 9
[C#] 10

using System; 11
using System.Collections; 12
using System.Net.Sockets; 13
 14
class SelectTest { 15
 16
 public static void Main() { 17
 18
 Socket socket1 = 19
 new Socket(AddressFamily.InterNetwork, 20
 SocketType.Stream, 21
 ProtocolType.Tcp); 22
 Socket socket2 = 23
 new Socket(AddressFamily.InterNetwork, 24
 SocketType.Stream, 25
 ProtocolType.Tcp); 26
 Socket socket3 = 27
 new Socket(AddressFamily.InterNetwork, 28
 SocketType.Stream, 29
 ProtocolType.Tcp); 30
 31
 ArrayList readList = new ArrayList(); 32
 ArrayList writeList = new ArrayList(); 33
 ArrayList errorList = new ArrayList(); 34
 35
 readList.Add(socket1); 36

 96

 readList.Add(socket2); 1
 readList.Add(socket3); 2
 errorList.Add(socket1); 3
 errorList.Add(socket3); 4
 5
 // readList.Contains(Socket3) returns true 6
 // if Socket3 is in ReadList. 7
 Console.WriteLine(8
 "socket3 is placed in readList and errorList."); 9
 Console.WriteLine(10
 "socket3 is {0}in readList.", 11
 readList.Contains(socket3) ? "": "not "); 12
 Console.WriteLine(13
 "socket3 is {0}in writeList.", 14
 writeList.Contains(socket3) ? "": "not "); 15
 Console.WriteLine(16
 "socket3 is {0}in errorList.", 17
 errorList.Contains(socket3) ? "": "not "); 18
 19
 Socket.Select(readList, writeList, errorList, 10); 20
 Console.WriteLine("The Select method has been called."); 21
 Console.WriteLine(22
 "socket3 is {0}in readList.", 23
 readList.Contains(socket3) ? "": "not "); 24
 Console.WriteLine(25
 "socket3 is {0}in writeList.", 26
 writeList.Contains(socket3) ? "": "not "); 27
 Console.WriteLine(28
 "socket3 is {0}in errorList.", 29
 errorList.Contains(socket3) ? "": "not "); 30
 } 31
} 32
 33
The output is 34
 35
socket3 is placed in readList and errorList. 36
 37
 38
socket3 is in readList. 39
 40
 41
socket3 is not in writeList. 42
 43
 44
socket3 is in errorList. 45
 46
 47
The Select method has been called. 48
 49
 50
socket3 is not in readList. 51
 52
 53
socket3 is not in writeList. 54

 97

 1
 2
socket3 is not in errorList. 3
 4

5

 98

 Socket.Send(System.Byte[], System.Int32, 1

System.Int32, 2

System.Net.Sockets.SocketFlags) Method 3

[ILAsm] 4
.method public hidebysig instance int32 Send(class System.Byte[] buffer, 5
int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags 6
socketFlags) 7

[C#] 8
public int Send(byte[] buffer, int offset, int size, SocketFlags 9
socketFlags) 10

Summary 11

Sends data to a connected socket. 12

Parameters 13
 14
 15

Parameter Description

buffer A System.Byte array containing data to send to the socket.

offset
A System.Int32 that specifies the zero-based position in buffer that is the
starting location of the data to send.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

 16
Return Value 17
 18

A System.Int32 containing the number of bytes sent. 19

Description 20

 99

For connection-oriented protocols, the System.Net.Sockets.Socket.LocalEndPoint 1
property of the current instance is required to be set before calling this method. 2
 3
For connectionless protocols, calling the System.Net.Sockets.Socket.Connect 4
methods sets the System.Net.Sockets.Socket.RemoteEndPoint property and allows 5
the System.Net.Sockets.Socket.Send method to be used instead of the 6
System.Net.Sockets.Socket.SendTo method. 7
 8
When the System.Net.Sockets.SocketFlags.DontRoute flag is specified as part of the 9
socketFlags parameter, the sent data is not routed. 10
 11
When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of the 12
socketFlags parameter, only out-of-band (OOB) data is sent. 13
 14
When the System.Net.Sockets.Socket.Blocking property of the current instance is 15
set to true and buffer space is not available within the underlying protocol, this method 16
blocks. 17
 18
For message-oriented sockets, when size is greater than the maximum message size of 19
the underlying protocol, no data is sent and the System.Net.Sockets.SocketException 20
exception is thrown. 21

Exceptions 22
 23
 24

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

 100

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 1
 2

3

 101

 Socket.Send(System.Byte[]) Method 1

[ILAsm] 2
.method public hidebysig instance int32 Send(class System.Byte[] buffer) 3

[C#] 4
public int Send(byte[] buffer) 5

Summary 6

Sends data to a connected socket. 7

Parameters 8
 9
 10

Parameter Description

buffer A System.Byte array containing data to send to the socket.

 11
Return Value 12
 13

A System.Int32 containing the number of bytes sent. 14

Description 15

This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0, 16
buffer.Length, System.Net.Sockets.SocketFlags.None). 17

Exceptions 18
 19
 20

Exception Condition

System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException
An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the

 102

System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
 2

3

 103

 Socket.Send(System.Byte[], 1

System.Net.Sockets.SocketFlags) Method 2

[ILAsm] 3
.method public hidebysig instance int32 Send(class System.Byte[] buffer, 4
valuetype System.Net.Sockets.SocketFlags socketFlags) 5

[C#] 6
public int Send(byte[] buffer, SocketFlags socketFlags) 7

Summary 8

Sends data to a connected socket. 9

Parameters 10
 11
 12

Parameter Description

buffer A System.Byte array containing data to send to the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes sent. 16

Description 17

This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0, 18
buffer.Length, socketFlags). 19

Exceptions 20
 21
 22

Exception Condition

 104

System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 1
 2

3

 105

 Socket.Send(System.Byte[], System.Int32, 1

System.Net.Sockets.SocketFlags) Method 2

[ILAsm] 3
.method public hidebysig instance int32 Send(class System.Byte[] buffer, 4
int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags) 5

[C#] 6
public int Send(byte[] buffer, int size, SocketFlags socketFlags) 7

Summary 8

Sends data to a connected socket. 9

Parameters 10
 11
 12

Parameter Description

buffer A System.Byte array containing data to send to the socket.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes sent. 16

Description 17

This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0, size, 18
socketFlags). 19

Exceptions 20
 21
 22

 106

Exception Condition

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

size < 0.

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 1
 2

3

 107

 Socket.SendTo(System.Byte[], 1

System.Net.EndPoint) Method 2

[ILAsm] 3
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, 4
class System.Net.EndPoint remoteEP) 5

[C#] 6
public int SendTo(byte[] buffer, EndPoint remoteEP) 7

Summary 8

Sends data to the socket associated with the specified endpoint. 9

Parameters 10
 11
 12

Parameter Description

buffer A System.Byte array containing data to send to the socket.

remoteEP The System.Net.EndPoint associated with the socket to receive the data.

 13
Return Value 14
 15

A System.Int32 containing the number of bytes sent. 16

Description 17

This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0, 18
buffer.Length, System.Net.Sockets.SocketFlags.None, remoteEP). 19

Exceptions 20
 21
 22

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.InvalidOperationException An asynchronous call is pending and a blocking

 108

method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 5
 6

7

 109

 Socket.SendTo(System.Byte[], 1

System.Net.Sockets.SocketFlags, 2

System.Net.EndPoint) Method 3

[ILAsm] 4
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, 5
valuetype System.Net.Sockets.SocketFlags socketFlags, class 6
System.Net.EndPoint remoteEP) 7

[C#] 8
public int SendTo(byte[] buffer, SocketFlags socketFlags, EndPoint 9
remoteEP) 10

Summary 11

Sends data to the socket associated with the specified endpoint. 12

Parameters 13
 14
 15

Parameter Description

buffer A System.Byte array containing data to send to the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP The System.Net.EndPoint associated with the socket to receive the data.

 16
Return Value 17
 18

A System.Int32 containing the number of bytes sent. 19

Description 20

This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0, 21
buffer.Length, socketFlags, remoteEP). 22

 110

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 4
Permissions 5
 6
 7

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 8
 9

10

 111

 Socket.SendTo(System.Byte[], System.Int32, 1

System.Net.Sockets.SocketFlags, 2

System.Net.EndPoint) Method 3

[ILAsm] 4
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, 5
int32 size, valuetype System.Net.Sockets.SocketFlags socketFlags, class 6
System.Net.EndPoint remoteEP) 7

[C#] 8
public int SendTo(byte[] buffer, int size, SocketFlags socketFlags, 9
EndPoint remoteEP) 10

Summary 11

Sends data to the socket associated with the specified endpoint. 12

Parameters 13
 14
 15

Parameter Description

buffer A System.Byte array containing data to send to the socket.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP The System.Net.EndPoint associated with the socket to receive the data.

 16
Return Value 17
 18

A System.Int32 containing the number of bytes sent. 19

Description 20

This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0, size, 21
socketFlags, remoteEP). 22

 112

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException

size < 0.

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 4
Permissions 5
 6
 7

Permission Description

 113

System.Net.SocketPermission
Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 1
 2

3

 114

 Socket.SendTo(System.Byte[], System.Int32, 1

System.Int32, 2

System.Net.Sockets.SocketFlags, 3

System.Net.EndPoint) Method 4

[ILAsm] 5
.method public hidebysig instance int32 SendTo(class System.Byte[] buffer, 6
int32 offset, int32 size, valuetype System.Net.Sockets.SocketFlags 7
socketFlags, class System.Net.EndPoint remoteEP) 8

[C#] 9
public int SendTo(byte[] buffer, int offset, int size, SocketFlags 10
socketFlags, EndPoint remoteEP) 11

Summary 12

Sends data to the socket associated with the specified endpoint. 13

Parameters 14
 15
 16

Parameter Description

buffer A System.Byte array containing data to send to the socket.

offset
A System.Int32 that specifies the zero-based position in buffer that is the
starting location of the data to send.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP The System.Net.EndPoint associated with the socket to receive the data.

 17
Return Value 18
 19

A System.Int32 containing the number of bytes sent. 20

 115

Description 1

For connected sockets using connectionless protocols, remoteEP overrides the endpoint 2
specified in the System.Net.Sockets.Socket.RemoteEndPoint property. 3
 4
For unconnected sockets using connectionless protocols, this method sets the 5
System.Net.Sockets.Socket.LocalEndPoint property of the current instance to a 6
value determined by the protocol. Subsequent data is required to be received on 7
LocalEndPoint. 8
 9
When the System.Net.Sockets.SocketFlags.DontRoute flag is specified as part of the 10
socketFlags parameter, the sent data is not routed. 11
 12
When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part of the 13
socketFlags parameter, only out-of-band (OOB) data is sent. 14
 15
When the System.Net.Sockets.Socket.Blocking property of the current instance is 16
set to true and buffer space is not available within the underlying protocol, this method 17
blocks. 18
 19
For message-oriented sockets, when size is greater than the maximum message size of 20
the underlying protocol, no data is sent and the System.Net.Sockets.SocketException 21
exception is thrown. 22
 23
For connection-oriented sockets, the remoteEP parameter is ignored. 24

Exceptions 25
 26
 27

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

 116

System.InvalidOperationException
An asynchronous call is pending and a blocking
method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the endpoint
defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 5
 6

7

 117

 1

Socket.SetSocketOption(System.Net.Sockets.2

SocketOptionLevel, 3

System.Net.Sockets.SocketOptionName, 4

System.Object) Method 5

[ILAsm] 6
.method public hidebysig instance void SetSocketOption(valuetype 7
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype 8
System.Net.Sockets.SocketOptionName optionName, object optionValue) 9

[C#] 10
public void SetSocketOption(SocketOptionLevel optionLevel, 11
SocketOptionName optionName, object optionValue) 12

Summary 13

Sets the System.Net.Sockets.SocketOptionName.AddMembership, 14
System.Net.Sockets.SocketOptionName.DropMembership, or 15
System.Net.Sockets.SocketOptionName.Linger socket options. 16

Parameters 17
 18
 19

Parameter Description

optionLevel
Either the Socket or IP member of the
System.Net.Sockets.SocketOptionLevel enumeration.

optionName
Either the Linger, AddMembership, or DropMembership member of the
System.Net.Sockets.SocketOptionName enumeration.

optionValue
An instance of the System.Net.Sockets.LingerOption or
System.Net.Sockets.MulticastOption class.

 20
Description 21

Socket options determine the behavior of the current instance. Multiple options can be 22
set on the current instance by calling this method multiple times. 23
 24
The following table summarizes the valid combinations of input parameters. 25

 118

optionLevel/optionName optionValue

Socket/Linger An instance of the System.Net.Sockets.LingerOption class.

IP/AddMembership

- or -

IP/DropMembership

An instance of the System.Net.Sockets.MulticastOption
class.

 1
When setting the System.Net.Sockets.SocketOptionName.Linger option, a 2
System.ArgumentException exception is thrown if the 3
System.Net.Sockets.LingerOption.LingerTime property of the 4
System.Net.Sockets.LingerOption instance is less than zero or greater than 5
System.UInt16.MaxValue. 6
 7
[Note: For more information on the System.Net.Sockets.SocketOptionName.Linger 8
option, see the System.Net.Sockets.LingerOption class and the 9
System.Net.Sockets.Socket.Shutdown method. 10
 11
For more information on the System.Net.Sockets.SocketOptionName.AddMembership 12
and System.Net.Sockets.SocketOptionName.DropMembership options, see the 13
System.Net.Sockets.MulticastOption class. 14
 15
For socket options with values of type System.Int32 or System.Boolean, see the 16
System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLe17
vel, System.Net.Sockets.SocketOptionName, System.Int32) version of this method. 18
 19
] 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentException optionLevel, optionName, or optionValue specified
an invalid value.

System.ArgumentNullException optionValue is null.

System.Net.Sockets.SocketException
An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the

 119

System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 1
Permissions 2
 3
 4

Permission Description

System.Security.Permissions.
SecurityPermission

The
System.Net.Sockets.SocketOptionName.AddMembership
and
System.Net.Sockets.SocketOptionName.DropMembership
options require permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode.

 5
 6

7

 120

 1

Socket.SetSocketOption(System.Net.Sockets.2

SocketOptionLevel, 3

System.Net.Sockets.SocketOptionName, 4

System.Byte[]) Method 5

[ILAsm] 6
.method public hidebysig instance void SetSocketOption(valuetype 7
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype 8
System.Net.Sockets.SocketOptionName optionName, class System.Byte[] 9
optionValue) 10

[C#] 11
public void SetSocketOption(SocketOptionLevel optionLevel, 12
SocketOptionName optionName, byte[] optionValue) 13

Summary 14

Sets socket options with values of type Byte[]. 15

Parameters 16
 17
 18

Parameter Description

optionLevel
One of the values defined in the System.Net.Sockets.SocketOptionLevel
enumeration.

optionName
One of the values defined in the System.Net.Sockets.SocketOptionName
enumeration.

optionValue A System.Byte array containing the value of the option.

 19
Description 20

Socket options determine the behavior of the current instance. Multiple options can be 21
set on the current instance by calling this method multiple times. 22
 23
[Note: For socket options with values of type System.Int32 or System.Boolean, see the 24
System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLe25
vel, System.Net.Sockets.SocketOptionName, System.Int32) version of this method.] 26
 27
 28
 29

 121

[Note: For the System.Net.Sockets.SocketOptionName.AddMembership, 1
System.Net.Sockets.SocketOptionName.DropMembership, or 2
System.Net.Sockets.SocketOptionName.Linger socket options, see the 3
System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLe4
vel, System.Net.Sockets.SocketOptionName, System.Object) version of this 5
method.] 6
 7
 8

Exceptions 9
 10
 11

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 12
Permissions 13
 14
 15

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode.

 16
 17

18

 122

 1

Socket.SetSocketOption(System.Net.Sockets.2

SocketOptionLevel, 3

System.Net.Sockets.SocketOptionName, 4

System.Int32) Method 5

[ILAsm] 6
.method public hidebysig instance void SetSocketOption(valuetype 7
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype 8
System.Net.Sockets.SocketOptionName optionName, int32 optionValue) 9

[C#] 10
public void SetSocketOption(SocketOptionLevel optionLevel, 11
SocketOptionName optionName, int optionValue) 12

Summary 13

Sets socket options with values of type System.Int32 and System.Boolean. 14

Parameters 15
 16
 17

Parameter Description

optionLevel
One of the values defined in the System.Net.Sockets.SocketOptionLevel
enumeration.

optionName
One of the values defined in the System.Net.Sockets.SocketOptionName
enumeration.

optionValue A System.Int32 containing the value of the option.

 18
Description 19

Socket options determine the behavior of the current instance. Multiple options can be 20
set on the current instance by calling this method multiple times. 21
 22
For a socket option with a System.Boolean data type, specify a non-zero optionValue to 23
enable the option, and an optionValue equal to zero to disable the option. 24
 25
Socket options are grouped by level of protocol support. The following tables list the 26
members of the System.Net.Sockets.SocketOptionName enumeration supported by 27
each member of the System.Net.Sockets.SocketOptionLevel enumeration. Only 28

 123

members that have associated values of the System.Int32 and System.Boolean data 1
types are listed. 2
 3
The following table lists the members of the System.Net.Sockets.SocketOptionName 4
enumeration supported by the Socket member of the 5
System.Net.Sockets.SocketOptionLevel enumeration. Options that do not require 6
permission to access unmanaged code are noted. 7

SocketOptionName Description

Broadcast
A System.Boolean where true indicates broadcast messages are
allowed to be sent to the socket.

Debug
A System.Boolean where true indicates to record debugging
information.

DontLinger
A System.Boolean where true indicates to close the socket without
lingering. This option does not require permission to access
unmanaged code.

DontRoute A System.Boolean where true indicates not to route data.

Error
A System.Int32 that contains the error code associated with the last
socket error. The error code is cleared by this option. This option is
read-only.

KeepAlive

A System.Boolean where true (the default) indicates to enable keep-
alives, which allows a connection to remain open after a request has
completed. This option does not require permission to access
unmanaged code.

OutOfBandInline
A System.Boolean where true indicates to receive out-of-band data
in the normal data stream.

ReceiveBuffer
A System.Int32 that specifies the total per-socket buffer space
reserved for receives. This option does not require permission to
access unmanaged code.

ReceiveTimeout

A System.Int32 that specifies the maximum time, in milliseconds, the
System.Net.Sockets.Socket.Receive and
System.Net.Sockets.Socket.ReceiveFrom methods will block when
attempting to receive data. If data is not received within this time, a
System.Net.Sockets.SocketException exception is thrown. This
option does not require permission to access unmanaged code.

 124

ReuseAddress
A System.Boolean where true allows the socket to be bound to an
address that is already in use.

SendBuffer
A System.Int32 that specifies the total per-socket buffer space
reserved for sends. This option does not require permission to access
unmanaged code.

SendTimeout

A System.Int32 that specifies the maximum time, in milliseconds, the
System.Net.Sockets.Socket.Send and
System.Net.Sockets.Socket.SendTo methods will block when
attempting to send data. If data is not sent within this time, a
System.Net.Sockets.SocketException exception is thrown. This
option does not require permission to access unmanaged code.

Type
One of the values defined in the System.Net.Sockets.SocketType
enumeration. This option is read-only.

 1
The following table lists the members of the System.Net.Sockets.SocketOptionName 2
enumeration supported by the IP member of the 3
System.Net.Sockets.SocketOptionLevel enumeration. These options require 4
permission to access unmanaged code. 5

SocketOptionName Description

HeaderIncluded
A System.Boolean where true indicates the application is providing
the IP header for outgoing datagrams.

IPOptions
A System.Byte array that specifies IP options to be inserted into
outgoing datagrams.

IpTimeToLive
A System.Int32 that specifies the time-to-live for datagrams. The
time-to-live designates the number of networks on which the
datagram is allowed to travel before being discarded by a router.

MulticastInterface
A System.Byte array that specifies the interface for outgoing
multicast packets.

MulticastLoopback A System.Boolean where true enables multicast loopback.

MulticastTimeToLive
A System.Int32 that specifies the time-to-live for multicast
datagrams.

 125

TypeOfService
A System.Int32 that specifies the type of service field in the IP
header.

UseLoopback
A System.Boolean where true indicates to send a copy of the data
back to the sender.

 1
 2
 3
The following table lists the members of the System.Net.Sockets.SocketOptionName 4
enumeration supported by the Tcp member of the 5
System.Net.Sockets.SocketOptionLevel enumeration. These options do not require 6
permission to access unmanaged code. 7

SocketOptionName Description

BsdUrgent
A System.Boolean where true indicates to use urgent data as
defined by IETF RFC 1222. Once enabled, this option cannot be
disabled.

Expedited
A System.Boolean where true indicates to use expedited data as
defined by IETF RFC 1222. Once enabled, this option cannot be
disabled.

NoDelay
A System.Boolean where true indicates to disable the Nagle
algorithm for send coalescing.

 8
 9
 10
The following table lists the members of the System.Net.Sockets.SocketOptionName 11
enumeration supported by the Udp member of the 12
System.Net.Sockets.SocketOptionLevel enumeration. These options do not require 13
permission to access unmanaged code. 14

SocketOptionName Description

ChecksumCoverage A System.Boolean that specifies UDP checksum coverage.

NoChecksum
A System.Boolean where true indicates to send UDP datagrams with
the checksum set to zero.

 126

 1
 2
 3
[Note: For the AddMembership, DropMembership, and Linger members of the 4
System.Net.Sockets.SocketOptionName enumeration, see the 5
System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOptionLe6
vel, System.Net.Sockets.SocketOptionName, System.Object) version of this method. 7
 8
] 9

Exceptions 10
 11
 12

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

 13
Permissions 14
 15
 16

Permission Description

System.Security.Permissions.
SecurityPermission

Some options require permission to access unmanaged
code. All the options that do not require permission are
noted in the tables in the Description section. All options not
so noted require this permission. See
System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode.

 17
 18

19

 127

 1

Socket.Shutdown(System.Net.Sockets.Socket2

Shutdown) Method 3

[ILAsm] 4
.method public hidebysig instance void Shutdown(valuetype 5
System.Net.Sockets.SocketShutdown how) 6

[C#] 7
public void Shutdown(SocketShutdown how) 8

Summary 9

Terminates the ability to send or receive data on a connected socket. 10

Parameters 11
 12
 13

Parameter Description

how
One of the values defined in the System.Net.Sockets.SocketShutdown
enumeration.

 14
Description 15

When how is set to System.Net.Sockets.SocketShutdown.Send, the socket on the 16
other end of the connection is notified that the current instance will not send any more 17
data. If the System.Net.Sockets.Socket.Send method is subsequently called, a 18
System.Net.Sockets.SocketException exception is thrown. 19
 20
When how is set to System.Net.Sockets.SocketShutdown.Receive, the socket on the 21
other end of the connection is notified that the current instance will not receive any 22
more data. After all the data currently queued on the current instance is received, any 23
subsequent calls to the System.Net.Sockets.Socket.Receive method cause a 24
System.Net.Sockets.SocketException exception to be thrown. 25
 26
Setting how to System.Net.Sockets.SocketShutdown.Both terminates both sends and 27
receives as described above. Once this occurs, the socket cannot be used. 28
 29
[Note: To free resources allocated by the current instance, call the 30
System.Net.Sockets.Socket.Close method. 31
 32
Expected common usage is for the System.Net.Sockets.Socket.Shutdown method to 33
be called before the System.Net.Sockets.Socket.Close method to ensure that all 34
pending data is sent or received. 35

 128

 1
] 2

Exceptions 3
 4
 5

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 6
 7

8

 129

 Socket.System.IDisposable.Dispose() Method 1

[ILAsm] 2
.method private final hidebysig virtual void System.IDisposable.Dispose() 3

[C#] 4
void IDisposable.Dispose() 5

Summary 6

Implemented to support the System.IDisposable interface. [Note: For more 7
information, see System.IDisposable.Dispose.] 8

9

 130

 Socket.AddressFamily Property 1

[ILAsm] 2
.property valuetype System.Net.Sockets.AddressFamily AddressFamily { 3
public hidebysig specialname instance valuetype 4
System.Net.Sockets.AddressFamily get_AddressFamily() } 5

[C#] 6
public AddressFamily AddressFamily { get; } 7

Summary 8

Gets the address family of the current instance. 9

Property Value 10
 11

One of the values defined in the System.Net.Sockets.AddressFamily enumeration. 12

Description 13

This property is read-only. 14
 15
This property is set by the constructor for the current instance. The value of this 16
property specifies the addressing scheme used by the current instance to resolve an 17
address. 18

19

 131

 Socket.Available Property 1

[ILAsm] 2
.property int32 Available { public hidebysig specialname instance int32 3
get_Available() } 4

[C#] 5
public int Available { get; } 6

Summary 7

Gets the amount of data available to be read in a single 8
System.Net.Sockets.Socket.Receive or System.Net.Sockets.Socket.ReceiveFrom 9
call. 10

Property Value 11
 12

A System.Int32 containing the number of bytes of data that are available to be read. 13

Description 14

This property is read-only. 15
 16
When the current instance is stream-oriented (for example, the 17
System.Net.Sockets.SocketType.Stream socket type), the available data is generally 18
the total amount of data queued on the current instance. 19
 20
When the current instance is message-oriented (for example, the 21
System.Net.Sockets.SocketType.Dgram socket type), the available data is the first 22
message in the input queue. 23

Exceptions 24
 25
 26

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 132

 1
 2

3

 133

 Socket.Blocking Property 1

[ILAsm] 2
.property bool Blocking { public hidebysig specialname instance bool 3
get_Blocking() public hidebysig specialname instance void 4
set_Blocking(bool value) } 5

[C#] 6
public bool Blocking { get; set; } 7

Summary 8

Gets or sets a System.Boolean value that indicates whether the socket is in blocking 9
mode. 10

Property Value 11
 12

true indicates that the current instance is in blocking mode; false indicates that the 13
current instance is in non-blocking mode. 14

Description 15

Blocking is when a method waits to complete an operation before returning. Sockets are 16
created in blocking mode by default. 17

Exceptions 18
 19
 20

Exception Condition

System.ObjectDisposedException The current instance has been disposed.

 21
 22

23

 134

 Socket.Connected Property 1

[ILAsm] 2
.property bool Connected { public hidebysig specialname instance bool 3
get_Connected() } 4

[C#] 5
public bool Connected { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current instance is connected. 8

Property Value 9
 10

true indicates that the current instance was connected at the time of the last I/O 11
operation; false indicates that the current instance is not connected. 12

Description 13

This property is read-only. 14
 15
When this property returns true, the current instance was connected at the time of the 16
last I/O operation; it might not still be connected. When this property returns false, the 17
current instance was never connected or is not currently connected. 18
 19
The current instance is considered connected when the 20
System.Net.Sockets.Socket.RemoteEndPoint property contains a valid endpoint. 21
 22
[Note: The System.Net.Sockets.Socket.Accept and 23
System.Net.Sockets.Socket.Connect methods, and their asynchronous counterparts 24
set this property.] 25
 26
 27

28

 135

 The following member must be implemented if the RuntimeInfrastructure library is 1
present in the implementation.

[ILAsm] 4
.property valuetype System.IntPtr Handle { public hidebysig specialname 5
instance valuetype System.IntPtr get_Handle() } 6

 2

Socket.Handle Property 3

[C#] 7
public IntPtr Handle { get; } 8

Summary 9

Gets the operating system handle for the current instance. 10

Property Value 11
 12

A System.IntPtr containing the operating system handle for the current instance. 13

Description 14

This property is read-only. 15

Permissions 16
 17
 18

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode.

 19
 20

21

 136

 Socket.LocalEndPoint Property 1

[ILAsm] 2
.property class System.Net.EndPoint LocalEndPoint { public hidebysig 3
specialname instance class System.Net.EndPoint get_LocalEndPoint() } 4

[C#] 5
public EndPoint LocalEndPoint { get; } 6

Summary 7

Gets the local endpoint associated with the current instance. 8

Property Value 9
 10

The local System.Net.EndPoint associated with the current instance. 11

Description 12

This property is read-only. 13
 14
This property contains the network connection information for the current instance. 15
 16
[Note: The System.Net.Sockets.Socket.Bind and 17
System.Net.Sockets.Socket.Accept methods, and their asynchronous counterparts 18
set this property. If not previously set, the System.Net.Sockets.Socket.Connect and 19
System.Net.Sockets.Socket.SendTo methods, and their asynchronous counterparts 20
set this property.] 21
 22
 23

Exceptions 24
 25
 26

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

 137

 1
 2

3

 138

 Socket.ProtocolType Property 1

[ILAsm] 2
.property valuetype System.Net.Sockets.ProtocolType ProtocolType { public 3
hidebysig specialname instance valuetype System.Net.Sockets.ProtocolType 4
get_ProtocolType() } 5

[C#] 6
public ProtocolType ProtocolType { get; } 7

Summary 8

Gets the protocol type of the current instance. 9

Property Value 10
 11

One of the values defined in the System.Net.Sockets.ProtocolType enumeration. 12

Description 13

This property is read-only. 14
 15
This property is set by the constructor for the current instance. The value of this 16
property specifies the protocol used by the current instance. 17

18

 139

 Socket.RemoteEndPoint Property 1

[ILAsm] 2
.property class System.Net.EndPoint RemoteEndPoint { public hidebysig 3
specialname instance class System.Net.EndPoint get_RemoteEndPoint() } 4

[C#] 5
public EndPoint RemoteEndPoint { get; } 6

Summary 7

Gets the remote endpoint associated with the current instance. 8

Property Value 9
 10

The remote System.Net.EndPoint associated with the current instance. 11

Description 12

This property is read-only. 13
 14
This property contains the network connection information associated with the socket 15
communicating with the current instance. 16
 17
There is no remote endpoint associated with a socket in the listening state. An attempt 18
to access the System.Net.Sockets.Socket.RemoteEndPoint property causes a 19
System.Net.Sockets.SocketException exception to be thrown. 20
 21
[Note: The System.Net.Sockets.Socket.Accept and 22
System.Net.Sockets.Socket.Connect methods, and their asynchronous counterparts 23
set this property.] 24
 25
 26

Exceptions 27
 28
 29

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the socket.
[Note: For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

 140

System.ObjectDisposedException The current instance has been disposed.

 1
 2

3

 141

 Socket.SocketType Property 1

[ILAsm] 2
.property valuetype System.Net.Sockets.SocketType SocketType { public 3
hidebysig specialname instance valuetype System.Net.Sockets.SocketType 4
get_SocketType() } 5

[C#] 6
public SocketType SocketType { get; } 7

Summary 8

Gets the socket type of the current instance. 9

Property Value 10
 11

One of the values defined in the System.Net.Sockets.SocketType enumeration. 12

Description 13

This property is read-only. 14
 15
This property is set by the constructor for the current instance. 16

 17

	Behaviors
	Default
	How and When to Override
	Usage

