
 1

System.Threading.ThreadAbortException 1

Class 2

 3

[ILAsm] 4
.class public sealed serializable ThreadAbortException extends 5
System.SystemException 6

[C#] 7
public sealed class ThreadAbortException: SystemException 8

Assembly Info: 9

· Name: mscorlib 10
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 11
· Version: 2.0.x.x 12
· Attributes: 13

o CLSCompliantAttribute(true) 14

Summary 15
 16

Thrown by the system when a call is made to System.Threading.Thread.Abort. 17

Inherits From: System.SystemException 18
 19
Library: BCL 20
 21
Thread Safety: All public static members of this type are safe for multithreaded operations. 22
No instance members are guaranteed to be thread safe. 23
 24
Description 25

Instances of this exception type can only be created by the system. 26
 27
When a call is made to System.Threading.Thread.Abort to terminate a thread, the 28
system throws a System.Threading.ThreadAbortException in the target thread. 29
System.Threading.ThreadAbortException is a special exception that can be caught by 30
application code, but is rethrown at the end of the catch block unless 31
System.Threading.Thread.ResetAbort is called. When the ThreadAbortException 32
exception is raised, the system executes any finally blocks for the target thread. The 33
finally blocks are executed even if System.Threading.Thread.ResetAbort is called. If 34
the abort is successful, the target thread is left in the 35
System.Threading.ThreadState.Stopped and 36
System.Threading.ThreadState.Aborted states. 37

 2

Example 1
 2

The following example demonstrates aborting a thread. The thread that receives the 3
System.Threading.ThreadAbortException uses the 4
System.Threading.Thread.ResetAbort method to cancel the abort request and 5
continue executing. 6
 7
[C#] 8

using System; 9
using System.Threading; 10
using System.Security.Permissions; 11
 12
public class ThreadWork { 13
 public static void DoWork() { 14
 try { 15
 for (int i=0; i<100; i++) { 16
 Console.WriteLine("Thread - working."); 17
 Thread.Sleep(100); 18
 } 19
 } 20
 catch (ThreadAbortException e) { 21
 Console.WriteLine("Thread - caught ThreadAbortException - resetting."); 22
 Thread.ResetAbort(); 23
 } 24
 Console.WriteLine("Thread - still alive and working."); 25
 Thread.Sleep(1000); 26
 Console.WriteLine("Thread - finished working."); 27
 } 28
} 29
 30
class ThreadAbortTest{ 31
 public static void Main() { 32
 ThreadStart myThreadDelegate = new ThreadStart(ThreadWork.DoWork); 33
 Thread myThread = new Thread(myThreadDelegate); 34
 myThread.Start(); 35
 Thread.Sleep(100); 36
 Console.WriteLine("Main - aborting my thread."); 37
 myThread.Abort(); 38
 myThread.Join(); 39
 Console.WriteLine("Main ending."); 40
 } 41
} 42
 43
The output is 44
 45
Thread - working. 46
 47
 48
Main - aborting my thread. 49
 50
 51
Thread - caught ThreadAbortException - resetting. 52

 3

 1
 2
Thread - still alive and working. 3
 4
 5
Thread - finished working. 6
 7
 8
Main ending. 9
 10

11

 4

 ThreadAbortException.ExceptionState 1

Property 2

[ILAsm] 3
.property object ExceptionState { public hidebysig specialname instance 4
object get_ExceptionState() } 5

[C#] 6
public object ExceptionState { get; } 7

Summary 8

Gets an object that contains application-specific information related to the thread abort. 9

Property Value 10
 11

A System.Object. 12

Description 13

This property is read-only. 14
 15
The object returned by this property is specified via the stateInfo parameter of 16
System.Threading.Thread.Abort. This property returns null if no object was 17
specified, or the System.Threading.Thread.Abort method with no parameters was 18
called. The exact content and usage of this object is application-defined; it is typically 19
used to convey information that is meaningful to the thread being aborted. 20

 21

