
 1 

System.IO.Stream Class  1 

 2 

[ILAsm] 3 
.class public abstract serializable Stream extends 4 
System.MarshalByRefObject implements System.IDisposable 5 

[C#] 6 
public abstract class Stream: MarshalByRefObject, IDisposable 7 

Assembly Info:  8 

· Name: mscorlib 9 
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 10 
· Version: 2.0.x.x 11 
· Attributes: 12 

o CLSCompliantAttribute(true) 13 

Implements:  14 

· System.IDisposable 15 

Summary 16 
 17 

Abstract base class for all stream implementations. 18 

Inherits From: System.MarshalByRefObject 19 
 20 
Library: BCL 21 
 22 
Thread Safety: All public static members of this type are safe for multithreaded operations. 23 
No instance members are guaranteed to be thread safe. 24 
 25 
Description 26 

Streams involve three fundamental operations:  27 

· You can read from streams. Reading is the transfer of data from a stream into a data 28 
structure, such as an array of bytes. 29 

· You can write to streams. Writing is the transfer of data from a data structure into a 30 
stream. 31 

· Streams can support seeking. Seeking is the querying and modifying of the current 32 
position within a stream. Seek capability depends on the kind of backing store a 33 
stream has. For example, network streams have no unified concept of a current 34 
position, and therefore typically do not support seeking. 35 



 2 

All classes that represent streams inherit from the System.IO.Stream class. The 1 
System.IO.Stream class and its subclasses provide a generic view of data sources and 2 
repositories, isolating the programmer from the specific details of the operating system and 3 
underlying devices. 4 
 5 
Subclasses are required to provide implementations only for the synchronous read and write 6 
methods. The asynchronous read and write methods are implemented via the synchronous 7 
ones. [Note: The System.IO.Stream synchronous read and write methods are 8 
System.IO.Stream.Read and System.IO.Stream.Write. The asynchronous read and write 9 
methods are System.IO.Stream.BeginRead, System.IO.Stream.EndRead, 10 
System.IO.Stream.BeginWrite, and System.IO.Stream.EndWrite.] 11 
 12 
 13 
 14 
Depending on the underlying data source or repository, streams might support only some of 15 
these capabilities. An application can query a stream for its capabilities by using the 16 
System.IO.Stream.CanRead, System.IO.Stream.CanWrite, and 17 
System.IO.Stream.CanSeek properties. 18 
 19 
The System.IO.Stream.Read and System.IO.Stream.Write methods read and write data in 20 
a variety of formats. For streams that support seeking, the System.IO.Stream.Seek and 21 
System.IO.Stream.SetLength methods, and the System.IO.Stream.Position and 22 
System.IO.Stream.Length properties can be used to query and modify the current position 23 
and length of a stream. 24 
 25 
Some stream implementations perform local buffering of the underlying data to improve 26 
performance. For such streams, the System.IO.Stream.Flush method can be used to clear 27 
any internal buffers and ensure that all data has been written to the underlying data source 28 
or repository. 29 
 30 
Calling System.IO.Stream.Close on a System.IO.Stream flushes any buffered data, 31 
essentially calling System.IO.Stream.Flush for you. System.IO.Stream.Close also 32 
releases operating system resources such as file handles, network connections, or memory 33 
used for any internal buffering. 34 
 35 
If you need a System.IO.Stream with no backing store (i.e., a bit bucket), use 36 
System.IO.Stream.Null.  37 

38 



 3 

 Stream() Constructor 1 

[ILAsm] 2 
family rtspecialname specialname instance void .ctor() 3 

[C#] 4 
protected Stream() 5 

Summary 6 

Constructs a new instance of the System.IO.Stream class. 7 

8 



 4 

 Stream.Null Field 1 

[ILAsm] 2 
.field public static initOnly class System.IO.Stream Null 3 

[C#] 4 
public static readonly Stream Null 5 

Summary 6 

Returns a System.IO.Stream with no backing store. 7 

Description 8 

[Note: System.IO.Stream.Null is used to redirect output to a stream that does not 9 
consume any operating system resources. When the methods of System.IO.Stream that 10 
provide writing are invoked on System.IO.Stream.Null, they simply return, and no 11 
data is written. System.IO.Stream.Null also implements a System.IO.Stream.Read 12 
method that returns zero without reading data.] 13 
 14 
 15 

16 



 5 

 Stream.BeginRead(System.Byte[], 1 

System.Int32, System.Int32, 2 

System.AsyncCallback, System.Object) 3 

Method 4 

[ILAsm] 5 
.method public hidebysig virtual class System.IAsyncResult BeginRead(class 6 
System.Byte[] buffer, int32 offset, int32 count, class 7 
System.AsyncCallback callback, object state) 8 

[C#] 9 
public virtual IAsyncResult BeginRead(byte[] buffer, int offset, int 10 
count, AsyncCallback callback, object state) 11 

Summary 12 

Begins an asynchronous read operation. 13 

Parameters 14 
 15 
 16 

Parameter Description 

buffer The System.Byte array to read the data into. 

offset 
A System.Int32 that specifies the byte offset in buffer at which to begin writing 
data read from the stream. 

count 
A System.Int32 that specifies the maximum number of bytes to read from the 
stream. 

callback 
A System.AsyncCallback delegate to be called when the read is complete, or 
null. 

state An application-defined object, or null. 

 17 
Return Value 18 
 19 

A System.IAsyncResult that contains information about the asynchronous read 20 
operation, which could still be pending. 21 

Description 22 



 6 

This method starts an asynchronous read operation. To determine how many bytes were 1 
read and release resources allocated by this method, call the 2 
System.IO.Stream.EndRead method and specify the System.IAsyncResult object 3 
returned by this method. [Note: The System.IO.Stream.EndRead method should be 4 
called exactly once for each call to System.IO.Stream.BeginRead.] 5 
 6 
 7 
 8 
If the callback parameter is not null, the method referenced by callback is invoked 9 
when the asynchronous operation completes. The System.IAsyncResult object 10 
returned by this method is passed as the argument to the method referenced by 11 
callback. 12 
 13 
The current position in the stream is updated when the asynchronous read or write is 14 
issued, not when the I/O operation completes. 15 
 16 
Multiple simultaneous asynchronous requests render the request completion order 17 
unspecified. 18 
 19 
The state parameter can be any object that the caller wishes to have available for the 20 
duration of the asynchronous operation. This object is available via the 21 
System.IAsyncResult.AsyncState property of the object returned by this method.  22 
 23 
[Note: Use the System.IO.Stream.CanRead property to determine whether the current 24 
instance supports reading.] 25 
 26 
 27 

Behaviors 28 

As described above. 29 

 30 

Exceptions 31 
 32 
 33 

Exception Condition 

System.NotSupportedException 
The current System.IO.Stream does not support 
reading. 

System.ObjectDisposedException The stream is closed. 

System.IO.IOException An I/O error occurred. 

 34 
 35 



 7 

1 



 8 

 Stream.BeginWrite(System.Byte[], 1 

System.Int32, System.Int32, 2 

System.AsyncCallback, System.Object) 3 

Method 4 

[ILAsm] 5 
.method public hidebysig virtual class System.IAsyncResult 6 
BeginWrite(class System.Byte[] buffer, int32 offset, int32 count, class 7 
System.AsyncCallback callback, object state) 8 

[C#] 9 
public virtual IAsyncResult BeginWrite(byte[] buffer, int offset, int 10 
count, AsyncCallback callback, object state) 11 

Summary 12 

Begins an asynchronous write operation. 13 

Parameters 14 
 15 
 16 

Parameter Description 

buffer The System.Byte array to be written to the current stream. 

offset 
A System.Int32 that specifies the byte offset in buffer at which to begin 
copying bytes to the current stream. 

count 
A System.Int32 that specifies the maximum number of bytes to be written to 
the current stream. 

callback 
A System.AsyncCallback delegate to be called when the write is complete, or 
null. 

state An application-defined object, or null. 

 17 
Return Value 18 
 19 

A System.IAsyncResult that represents the asynchronous write, which could still be 20 
pending. 21 

Description 22 



 9 

Pass the System.IAsyncResult returned by this method to 1 
System.IO.Stream.EndWrite to ensure that the write completes and frees resources 2 
appropriately. If an error occurs during an asynchronous write, an exception will not be 3 
thrown until System.IO.Stream.EndWrite is called with the System.IAsyncResult 4 
returned by this method. [Note: If a failure is detected from the underlying OS (such as 5 
if a floppy is ejected in the middle of the operation), the results of the write operation 6 
are undefined.] 7 
 8 
 9 
 10 
If the callback parameter is not null, the method referenced by callback is invoked 11 
when the asynchronous operation completes. The System.IAsyncResult object 12 
returned by this method is passed as the argument to the method referenced by 13 
callback. 14 
 15 
The state parameter can be any object that the caller wishes to have available for the 16 
duration of the asynchronous operation. This object is available via the 17 
System.IAsyncResult.AsyncState property of the object returned by this method.  18 
 19 
If a stream is writable, writing at the end of it expands the stream. 20 
 21 
The current position in the stream is updated when you issue the asynchronous read or 22 
write, not when the I/O operation completes. Multiple simultaneous asynchronous 23 
requests render the request completion order uncertain. 24 
 25 
[Note: buffer should generally be greater than 64 KB. 26 
 27 
Use the System.IO.Stream.CanWrite property to determine whether the current 28 
instance supports writing. 29 
 30 
] 31 

Behaviors 32 

As described above. 33 

 34 

Exceptions 35 
 36 
 37 

Exception Condition 

System.NotSupportedException 
The current System.IO.Stream does not support 
writing. 

System.ObjectDisposedException The stream is closed. 



 10 

System.IO.IOException An I/O error occurred. 

 1 
 2 

3 



 11 

 Stream.Close() Method 1 

[ILAsm] 2 
.method public hidebysig virtual void Close() 3 

[C#] 4 
public virtual void Close() 5 

Summary 6 

Closes the current stream and releases any resources associated with the current 7 
stream. 8 

Description 9 

Following a call to this method, a call to another operation on the same stream might 10 
result in an exception (such as System.ObjectDisposedException, for example). 11 
However, if the stream is already closed, a call to System.IO.Stream.Close throws no 12 
exceptions. 13 
 14 
[Note: If this method is called while an asynchronous read or write is pending for a 15 
stream, the behavior of the stream is undefined.] 16 
 17 
 18 

Behaviors 19 

As described above. 20 

 21 

22 



 12 

 Stream.CreateWaitHandle() Method 1 

[ILAsm] 2 
.method family hidebysig virtual class System.Threading.WaitHandle 3 
CreateWaitHandle() 4 

[C#] 5 
protected virtual WaitHandle CreateWaitHandle() 6 

Summary 7 

Allocates a System.Threading.WaitHandle object. 8 

Return Value 9 
 10 

A reference to the allocated System.Threading.WaitHandle. 11 

Description 12 

When called for the first time this method creates a System.Threading.WaitHandle 13 
object and returns it. On subsequent calls, the System.IO.Stream.CreateWaitHandle 14 
method returns a reference to the same wait handle. 15 
 16 
[Note: System.IO.Stream.CreateWaitHandle is useful if you implement the 17 
asynchronous methods and require a way of blocking in System.IO.Stream.EndRead or 18 
System.IO.Stream.EndWrite until the asynchronous operation is complete.] 19 
 20 
 21 

22 



 13 

 Stream.EndRead(System.IAsyncResult) 1 

Method 2 

[ILAsm] 3 
.method public hidebysig virtual int32 EndRead(class System.IAsyncResult 4 
asyncResult) 5 

[C#] 6 
public virtual int EndRead(IAsyncResult asyncResult) 7 

Summary 8 

Ends a pending asynchronous read request. 9 

Parameters 10 
 11 
 12 

Parameter Description 

asyncResult 
The System.IAsyncResult object that references the pending asynchronous 
read request. 

 13 
Return Value 14 
 15 

A System.Int32 that indicates the number of bytes read from the stream, between 0 16 
and the number of bytes specified via the System.IO.Stream.BeginRead parameter 17 
count. Streams only return 0 at the end of the stream, otherwise, they block until at 18 
least 1 byte is available. 19 

Description 20 

System.IO.Stream.EndRead blocks until the I/O operation has completed. 21 

Behaviors 22 

As described above. 23 

 24 

Exceptions 25 
 26 
 27 



 14 

Exception Condition 

System.ArgumentNullException asyncResult is null. 

System.ArgumentException 
asyncResult did not originate from a 
System.IO.Stream.BeginRead method on the current 
stream. 

 1 
 2 

3 



 15 

 Stream.EndWrite(System.IAsyncResult) 1 

Method 2 

[ILAsm] 3 
.method public hidebysig virtual void EndWrite(class System.IAsyncResult 4 
asyncResult) 5 

[C#] 6 
public virtual void EndWrite(IAsyncResult asyncResult) 7 

Summary 8 

Ends an asynchronous write operation. 9 

Parameters 10 
 11 
 12 

Parameter Description 

asyncResult 
A System.IAsyncResult that references the outstanding asynchronous I/O 
request. 

 13 
Description 14 

System.IO.Stream.EndWrite is required to be called exactly once for every 15 
System.IO.Stream.BeginWrite. System.IO.Stream.EndWrite blocks until the write I/O 16 
operation has completed. 17 

Behaviors 18 

As described above. 19 

 20 

Exceptions 21 
 22 
 23 

Exception Condition 

System.ArgumentNullException The asyncResult parameter is null. 

System.ArgumentException asyncResult did not originate from a 
System.IO.Stream.BeginWrite method on the current 



 16 

stream. 

 1 
 2 

3 



 17 

 Stream.Flush() Method 1 

[ILAsm] 2 
.method public hidebysig virtual abstract void Flush() 3 

[C#] 4 
public abstract void Flush() 5 

Summary 6 

Flushes the internal buffer. 7 

Description 8 

[Note: Implementers should use this method to move any information from an 9 
underlying buffer to its destination. The System.IO.Stream.Flush method should clear 10 
the buffer, but the stream should not be closed. Depending upon the state of the object, 11 
the current position within the stream might need to be modified (for example, if the 12 
underlying stream supports seeking). For additional information see 13 
System.IO.Stream.CanSeek.] 14 
 15 
 16 

Behaviors 17 

As described above. 18 

 19 

How and When to Override 20 

Override System.IO.Stream.Flush on streams that implement a buffer. 21 

 22 

Exceptions 23 
 24 
 25 

Exception Condition 

System.IO.IOException An I/O error occurs. 

System.ObjectDisposedException The stream is closed. 

 26 
 27 

28 



 18 

 Stream.Read(System.Byte[], System.Int32, 1 

System.Int32) Method 2 

[ILAsm] 3 
.method public hidebysig virtual abstract int32 Read(class System.Byte[] 4 
buffer, int32 offset, int32 count) 5 

[C#] 6 
public abstract int Read(byte[] buffer, int offset, int count) 7 

Summary 8 

Reads a sequence of bytes from the current stream and advances the position within the 9 
stream by the number of bytes read. 10 

Parameters 11 
 12 
 13 

Parameter Description 

buffer 
A System.Byte array. When this method returns, the elements between offset 
and (offset + count - 1) are replaced by the bytes read from the current 
source. 

offset 
A System.Int32 that specifies the zero based byte offset in buffer at which to 
begin storing the data read from the current stream. 

count 
A System.Int32 that specifies the maximum number of bytes to be read from 
the current stream. 

 14 
Return Value 15 
 16 

A System.Int32 that specifies the total number of bytes read into the buffer, or zero if 17 
the end of the stream has been reached before any data can be read. 18 

Description 19 

[Note: Use the System.IO.Stream.CanRead property to determine whether the current 20 
instance supports reading.] 21 
 22 
 23 

Behaviors 24 



 19 

As described above. 1 

 2 

Exceptions 3 
 4 
 5 

Exception Condition 

System.ArgumentException (offset + count - 1) is greater than the length 
of buffer. 

System.ArgumentNullException buffer is null. 

System.ArgumentOutOfRangeException offset or count is less than zero. 

System.NotSupportedException The current stream does not support reading. 

System.ObjectDisposedException The stream is closed. 

System.IO.IOException An I/O error occurred. 

 6 
 7 

8 



 20 

 Stream.ReadByte() Method 1 

[ILAsm] 2 
.method public hidebysig virtual int32 ReadByte() 3 

[C#] 4 
public virtual int ReadByte() 5 

Summary 6 

Reads a byte from the stream and advances the position within the stream by one byte. 7 

Return Value 8 
 9 

The unsigned byte cast to a System.Int32, or -1 if at the end of the stream. 10 

Description 11 

Behaviors 12 

As described above. 13 

 14 
 15 
[Note: Use the System.IO.Stream.CanRead property to determine whether the current 16 
instance supports reading.] 17 
 18 
 19 

Exceptions 20 
 21 
 22 

Exception Condition 

System.NotSupportedException The stream does not support reading. 

System.ObjectDisposedException The stream is closed.  

System.IO.IOException An I/O error has occurred. 

 23 
 24 

25 



 21 

 Stream.Seek(System.Int64, 1 

System.IO.SeekOrigin) Method 2 

[ILAsm] 3 
.method public hidebysig virtual abstract int64 Seek(int64 offset, 4 
valuetype System.IO.SeekOrigin origin) 5 

[C#] 6 
public abstract long Seek(long offset, SeekOrigin origin) 7 

Summary 8 

Changes the position within the current stream by the given offset, which is relative to 9 
the stated origin. 10 

Parameters 11 
 12 
 13 

Parameter Description 

offset A System.Int64 that specifies the byte offset relative to origin. 

origin 
A System.IO.SeekOrigin value indicating the reference point used to obtain 
the new position. 

 14 
Return Value 15 
 16 

A System.Int64 that specifies the new position within the current stream. 17 

Description 18 

[Note: Use the System.IO.Stream.CanSeek property to determine whether the current 19 
instance supports seeking.] 20 
 21 
 22 

Behaviors 23 

If offset is negative, the new position is required to precede the position specified by 24 
origin by the number of bytes specified by offset. If offset is zero, the new position is 25 
required to be the position specified by origin. If offset is positive, the new position is 26 
required to follow the position specified by origin by the number of bytes specified by 27 
offset. 28 



 22 

 1 

How and When to Override 2 

Classes derived from System.IO.Stream that support seeking are required to override 3 
this method.  4 

Exceptions 5 
 6 
 7 

Exception Condition 

System.NotSupportedException The stream does not support seeking, such as if the 
stream is constructed from a pipe or console output. 

System.ObjectDisposedException The stream is closed. 

System.IO.IOException An I/O error has occurred. 

 8 
 9 

10 



 23 

 Stream.SetLength(System.Int64) Method 1 

[ILAsm] 2 
.method public hidebysig virtual abstract void SetLength(int64 value) 3 

[C#] 4 
public abstract void SetLength(long value) 5 

Summary 6 

Sets the length of the current stream. 7 

Parameters 8 
 9 
 10 

Parameter Description 

value 
A System.Int64 that specifies the desired length of the current stream in 
bytes. 

 11 
Description 12 

[Note: Use the System.IO.Stream.CanWrite property to determine whether the current 13 
instance supports writing, and the System.IO.Stream.CanSeek property to determine 14 
whether seeking is supported.] 15 
 16 
 17 

Behaviors 18 

If the specified value is less than the current length of the stream, the stream is 19 
truncated. If the specified value is larger than the current length of the stream, the 20 
stream is expanded. If the stream is expanded, the contents of the stream between the 21 
old and the new length are initialized to zeros. 22 

 23 

Default 24 

There is no default implementation. 25 

 26 

How and When to Override 27 



 24 

Classes derived from System.IO.Stream are required to support both writing and 1 
seeking for System.IO.Stream.SetLength to work. 2 

 3 

Exceptions 4 
 5 
 6 

Exception Condition 

System.NotSupportedException 
The stream does not support both writing and 
seeking, such as if the stream is constructed from a 
pipe or console output. 

System.ObjectDisposedException The stream is closed. 

System.IO.IOException An I/O error occurred. 

 7 
 8 

9 



 25 

 Stream.System.IDisposable.Dispose() 1 

Method 2 

[ILAsm] 3 
.method private final hidebysig virtual void System.IDisposable.Dispose() 4 

[C#] 5 
void IDisposable.Dispose() 6 

Summary 7 

Implemented to support the System.IDisposable interface. [Note: For more 8 
information, see System.IDisposable.Dispose.] 9 

10 



 26 

 Stream.Write(System.Byte[], System.Int32, 1 

System.Int32) Method 2 

[ILAsm] 3 
.method public hidebysig virtual abstract void Write(class System.Byte[] 4 
buffer, int32 offset, int32 count) 5 

[C#] 6 
public abstract void Write(byte[] buffer, int offset, int count) 7 

Summary 8 

Writes a sequence of bytes to the current stream and advances the current position 9 
within the current stream by the number of bytes written. 10 

Parameters 11 
 12 
 13 

Parameter Description 

buffer A System.Byte array containing the data to write. 

offset 
A System.Int32 that specifies the zero based byte offset in buffer at which to 
begin copying bytes to the current stream. 

count 
A System.Int32 that specifies the number of bytes to be written to the current 
stream. 

 14 
Description 15 

[Note: Use the System.IO.Stream.CanWrite property to determine whether the current 16 
instance supports writing.] 17 
 18 
 19 

Behaviors 20 

If the write operation is successful, the position within the stream advances by the 21 
number of bytes written. If an exception occurs, the position within the stream remains 22 
unchanged. 23 

 24 



 27 

Exceptions 1 
 2 
 3 

Exception Condition 

System.ArgumentException (offset + count ) is greater than the length of 
buffer. 

System.ArgumentNullException buffer is null. 

System.ArgumentOutOfRangeException offset or count is negative. 

System.NotSupportedException The stream does not support writing. 

System.ObjectDisposedException The stream is closed. 

System.IO.IOException An I/O error occurred. 

 4 
 5 

6 



 28 

 Stream.WriteByte(System.Byte) Method 1 

[ILAsm] 2 
.method public hidebysig virtual void WriteByte(unsigned int8 value) 3 

[C#] 4 
public virtual void WriteByte(byte value) 5 

Summary 6 

Writes a System.Byte to the current position in the stream and advances the position 7 
within the stream by one byte. 8 

Parameters 9 
 10 
 11 

Parameter Description 

value The System.Byte to write to the stream. 

 12 
Description 13 

[Note: Use the System.IO.Stream.CanWrite property to determine whether the current 14 
instance supports writing.] 15 
 16 
 17 

Behaviors 18 

As described above. 19 

 20 

Exceptions 21 
 22 
 23 

Exception Condition 

System.NotSupportedException The stream does not support writing. 

System.ObjectDisposedException The stream is closed. 

System.IO.IOException An I/O error has occurred. 



 29 

 1 
 2 

3 



 30 

 Stream.CanRead Property 1 

[ILAsm] 2 
.property bool CanRead { public hidebysig virtual abstract specialname 3 
bool get_CanRead() } 4 

[C#] 5 
public abstract bool CanRead { get; } 6 

Summary 7 

Gets a System.Boolean value indicating whether the current stream supports reading. 8 

Property Value 9 
 10 

true if the stream supports reading; otherwise, false. 11 

Description 12 

If a class derived from System.IO.Stream does not support reading, the following 13 
methods throw a System.NotSupportedException: System.IO.Stream.BeginRead, 14 
System.IO.Stream.Read and System.IO.Stream.ReadByte. 15 

Behaviors 16 

As described above. 17 

 18 

19 



 31 

 Stream.CanSeek Property 1 

[ILAsm] 2 
.property bool CanSeek { public hidebysig virtual abstract specialname 3 
bool get_CanSeek() } 4 

[C#] 5 
public abstract bool CanSeek { get; } 6 

Summary 7 

Gets a System.Boolean value indicating whether the current stream supports seeking. 8 

Property Value 9 
 10 

true if the stream supports seeking; otherwise, false. 11 

Description 12 

If a class derived from System.IO.Stream does not support seeking, the following 13 
methods throw a System.NotSupportedException: System.IO.Stream.Length, 14 
System.IO.Stream.SetLength, System.IO.Stream.Position, or 15 
System.IO.Stream.Seek. 16 

Behaviors 17 

As described above. 18 

 19 

20 



 32 

 Stream.CanWrite Property 1 

[ILAsm] 2 
.property bool CanWrite { public hidebysig virtual abstract specialname 3 
bool get_CanWrite() } 4 

[C#] 5 
public abstract bool CanWrite { get; } 6 

Summary 7 

Gets a System.Boolean value indicating whether the current stream supports writing. 8 

Property Value 9 
 10 

true if the stream supports writing; otherwise, false. 11 

Description 12 

If a class derived from System.IO.Stream does not support writing, the following 13 
methods throw a System.NotSupportedException: System.IO.Stream.Write, 14 
System.IO.Stream.WriteByte, and System.IO.Stream.BeginWrite. 15 

Behaviors 16 

As described above. 17 

 18 

19 



 33 

 Stream.Length Property 1 

[ILAsm] 2 
.property int64 Length { public hidebysig virtual abstract specialname 3 
int64 get_Length() } 4 

[C#] 5 
public abstract long Length { get; } 6 

Summary 7 

Gets the length in bytes of the stream. 8 

Property Value 9 
 10 

A System.Int64 value representing the length of the stream in bytes. 11 

Description 12 

[Note: Use the System.IO.Stream.CanSeek property to determine whether the current 13 
instance supports seeking.] 14 
 15 
 16 

Behaviors 17 

This property is read-only. 18 

 19 

Exceptions 20 
 21 
 22 

Exception Condition 

System.NotSupportedException The stream does not support seeking. 

System.ObjectDisposedException The stream is closed. 

 23 
 24 

25 



 34 

 Stream.Position Property 1 

[ILAsm] 2 
.property int64 Position { public hidebysig virtual abstract specialname 3 
int64 get_Position() public hidebysig virtual abstract specialname void 4 
set_Position(int64 value) } 5 

[C#] 6 
public abstract long Position { get; set; } 7 

Summary 8 

Gets or sets the position within the current stream. 9 

Property Value 10 
 11 

A System.Int64 that specifies the current position within the stream. 12 

Description 13 

The stream is required to support seeking to get or set the position. [Note: Use the 14 
System.IO.Stream.CanSeek property to determine whether the current instance 15 
supports seeking.] 16 
 17 
 18 
 19 
Classes that derive from System.IO.Stream are required to provide an implementation 20 
of this property.  21 

Behaviors 22 

As described above. 23 

 24 

Exceptions 25 
 26 
 27 

Exception Condition 

System.NotSupportedException The stream does not support seeking. 

System.ObjectDisposedException The stream is closed.  

System.IO.IOException An I/O error has occurred. 



 35 

 1 
 2 


	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	How and When to Override
	Behaviors
	Behaviors
	Behaviors
	How and When to Override
	Behaviors
	Default
	How and When to Override
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Behaviors

