
 1

System.Threading.Thread Class 1

 2

[ILAsm] 3
.class public sealed Thread extends System.Object 4

[C#] 5
public sealed class Thread 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Represents a sequential thread of execution. 15

Inherits From: System.Object 16
 17
Library: BCL 18
 19
Thread Safety: All public static members of this type are safe for multithreaded operations. 20
No instance members are guaranteed to be thread safe. 21
 22
Description 23

A process can create and execute one or more threads to execute a portion of the 24
program code associated with the process. A System.Threading.ThreadStart delegate 25
is used to specify the program code executed by a thread. 26
 27
Some operating systems might not utilize the concepts of threads or preemptive 28
scheduling. Also, the concept of "thread priority" might not exist at all or its meaning 29
might vary, depending on the underlying operating system. Implementers of the 30
System.Threading.Thread type are required to describe their threading policies, 31
including what thread priority means, how many threading priority levels exist, and 32
whether scheduling is preemptive. 33
 34
For the duration of its existence, a thread is always in one or more of the states defined 35
by System.Threading.ThreadState. A scheduling priority level, as defined by 36
System.Threading.ThreadPriority, can be requested for a thread, but it might not be 37
honored by the operating system. 38
 39
If an unhandled exception is thrown in the code executed by a thread created by an 40
application, a System.AppDomain.UnhandledException event is raised 41

 2

(System.UnhandledExceptionEventArgs.IsTerminating is set to false), and the 1
thread is terminated; the current process is not terminated. 2

3

 3

 Thread(System.Threading.ThreadStart) 1

Constructor 2

[ILAsm] 3
public rtspecialname specialname instance void .ctor(class 4
System.Threading.ThreadStart start) 5

[C#] 6
public Thread(ThreadStart start) 7

Summary 8

Constructs and initializes a new instance of the System.Threading.Thread class. 9

Parameters 10
 11
 12

Parameter Description

start
A System.Threading.ThreadStart delegate that references the methods to be
invoked when the new thread begins executing.

 13
 14

[Note: To schedule the thread for execution, call System.Threading.Thread.Start.] 15
 16
 17
 18
Until System.Threading.Thread.Start is called, the thread's state includes 19
System.Threading.ThreadState.Unstarted. 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentNullException start is null.

 24
 25

26

 4

 Thread.Abort(System.Object) Method 1

[ILAsm] 2
.method public hidebysig instance void Abort(object stateInfo) 3

[C#] 4
public void Abort(object stateInfo) 5

Summary 6

Raises a System.Threading.ThreadAbortException in the thread on which it is invoked 7
to begin the process of terminating the thread. In all but the most extraordinary 8
situations, calling this method will terminate the thread. 9

Parameters 10
 11
 12

Parameter Description

stateInfo
A System.Object that contains application-specific information, such as state,
which can be used by the thread being aborted.

 13
Description 14

The object passed as the stateInfo parameter can be obtained by accessing the 15
System.Threading.ThreadAbortException.ExceptionState property. 16
 17
[Note: For details on aborting threads, see System.Threading.Thread.Abort ().] 18
 19
 20

Exceptions 21
 22
 23

Exception Condition

System.Security.SecurityException
Caller does not have
System.Security.Permissions.SecurityPermissionFlag.

ControlThread security permission for this thread.

 24
Permissions 25
 26
 27

 5

Permission Description

System.Security.SecurityPermission

Requires permission to control the thread to be aborted.
See
System.Security.Permissions.SecurityPermissionFlag.

ControlThread.

 1
 2

3

 6

 Thread.Abort() Method 1

[ILAsm] 2
.method public hidebysig instance void Abort() 3

[C#] 4
public void Abort() 5

Summary 6

Raises a System.Threading.ThreadAbortException in the thread on which it is invoked 7
to begin the process of terminating the thread. In all but the most extraordinary 8
situations, calling this method will terminate the thread. 9

Description 10

When this method is invoked on a thread, the system throws a 11
System.Threading.ThreadAbortException in the thread to abort it. Invoking 12
System.Threading.Thread.Abort on a thread is similar to arranging for the target 13
thread to throw a System.Threading.ThreadAbortException. Because, unlike other 14
exceptions, a System.Threading.ThreadAbortException is sent to another thread, the 15
exception might be delayed. A System.Threading.ThreadAbortException is required to 16
be delayed if and while the target thread is executing any of the following: 17

· unmanaged code 18

· a catch handler 19

· a finally clause 20

· a filter clause 21

· a type initializer 22

A thread abort proceeds as follows: 23

1. An abort begins at the earliest of the following times: 24
 25
a. when the thread transitions from unmanaged to managed code execution; 26
 27
b. when the thread finishes the outermost currently executing catch handler; 28
 29
c. immediately if the thread is running managed code outside of any catch handler, 30
finally clause, filter clause or type initializer 31

2. Whenever an outermost catch handler finishes execution, the 32
System.Threading.ThreadAbortException is rethrown unless the thread being 33
aborted has called System.Threading.Thread.ResetAbort since the call to 34
System.Threading.Thread.Abort. 35

 7

3. When all finally blocks have been called and the thread is about to transition to any 1
unmanaged code which executed before the first entry to managed code, 2
System.Threading.Thread.ResetAbort is called so that a return to managed code 3
will consider the abort to have been successfully processed. 4

Unexecuted finally blocks are executed before the thread is aborted; this includes any 5
finally block that is executing when the exception is thrown. The thread is not guaranteed to 6
abort immediately, or at all. This situation can occur if a thread does an unbounded amount 7
of computation in the finally blocks that are called as part of the abort procedure, thereby 8
indefinitely delaying the abort. To ensure a thread has aborted, invoke 9
System.Threading.Thread.Join on the thread after calling 10
System.Threading.Thread.Abort. 11
 12
If System.Threading.Thread.Abort is called on a thread that has not been started, the 13
thread aborts when System.Threading.Thread.Start is called. If the target thread is 14
blocked or sleeping in managed code and is not inside any of the code blocks that are 15
required to delay an abort, the thread is resumed and immediately aborted. 16
 17
After System.Threading.Thread.Abort is invoked on a thread, the state of the thread 18
includes System.Threading.ThreadState.AbortRequested. After the thread has 19
terminated as a result of a successful call to System.Threading.Thread.Abort, the state of 20
the thread includes System.Threading.ThreadState.Stopped and 21
System.Threading.ThreadState.Aborted. 22
 23
[Note: With sufficient permissions, a thread that is the target of a 24
System.Threading.Thread.Abort can cancel the abort using the 25
System.Threading.Thread.ResetAbort method. For an example that demonstrates calling 26
the System.Threading.Thread.ResetAbort method, see 27
System.Threading.ThreadAbortException.] 28
 29
 30

Exceptions 31
 32
 33

Exception Condition

System.Security.SecurityException

Caller does not have
System.Security.Permissions.SecurityPermissionFlag.

ControlThread security permission for the thread to be
aborted.

 34
Permissions 35

 8

 1
 2

Permission Description

System.Security.SecurityPermission

Requires permission to control the thread to be aborted.
See
System.Security.Permissions.SecurityPermissionFlag.

ControlThread.

 3
 4

5

 9

 Thread.Finalize() Method 1

[ILAsm] 2
.method family hidebysig virtual void Finalize() 3

[C#] 4
~Thread() 5

Summary 6

Releases the resources held by this instance. 7

Description 8

[Note: Application code does not call this method; it is automatically invoked during 9
garbage collection.] 10
 11
 12

13

 10

 The following member must be implemented if the RuntimeInfrastructure library is 1
present in the implementation.

[ILAsm] 4
.method public hidebysig static class System.AppDomain GetDomain() 5

 2

Thread.GetDomain() Method 3

[C#] 6
public static AppDomain GetDomain() 7

Summary 8

Returns an object representing the application domain in which the current thread is 9
executing. 10

Return Value 11
 12

A System.AppDomain object that represents the current application domain. 13

14

 11

 Thread.Join() Method 1

[ILAsm] 2
.method public hidebysig instance void Join() 3

[C#] 4
public void Join() 5

Summary 6

Blocks the calling thread until the thread on which this method is invoked terminates. 7

Description 8

[Note: Use this method to ensure a thread has terminated. The caller will block 9
indefinitely if the thread does not terminate.] 10
 11
 12
 13
System.Threading.Thread.Join cannot be invoked on a thread that is in the 14
System.Threading.ThreadState.Unstarted state. 15
 16
This method changes the state of the calling thread to include 17
System.Threading.ThreadState.WaitSleepJoin. 18

Exceptions 19
 20
 21

Exception Condition

System.Threading.ThreadStateException

The caller attempted to join a thread that is in
the
System.Threading.ThreadState.Unstarted
state.

 22
 23

24

 12

 Thread.Join(System.TimeSpan) Method 1

[ILAsm] 2
.method public hidebysig instance bool Join(valuetype System.TimeSpan 3
timeout) 4

[C#] 5
public bool Join(TimeSpan timeout) 6

Summary 7

Blocks the calling thread until the thread on which this method is invoked terminates or 8
the specified time elapses. 9

Parameters 10
 11
 12

Parameter Description

timeout
A System.TimeSpan set to the amount of time to wait for the thread to
terminate. Specify System.Threading.Timeout.Infinite milliseconds to wait
indefinitely.

 13
Return Value 14
 15

true if the thread has terminated; false if the thread has not terminated after the 16
amount of time specified by timeout has elapsed. 17

Description 18

This method converts timeout to milliseconds, tests the validity of the converted value, 19
and calls System.Threading.Thread.Join(System.Int32). 20
 21
[Note: If System.Threading.Timeout.Infinite milliseconds is specified for timeout, 22
this method behaves identically to Join (), except for the return value.] 23
 24
 25
 26
Join cannot be invoked on a thread that is in the 27
System.Threading.ThreadState.Unstarted state. 28
 29
This method changes the state of the current thread to include 30
System.Threading.ThreadState.WaitSleepJoin. 31

 13

Exceptions 1
 2
 3

Exception Condition

System.ArgumentOutOfRangeException

The value of timeout is negative and is not
equal to
System.Threading.Timeout.Infinite
milliseconds, or is greater than
System.Int32.MaxValue milliseconds.

System.Threading.ThreadStateException

The caller attempted to join a thread that is in
the
System.Threading.ThreadState.Unstarted
state.

 4
 5

6

 14

 Thread.Join(System.Int32) Method 1

[ILAsm] 2
.method public hidebysig instance bool Join(int32 millisecondsTimeout) 3

[C#] 4
public bool Join(int millisecondsTimeout) 5

Summary 6

Blocks the calling thread until the thread on which this method is invoked terminates or 7
the specified time elapses. 8

Parameters 9
 10
 11

Parameter Description

millisecondsTimeout
A System.Int32 containing the number of milliseconds to wait for the
thread to terminate.

 12
Return Value 13
 14

true if the thread has terminated; false if the thread has not terminated after 15
millisecondsTimeout has elapsed. 16

Description 17

[Note: If System.Threading.Timeout.Infinite is specified for millisecondsTimeout, 18
this method behaves identically to Join (), except for the return value.] 19
 20
 21
 22
Join cannot be invoked on a thread that is in the 23
System.Threading.ThreadState.Unstarted state. 24
 25
This method changes the state of the calling thread to include 26
System.Threading.ThreadState.WaitSleepJoin. 27

Exceptions 28
 29
 30

 15

Exception Condition

System.ArgumentOutOfRangeException
The value of millisecondsTimeout is negative
and is not equal to
System.Threading.Timeout.Infinite.

System.Threading.ThreadStateException

The caller attempted to join a thread that is in
the
System.Threading.ThreadState.Unstarted
state.

 1
 2

3

 16

 Thread.MemoryBarrier() Method 1

[ILAsm] 2
.method public hidebysig static void MemoryBarrier () 3

[C#] 4
public static void MemoryBarrier () 5

Summary 6

Guarantees that all subsequent loads or stores from the current thread will not access 7
memory until after all previous loads and stores from the current thread have 8
completed, as observed from this or other threads. 9

10

 17

 Thread.ResetAbort() Method 1

[ILAsm] 2
.method public hidebysig static void ResetAbort() 3

[C#] 4
public static void ResetAbort() 5

Summary 6

Cancels a System.Threading.Thread.Abort requested for the current thread. 7

Description 8

This method cannot be called by untrusted code. 9
 10
When a call is made to System.Threading.Thread.Abort to destroy a thread, the 11
system throws a System.Threading.ThreadAbortException. 12
System.Threading.ThreadAbortException is a special exception that can be caught by 13
application code, but is rethrown at the end of the catch block unless ResetAbort is 14
called. ResetAbort cancels the request to abort, and prevents the 15
ThreadAbortException from terminating the thread. 16

Exceptions 17
 18
 19

Exception Condition

System.Threading.ThreadStateException
System.Threading.Thread.Abort was not invoked on the
current thread.

System.Security.SecurityException
Caller does not have
System.Security.Permissions.SecurityPermissionFlag.

ControlThread security permission for the current thread.

 20
Example 21
 22

For an example that demonstrates calling this method, see 23
System.Threading.ThreadAbortException. 24

Permissions 25
 26
 27

 18

Permission Description

System.Security.SecurityPermission
Requires permission to control the current thread. See
System.Security.Permissions.SecurityPermissionFlag.

ControlThread.

 1
 2

3

 19

 Thread.Sleep(System.Int32) Method 1

[ILAsm] 2
.method public hidebysig static void Sleep(int32 millisecondsTimeout) 3

[C#] 4
public static void Sleep(int millisecondsTimeout) 5

Summary 6

Blocks the current thread for the specified number of milliseconds. 7

Parameters 8
 9
 10

Parameter Description

millisecondsTimeout

A System.Int32 containing the number of milliseconds for which the
thread is blocked. Specify zero to indicate that this thread should be
suspended temporarily to allow other waiting threads to execute.
Specify System.Threading.Timeout.Infinite to block the thread
indefinitely.

 11
Description 12

The thread will not be scheduled for execution by the operating system for the amount 13
of time specified. This method changes the state of the thread to include 14
System.Threading.ThreadState.WaitSleepJoin. 15

Exceptions 16
 17
 18

Exception Condition

System.ArgumentOutOfRangeException
The value of millisecondsTimeout is negative
and is not equal to
System.Threading.Timeout.Infinite.

 19
 20

21

 20

 Thread.Sleep(System.TimeSpan) Method 1

[ILAsm] 2
.method public hidebysig static void Sleep(valuetype System.TimeSpan 3
timeout) 4

[C#] 5
public static void Sleep(TimeSpan timeout) 6

Summary 7

Blocks the current thread for a specified time. 8

Parameters 9
 10
 11

Parameter Description

timeout

A System.TimeSpan set to the amount of time for which the current thread will
be blocked. Specify zero to indicate that this thread should be suspended
temporarily to allow other waiting threads to execute. Specify
System.Threading.Timeout.Infinite milliseconds to suspend the thread
indefinitely.

 12
Description 13

This method converts timeout to milliseconds, tests the validity of the converted value, 14
and calls System.Threading.Thread.Sleep(System.Int32). 15
 16
The thread will not be scheduled for execution by the operating system for the amount 17
of time specified. This method changes the state of the thread to include 18
System.Threading.ThreadState.WaitSleepJoin. 19

Exceptions 20
 21
 22

Exception Condition

System.ArgumentOutOfRangeException

The value of timeout is negative and is not
equal to
System.Threading.Timeout.Infinite
milliseconds, or is greater than
System.Int32.MaxValue milliseconds.

 21

 1
 2

3

 22

 Thread.Start() Method 1

[ILAsm] 2
.method public hidebysig instance void Start() 3

[C#] 4
public void Start() 5

Summary 6

Causes the operating system to consider the thread ready to be scheduled for execution. 7

Description 8

Calling System.Threading.Thread.Start removes the 9
System.Threading.ThreadState.Unstarted state from the 10
System.Threading.Thread.ThreadState of the thread. 11
 12
Once a thread is started, the operating system can schedule it for execution. When the 13
thread begins executing, the System.Threading.ThreadStart delegate supplied to the 14
constructor for the thread invokes its methods. 15
 16
Once the thread terminates, it cannot be restarted with another call to 17
System.Threading.Thread.Start. 18

Exceptions 19
 20
 21

Exception Condition

System.OutOfMemoryException There is not enough memory available to start
the thread.

System.NullReferenceException
This method was invoked on a null thread
reference.

System.Threading.ThreadStateException The thread has already been started.

 22
Example 23
 24

The following example demonstrates creating a thread and starting it. 25
 26
[C#] 27

using System; 28

 23

using System.Threading; 1
public class ThreadWork { 2
 public static void DoWork() { 3
 for (int i = 0; i<3;i++) { 4
 Console.WriteLine ("Working thread..."); 5
 Thread.Sleep(100); 6
 } 7
 } 8
} 9
class ThreadTest{ 10
 public static void Main() { 11
 ThreadStart myThreadDelegate = new ThreadStart(ThreadWork.DoWork); 12
 Thread myThread = new Thread(myThreadDelegate); 13
 myThread.Start(); 14
 for (int i = 0; i<3; i++) { 15
 Console.WriteLine("In main."); 16
 Thread.Sleep(100); 17
 } 18
 } 19
} 20
 21
One possible set of output is 22
 23
In main. 24
 25
 26
Working thread... 27
 28
 29
In main. 30
 31
 32
Working thread... 33
 34
 35
In main. 36
 37
 38
Working thread... 39
 40
 41
Note that the sequence of the output statements is not guaranteed to be identical across 42
systems. 43

44

 24

 Thread.VolatileRead(System.Object&) 1

Method 2

[ILAsm] 3
.method public hidebysig static object VolatileRead (object& address) 4

[C#] 5
public static object VolatileRead (ref object address) 6

Summary 7

Performs a volatile read from the specified address. 8

Parameters 9
 10
 11

Parameter Description

address
A reference to a System.Object that specifies the address in memory from
which to read.

 12
Return Value 13
 14

A System.Object containing the value at the specified address after any pending writes. 15

Description 16

The value at the given address is atomically loaded with acquire semantics, meaning 17
that the read is guaranteed to occur prior to any references to memory that occur after 18
the execution of this method in the current thread. It is recommended that 19
System.Threading.Thread.VolatileRead and 20
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 21
affects only this single access; other accesses to the same location are required to also 22
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 23
semantics are to be preserved. This method has exactly the same semantics as using 24
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 25
types, not just those 32 bits or smaller in size. [Note: For additional information, see 26
Partition I of the CLI Specification.] 27
 28
 29

30

 25

 Thread.VolatileRead(System.Double&) 1

Method 2

[ILAsm] 3
.method public hidebysig static float64 VolatileRead (float64& address) 4

[C#] 5
public static double VolatileRead (ref double address) 6

Summary 7

Performs a volatile read from the specified address. 8

Parameters 9
 10
 11

Parameter Description

address
A reference to a System.Double that specifies the address in memory from
which to read.

 12
Return Value 13
 14

A System.Double containing the value at the specified address after any pending writes. 15

Description 16

The value at the given address is atomically loaded with acquire semantics, meaning 17
that the read is guaranteed to occur prior to any references to memory that occur after 18
the execution of this method in the current thread. It is recommended that 19
System.Threading.Thread.VolatileRead and 20
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 21
affects only this single access; other accesses to the same location are required to also 22
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 23
semantics are to be preserved. This method has exactly the same semantics as using 24
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 25
types, not just those 32 bits or smaller in size. [Note: For additional information, see 26
Partition I of the CLI Specification.] 27
 28
 29

30

 26

 Thread.VolatileRead(System.Single&) Method 1

[ILAsm] 2
.method public hidebysig static float32 VolatileRead (float32& address) 3

[C#] 4
public static float VolatileRead (ref float address) 5

Summary 6

Performs a volatile read from the specified address. 7

Parameters 8
 9
 10

Parameter Description

address
A reference to a System.Single that specifies the address in memory from
which to read.

 11
Return Value 12
 13

A System.Single containing the value at the specified address after any pending writes. 14

Description 15

The value at the given address is atomically loaded with acquire semantics, meaning 16
that the read is guaranteed to occur prior to any references to memory that occur after 17
the execution of this method in the current thread. It is recommended that 18
System.Threading.Thread.VolatileRead and 19
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 20
affects only this single access; other accesses to the same location are required to also 21
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 22
semantics are to be preserved. This method has exactly the same semantics as using 23
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 24
types, not just those 32 bits or smaller in size. [Note: For additional information, see 25
Partition I of the CLI Specification.] 26
 27
 28

29

 27

 Thread.VolatileRead(System.UInt64&) 1

Method 2

[ILAsm] 3
.method public hidebysig static unsigned int64 VolatileRead (unsigned 4
int64& address) 5

[C#] 6
public static ulong VolatileRead (ref ulong address) 7

Summary 8

Performs a volatile read from the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.UInt64 that specifies the address in memory from
which to read.

 13
Return Value 14
 15

A System.UInt64 containing the value at the specified address after any pending writes. 16

Description 17

The value at the given address is atomically loaded with acquire semantics, meaning 18
that the read is guaranteed to occur prior to any references to memory that occur after 19
the execution of this method in the current thread. It is recommended that 20
System.Threading.Thread.VolatileRead and 21
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 22
affects only this single access; other accesses to the same location are required to also 23
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 24
semantics are to be preserved. This method has exactly the same semantics as using 25
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 26
types, not just those 32 bits or smaller in size. [Note: For additional information, see 27
Partition I of the CLI Specification.] 28
 29
 30

31

 28

 The following member must be implemented if the RuntimeInfrastructure library is 1
present in the implementation.

[ILAsm] 5
.method public hidebysig static uintPtr VolatileRead (class 6
System.UIntPtr& address) 7

 2

Thread.VolatileRead(System.UIntPtr&) 3

Method 4

[C#] 8
public static UIntPtr VolatileRead (ref UIntPtr address) 9

Summary 10

Performs a volatile read from the specified address. 11

Parameters 12
 13
 14

Parameter Description

address
A reference to a System.UIntPtr that specifies the address in memory from
which to read.

 15
Return Value 16
 17

A System.UIntPtr containing the value at the specified address after any pending 18
writes. 19

Description 20

The value at the given address is atomically loaded with acquire semantics, meaning 21
that the read is guaranteed to occur prior to any references to memory that occur after 22
the execution of this method in the current thread. It is recommended that 23
System.Threading.Thread.VolatileRead and 24
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 25
affects only this single access; other accesses to the same location are required to also 26
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 27
semantics are to be preserved. This method has exactly the same semantics as using 28
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 29
types, not just those 32 bits or smaller in size. [Note: For additional information, see 30
Partition I of the CLI Specification.] 31
 32
 33

34

 29

 The following member must be implemented if the RuntimeInfrastructure library is 1
present in the implementation.

[ILAsm] 4
.method public hidebysig static intptr VolatileRead (class System.IntPtr& 5
address) 6

 2

Thread.VolatileRead(System.IntPtr&) Method 3

[C#] 7
public static IntPtr VolatileRead (ref IntPtr address) 8

Summary 9

Performs a volatile read from the specified address. 10

Parameters 11
 12
 13

Parameter Description

address
A reference to a System.IntPtr that specifies the address in memory from
which to read.

 14
Return Value 15
 16

A System.IntPtr containing the value at the specified address after any pending writes. 17

Description 18

The value at the given address is atomically loaded with acquire semantics, meaning 19
that the read is guaranteed to occur prior to any references to memory that occur after 20
the execution of this method in the current thread. It is recommended that 21
System.Threading.Thread.VolatileRead and 22
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 23
affects only this single access; other accesses to the same location are required to also 24
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 25
semantics are to be preserved. This method has exactly the same semantics as using 26
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 27
types, not just those 32 bits or smaller in size. [Note: For additional information, see 28
Partition I of the CLI Specification.] 29
 30
 31

32

 30

 Thread.VolatileRead(System.UInt32&) 1

Method 2

[ILAsm] 3
.method public hidebysig static unsigned int32 VolatileRead (unsigned 4
int32& address) 5

[C#] 6
public static uint VolatileRead (ref uint address) 7

Summary 8

Performs a volatile read from the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.UInt32 that specifies the address in memory from
which to read.

 13
Return Value 14
 15

A System.UInt32 containing the value at the specified address after any pending writes. 16

Description 17

The value at the given address is atomically loaded with acquire semantics, meaning 18
that the read is guaranteed to occur prior to any references to memory that occur after 19
the execution of this method in the current thread. It is recommended that 20
System.Threading.Thread.VolatileRead and 21
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 22
affects only this single access; other accesses to the same location are required to also 23
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 24
semantics are to be preserved. This method has exactly the same semantics as using 25
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 26
types, not just those 32 bits or smaller in size. [Note: For additional information, see 27
Partition I of the CLI Specification.] 28
 29
 30

31

 31

 Thread.VolatileRead(System.UInt16&) 1

Method 2

[ILAsm] 3
.method public hidebysig static unsigned int16 VolatileRead (unsigned 4
int16& address) 5

[C#] 6
public static ushort VolatileRead (ref ushort address) 7

Summary 8

Performs a volatile read from the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.UInt16 that specifies the address in memory from
which to read.

 13
Return Value 14
 15

A System.UInt16 containing the value at the specified address after any pending writes. 16

Description 17

The value at the given address is atomically loaded with acquire semantics, meaning 18
that the read is guaranteed to occur prior to any references to memory that occur after 19
the execution of this method in the current thread. It is recommended that 20
System.Threading.Thread.VolatileRead and 21
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 22
affects only this single access; other accesses to the same location are required to also 23
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 24
semantics are to be preserved. This method has exactly the same semantics as using 25
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 26
types, not just those 32 bits or smaller in size. [Note: For additional information, see 27
Partition I of the CLI Specification.] 28
 29
 30

31

 32

 Thread.VolatileRead(System.SByte&) Method 1

[ILAsm] 2
.method public hidebysig static sbyte VolatileRead (class System.Sbyte& 3
address) 4

[C#] 5
public static sbyte VolatileRead (ref sbyte address) 6

Summary 7

Performs a volatile read from the specified address. 8

Parameters 9
 10
 11

Parameter Description

address
A reference to a System.SByte that specifies the address in memory from
which to read.

 12
Return Value 13
 14

A System.SByte containing the value at the specified address after any pending writes. 15

Description 16

The value at the given address is atomically loaded with acquire semantics, meaning 17
that the read is guaranteed to occur prior to any references to memory that occur after 18
the execution of this method in the current thread. It is recommended that 19
System.Threading.Thread.VolatileRead and 20
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 21
affects only this single access; other accesses to the same location are required to also 22
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 23
semantics are to be preserved. This method has exactly the same semantics as using 24
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 25
types, not just those 32 bits or smaller in size. [Note: For additional information, see 26
Partition I of the CLI Specification.] 27
 28
 29

30

 33

 Thread.VolatileRead(System.Int64&) Method 1

[ILAsm] 2
.method public hidebysig static int64 VolatileRead (int64& address) 3

[C#] 4
public static long VolatileRead (ref long address) 5

Summary 6

Performs a volatile read from the specified address. 7

Parameters 8
 9
 10

Parameter Description

address
A reference to a System.Int64 that specifies the address in memory from
which to read.

 11
Return Value 12
 13

A System.Int64 containing the value at the specified address after any pending writes. 14

Description 15

The value at the given address is atomically loaded with acquire semantics, meaning 16
that the read is guaranteed to occur prior to any references to memory that occur after 17
the execution of this method in the current thread. It is recommended that 18
System.Threading.Thread.VolatileRead and 19
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 20
affects only this single access; other accesses to the same location are required to also 21
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 22
semantics are to be preserved. This method has exactly the same semantics as using 23
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 24
types, not just those 32 bits or smaller in size. [Note: For additional information, see 25
Partition I of the CLI Specification.] 26
 27
 28

29

 34

 Thread.VolatileRead(System.Int32&) Method 1

[ILAsm] 2
.method public hidebysig static int32 VolatileRead (int32& address) 3

[C#] 4
public static int VolatileRead (ref int address) 5

Summary 6

Performs a volatile read from the specified address. 7

Parameters 8
 9
 10

Parameter Description

address
A reference to a System.Int32 that specifies the address in memory from
which to read.

 11
Return Value 12
 13

A System.Int32 containing the value at the specified address after any pending writes. 14

Description 15

The value at the given address is atomically loaded with acquire semantics, meaning 16
that the read is guaranteed to occur prior to any references to memory that occur after 17
the execution of this method in the current thread. It is recommended that 18
System.Threading.Thread.VolatileRead and 19
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 20
affects only this single access; other accesses to the same location are required to also 21
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 22
semantics are to be preserved. This method has exactly the same semantics as using 23
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 24
types, not just those 32 bits or smaller in size. [Note: For additional information, see 25
Partition I of the CLI Specification.] 26
 27
 28

29

 35

 Thread.VolatileRead(System.Int16&) Method 1

[ILAsm] 2
.method public hidebysig static int16 VolatileRead (int16& address) 3

[C#] 4
public static short VolatileRead (ref short address) 5

Summary 6

Performs a volatile read from the specified address. 7

Parameters 8
 9
 10

Parameter Description

address
A reference to a System.Int16 that specifies the address in memory from
which to read.

 11
Return Value 12
 13

A System.Int16 containing the value at the specified address after any pending writes. 14

Description 15

The value at the given address is atomically loaded with acquire semantics, meaning 16
that the read is guaranteed to occur prior to any references to memory that occur after 17
the execution of this method in the current thread. It is recommended that 18
System.Threading.Thread.VolatileRead and 19
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 20
affects only this single access; other accesses to the same location are required to also 21
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 22
semantics are to be preserved. This method has exactly the same semantics as using 23
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 24
types, not just those 32 bits or smaller in size. [Note: For additional information, see 25
Partition I of the CLI Specification.] 26
 27
 28

29

 36

 Thread.VolatileRead(System.Byte&) Method 1

[ILAsm] 2
.method public hidebysig static byte VolatileRead (class System.Byte& 3
address) 4

[C#] 5
public static byte VolatileRead (ref byte address) 6

Summary 7

Performs a volatile read from the specified address. 8

Parameters 9
 10
 11

Parameter Description

address
A reference to a System.Byte that specifies the address in memory from which
to read.

 12
Return Value 13
 14

A System.Byte containing the value at the specified address after any pending writes. 15

Description 16

The value at the given address is atomically loaded with acquire semantics, meaning 17
that the read is guaranteed to occur prior to any references to memory that occur after 18
the execution of this method in the current thread. It is recommended that 19
System.Threading.Thread.VolatileRead and 20
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 21
affects only this single access; other accesses to the same location are required to also 22
be made using this method or System.Threading.Thread.VolatileWrite if the volatile 23
semantics are to be preserved. This method has exactly the same semantics as using 24
the volatile prefix on the load CIL instruction, except that atomicity is provided for all 25
types, not just those 32 bits or smaller in size. [Note: For additional information, see 26
Partition I of the CLI Specification.] 27
 28
 29

30

 37

 Thread.VolatileWrite(System.UInt32&, 1

System.UInt32) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (unsigned int32& 4
address, unsigned int32 value) 5

[C#] 6
public static void VolatileWrite (ref uint address, uint value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.UInt32 that specifies the address in memory at which
to write.

value A System.UInt32 that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 38

 Thread.VolatileWrite(System.UInt64&, 1

System.UInt64) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (unsigned int64& 4
address, unsigned int64 value) 5

[C#] 6
public static void VolatileWrite (ref ulong address, ulong value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.UInt64 that specifies the address in memory at which
to write.

value A System.UInt64 that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 39

 The following member must be implemented if the RuntimeInfrastructure library is 1
present in the implementation.

[ILAsm] 5
.method public hidebysig static void VolatileWrite (class System.UIntPtr& 6
address, UIntPtr value) 7

 2

Thread.VolatileWrite(System.UIntPtr&, 3

System.UIntPtr) Method 4

[C#] 8
public static void VolatileWrite (ref UIntPtr address, UIntPtr value) 9

Summary 10

Performs a volatile write to the specified address. 11

Parameters 12
 13
 14

Parameter Description

address
A reference to a System.UIntPtr that specifies the address in memory at which
to write.

value A System.UIntPtr that specifies the value to write.

 15
Description 16

The value is written atomically to the specified address with release semantics, meaning 17
that the write is guaranteed to happen after any references to memory that occur prior 18
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 19
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 20
affects only this single access; other accesses to the same location are required to also 21
be made using this method or System.Threading.Thread.VolatileRead if the volatile 22
semantics are to be preserved. This method has exactly the same semantics as using 23
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 24
types, not just those 32 bits or smaller in size. [Note: For additional information, see 25
Partition I of the CLI Specification.] 26
 27
 28

29

 40

 The following member must be implemented if the RuntimeInfrastructure library is 1
present in the implementation.

[ILAsm] 5
.method public hidebysig static void VolatileWrite (class System.IntPtr& 6
address, IntPtr value) 7

 2

Thread.VolatileWrite(System.IntPtr&, 3

System.IntPtr) Method 4

[C#] 8
public static void VolatileWrite (ref IntPtr address, IntPtr value) 9

Summary 10

Performs a volatile write to the specified address. 11

Parameters 12
 13
 14

Parameter Description

address
A reference to a System.IntPtr that specifies the address in memory at which
to write.

value A System.IntPtr that specifies the value to write.

 15
Description 16

The value is written atomically to the specified address with release semantics, meaning 17
that the write is guaranteed to happen after any references to memory that occur prior 18
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 19
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 20
affects only this single access; other accesses to the same location are required to also 21
be made using this method or System.Threading.Thread.VolatileRead if the volatile 22
semantics are to be preserved. This method has exactly the same semantics as using 23
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 24
types, not just those 32 bits or smaller in size. [Note: For additional information, see 25
Partition I of the CLI Specification.] 26
 27
 28

29

 41

 Thread.VolatileWrite(System.Single&, 1

System.Single) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (float32& address, 4
float32 value) 5

[C#] 6
public static void VolatileWrite (ref float address, float value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.Single that specifies the address in memory at which
to write.

value A System.Single that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 42

 Thread.VolatileWrite(System.Double&, 1

System.Double) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (float64& address, 4
float64 value) 5

[C#] 6
public static void VolatileWrite (ref double address, double value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.Double that specifies the address in memory at which
to write.

value A System.Double that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 43

 Thread.VolatileWrite(System.Object&, 1

System.Object) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (object& address, 4
object value) 5

[C#] 6
public static void VolatileWrite (ref object address, object value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.Object that specifies the address in memory at which
to write.

value A System.Object that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 44

 Thread.VolatileWrite(System.UInt16&, 1

System.UInt16) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (unsigned int16& 4
address, unsigned int16 value) 5

[C#] 6
public static void VolatileWrite (ref ushort address, ushort value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.UInt16 that specifies the address in memory at which
to write.

value A System.UInt16 that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 45

 Thread.VolatileWrite(System.SByte&, 1

System.SByte) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (class System.SByte& 4
address, sbyte value) 5

[C#] 6
public static void VolatileWrite (ref sbyte address, sbyte value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.SByte that specifies the address in memory at which
to write.

value A System.SByte that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 46

 Thread.VolatileWrite(System.Int64&, 1

System.Int64) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (int64& address, int64 4
value) 5

[C#] 6
public static void VolatileWrite (ref long address, long value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.Int64 that specifies the address in memory at which
to write.

value A System.Int64 that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 47

 Thread.VolatileWrite(System.Int32&, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (int32& address, int32 4
value) 5

[C#] 6
public static void VolatileWrite (ref int address, int value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.Int32 that specifies the address in memory at which
to write.

value A System.Int32 that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 48

 Thread.VolatileWrite(System.Int16&, 1

System.Int16) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (int16& address, int16 4
value) 5

[C#] 6
public static void VolatileWrite (ref short address, short value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.Int16 that specifies the address in memory at which
to write.

value A System.Int16 that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 49

 Thread.VolatileWrite(System.Byte&, 1

System.Byte) Method 2

[ILAsm] 3
.method public hidebysig static void VolatileWrite (class System.Byte& 4
address, byte value) 5

[C#] 6
public static void VolatileWrite (ref byte address, byte value) 7

Summary 8

Performs a volatile write to the specified address. 9

Parameters 10
 11
 12

Parameter Description

address
A reference to a System.Byte that specifies the address in memory at which to
write.

value A System.Byte that specifies the value to write.

 13
Description 14

The value is written atomically to the specified address with release semantics, meaning 15
that the write is guaranteed to happen after any references to memory that occur prior 16
to the execution. It is recommended that System.Threading.Thread.VolatileRead and 17
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this method 18
affects only this single access; other accesses to the same location are required to also 19
be made using this method or System.Threading.Thread.VolatileRead if the volatile 20
semantics are to be preserved. This method has exactly the same semantics as using 21
the volatile prefix on the store CIL instruction, except that atomicity is provided for all 22
types, not just those 32 bits or smaller in size. [Note: For additional information, see 23
Partition I of the CLI Specification.] 24
 25
 26

27

 50

 Thread.CurrentThread Property 1

[ILAsm] 2
.property class System.Threading.Thread CurrentThread { public hidebysig 3
static specialname class System.Threading.Thread get_CurrentThread() } 4

[C#] 5
public static Thread CurrentThread { get; } 6

Summary 7

Gets a System.Threading.Thread instance that represents the currently executing 8
thread. 9

Property Value 10
 11

An instance of System.Threading.Thread representing the current thread. 12

Description 13

This property is read-only. 14

15

 51

 Thread.IsAlive Property 1

[ILAsm] 2
.property bool IsAlive { public hidebysig specialname instance bool 3
get_IsAlive() } 4

[C#] 5
public bool IsAlive { get; } 6

Summary 7

Gets a System.Boolean value indicating the execution status of the current thread. 8

Property Value 9
 10

true if this thread has been started, and has not terminated; otherwise, false. 11

Description 12

This property is read-only. 13

14

 52

 Thread.IsBackground Property 1

[ILAsm] 2
.property bool IsBackground { public hidebysig specialname instance bool 3
get_IsBackground() public hidebysig specialname instance void 4
set_IsBackground(bool value) } 5

[C#] 6
public bool IsBackground { get; set; } 7

Summary 8

Gets or sets a System.Boolean value indicating whether a thread is a background 9
thread. 10

Property Value 11
 12

true if the thread is or is to become a background thread; otherwise, false. 13

Description 14

The default value of this property is false. The property value can be changed before 15
the thread is started and before it terminates. 16
 17
[Note: A thread is either a background thread or a foreground thread. Background 18
threads are identical to foreground threads except for the fact that background threads 19
do not prevent a process from terminating. Once all foreground threads belonging to a 20
process have terminated, the execution engine ends the process by invoking 21
System.Threading.Thread.Abort on any background threads that are still alive.] 22
 23
 24

Exceptions 25
 26
 27

Exception Condition

System.Threading.ThreadStateException
The thread has reached the
System.Threading.ThreadState.Stopped
state.

 28
 29

30

 53

 Thread.Name Property 1

[ILAsm] 2
.property string Name { public hidebysig specialname instance string 3
get_Name() public hidebysig specialname instance void set_Name(string 4
value) } 5

[C#] 6
public string Name { get; set; } 7

Summary 8

Gets or sets the name of the thread. 9

Property Value 10
 11

A System.String containing the name of the thread, or null if no name was set. 12

Description 13

This property is write-once. Once this property has been set to a non-null value, 14
attempts to set this property to a new value cause an exception. 15

Exceptions 16
 17
 18

Exception Condition

System.InvalidOperationException
A set operation was requested, and the Name
property has already been set.

 19
 20

21

 54

 Thread.Priority Property 1

[ILAsm] 2
.property valuetype System.Threading.ThreadPriority Priority { public 3
hidebysig specialname instance valuetype System.Threading.ThreadPriority 4
get_Priority() public hidebysig specialname instance void 5
set_Priority(valuetype System.Threading.ThreadPriority value) } 6

[C#] 7
public ThreadPriority Priority { get; set; } 8

Summary 9

Gets or sets a value indicating the scheduling priority of a thread. 10

Property Value 11
 12

A System.Threading.ThreadPriority value. 13

Description 14

A thread can be assigned any one of the following priority values: 15

· System.Threading.ThreadPriority.Highest 16

· System.Threading.ThreadPriority.AboveNormal 17

· System.Threading.ThreadPriority.Normal 18

· System.Threading.ThreadPriority.BelowNormal 19

· System.Threading.ThreadPriority.Lowest 20

The default value is System.Threading.ThreadPriority.Normal. 21
 22
Operating systems are not required to honor the priority of a thread. 23

Exceptions 24
 25
 26

Exception Condition

System.Threading.ThreadStateException The thread is in the
System.Threading.ThreadState.Stopped

 55

state.

System.ArgumentException
The value specified for a set operation is not a
valid System.Threading.ThreadPriority
value.

 1
 2

3

 56

 Thread.ThreadState Property 1

[ILAsm] 2
.property valuetype System.Threading.ThreadState ThreadState { public 3
hidebysig specialname instance valuetype System.Threading.ThreadState 4
get_ThreadState() } 5

[C#] 6
public ThreadState ThreadState { get; } 7

Summary 8

Gets a value containing the states of the current thread. 9

Property Value 10
 11

A combination of one or more System.Threading.ThreadState values, which indicate 12
the state of the current thread. 13

Description 14

This property is read-only. 15
 16
A thread is running if the value returned by this property does not include 17
System.Threading.ThreadState.Unstarted and does not include 18
System.Threading.ThreadState.Stopped. 19

 20

