
System.Threading.Parallel.ParallelLoop<T> Class

[ILAsm]
.class public abstract serializable ParallelLoop<T> implements System.IDisposable
[C#]
public abstract class ParallelLoop<T>: IDisposable
Assembly Info:
· Name: System.Threading.Parallel

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Implements:
· System.IDisposable

Summary

A parallel loop over iteration values of type T.

Inherits From: System.Object

Library: Parallel

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members, unless specifically stated, are guaranteed to be thread safe.

Description
Abstract generic class System.Threading.Parallel.ParallelLoop<T> abstracts common behavior of the loop classes that iterate over values of type T. Its derived classes differ in how the iteration space is defined.

Iteration commences once method System.Threading.Parallel.ParallelLoop<T>.BeginRun is called. The callback is applied to each iteration value. A conforming implementation can use the thread calling System.Threading.Parallel.ParallelLoop<T>.BeginRun to execute all iterations, regardless of the value of System.Threading.Parallel.ParallelLoop<T>.MaxThreads. The thread that calls System.Threading.Parallel.ParallelLoop<T>.BeginRun shall call method System.Threading.Parallel.ParallelLoop<T>.EndRun to block until all iterations complete or are cancelled. When System.Threading.Parallel.ParallelLoop<T>.EndRun is called, the calling thread can be employed as a worker thread.

Calling method System.Threading.Parallel.ParallelLoop<T>.Run is equivalent to calling System.Threading.Parallel.ParallelLoop<T>.BeginRun followed by calling â€œSystem.Threading.Parallel.ParallelLoop<T>.EndRun.

A parallel loop can be cancelled at any time (even before it starts running) by calling method System.Threading.Parallel.ParallelLoop<T>.Cancel. Cancellation is asynchronous in the sense that method System.Threading.Parallel.ParallelLoop<T>.Cancel can return while portions of the loop are still running. Any number of threads can call System.Threading.Parallel.ParallelLoop<T>.Cancel on the same object. Cancellation affects only iterations that have not yet been issued to worker threads. Outstanding iterations are completed normally.

If one or more invocations of a callback throws an unhandled exception, the rest of the loop is cancelled. One of the exceptions is saved inside the System.Threading.Parallel.ParallelLoop<T> until the loop has stopped running, and then the saved exception is rethrown when method System.Threading.Parallel.ParallelLoop<T>.EndRun is invoked. In the case of multiple exceptions, the implementation can choose any one of the exceptions to save and rethrow.

 ParallelLoop<T>.BeginRun(System.Action<T>) Method
[ILAsm]
.method public hidebysig abstract void BeginRun(class System.Action<!0> action)
[C#]
public abstract void BeginRun(Action<T> action)
Summary
Begin executing iterations, applying the action delegate to each iteration value.

Parameters

	Parameter
	Description

	action
	The System.Delegateto apply to each iteration value.

Description
This method is not thread safe. It should be called only once for a given instance of a System.Threading.Parallel.ParallelLoop<T>.

If one or more invocations of a callback throws an unhandled exception, the rest of the loop is cancelled. One of the exceptions is saved inside the System.Threading.Parallel.ParallelLoop<T>until the loop has stopped running, and then the saved exception is rethrown when method EndRun is invoked. In the case of multiple exceptions, the implementation can choose any one of the exceptions to save and rethrow.

[Note: Implementations, particularly on single-threaded hardware, are free to employ the calling thread to execute all loop iterations.]

[Note: The return value is void, not System.IAsyncResult, and there is no callBack or stateObject arguments. This departure from the usual asynchronous call pattern (e.g. FileStreamBeginRead) is deliberate, because in typical scenarios the extra complexity would just add pointless burden on the implementation.]

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	action is null.

 ParallelLoop<T>.Cancel() Method
[ILAsm]
.method public hidebysig abstract virtual void Cancel()
[C#]
public abstract void Cancel()
Summary
Eventually cancel issuance of any further iterations

Description
A System.Threading.Parallel.ParallelLoop<T> can be cancelled at any time (even before it starts running) by calling method Cancel. Cancellation is asynchronous in the sense that method Cancel can return while portions of the loop are still running. Any number of threads can concurrently call Cancel on the same object. Cancellation affects only iterations that have not yet been issued to worker threads. Outstanding iterations are completed normally.

 ParallelLoop<T>.EndRun() Method
[ILAsm]
.method public hidebysig virtual void EndRun()
[C#]
public void EndRun()
Summary
Wait until all iterations are finished (or cancelled).

Description
This method is not thread safe. It should be called exactly once by the thread that called System.Threading.Parallel.ParallelLoop<T>.BeginRun.

 ParallelLoop<T>.Run(System.Action<T>) Method
[ILAsm]
.method public hidebysig virtual abstract void Run(class System.Action<!0> action)
[C#]
public void Run(Action<T> action)
Summary
Start processing of loop iterations and wait until done.

Parameters

	Parameter
	Description

	action
	The System.Delegate applied to each iteration value

This method is equivalent to calling System.Threading.Parallel.ParallelLoop<T>.BeginRun followed by calling System.Threading.Parallel.ParallelLoop<T>.EndRun.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	action is null.

PAGE
1

