
 1

System.Runtime.CompilerServices.MethodIm1

plOptions Enum 2

 3

[ILAsm] 4
.class public sealed serializable MethodImplOptions extends System.Enum 5

[C#] 6
public enum MethodImplOptions 7

Assembly Info: 8

· Name: mscorlib 9
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 10
· Version: 2.0.x.x 11
· Attributes: 12

o CLSCompliantAttribute(true) 13

Summary 14
 15

Defines the details of how a method is implemented. 16

Inherits From: System.Enum 17
 18
Library: RuntimeInfrastructure 19
 20
Description 21

This enumeration is used by 22
System.Runtime.CompilerServices.MethodImplAttribute. 23

24

 2

 MethodImplOptions.ForwardRef Field 1

[ILAsm] 2
.field public static literal valuetype 3
System.Runtime.CompilerServices.MethodImplOptions ForwardRef = 16 4

[C#] 5
ForwardRef = 16 6

Summary 7

Specifies that the method is declared, but its implementation is provided elsewhere. 8
 9
[Note: For most languages, it is recommended that the notion of "forward" be attached 10
to methods using language syntax instead of custom attributes.] 11
 12
 13

14

 3

 MethodImplOptions.InternalCall Field 1

[ILAsm] 2
.field public static literal valuetype 3
System.Runtime.CompilerServices.MethodImplOptions InternalCall = 4096 4

[C#] 5
InternalCall = 4096 6

Summary 7

Specifies an internal call. 8
 9
[Note: An internal call is a call to a method implemented within the system itself, 10
providing additional functionality that regular managed code cannot provide. 11
System.Object.MemberwiseClone is an example of an internally called method.] 12
 13
 14

15

 4

 MethodImplOptions.NoInlining Field 1

[ILAsm] 2
.field public static literal valuetype 3
System.Runtime.CompilerServices.MethodImplOptions NoInlining = 8 4

[C#] 5
NoInlining = 8 6

Summary 7

Specifies that the method is not permitted to be inlined. 8

9

 5

 MethodImplOptions.Synchronized Field 1

[ILAsm] 2
.field public static literal valuetype 3
System.Runtime.CompilerServices.MethodImplOptions Synchronized = 32 4

[C#] 5
Synchronized = 32 6

Summary 7

Specifies the method can be executed by only one thread at a time. 8
 9
This option specifies that before a thread can execute the target method, the thread is 10
required to acquire a lock on either the current instance or the System.Type object for 11
the method's class. If the target method is an instance method, the lock is on the 12
current instance. If the target is a static method, the lock is on the System.Type object. 13
Specifying this option causes the target method to behave as though its statements are 14
enclosed by System.Threading.Monitor.Enter and System.Threading.Monitor.Exit 15
statements locking the previous described object. This option and the 16
System.Threading.Monitor methods are functionally equivalent, and both are 17
functionally equivalent to enclosing the target method's code in a C# lock (this) 18
statement. 19
 20
[Note: Because this option holds the lock for the duration of the target method, it should 21
be used only when the entire method must be single threaded. Use the 22
System.Threading.Monitor methods (or the C# lock statement) if the object lock can 23
be taken after the method begins, or released before the method ends. Any mechanism 24
that uses locks can cause an application to experience deadlocks and performance 25
degradation; for these reasons, use this option with care. 26
 27
For most languages, it is recommended that the notion of "synchronized" be attached to 28
methods using language syntax instead of custom attributes. 29
 30
] 31

32

 6

 MethodImplOptions.Unmanaged Field 1

[ILAsm] 2
.field public static literal valuetype 3
System.Runtime.CompilerServices.MethodImplOptions Unmanaged = 4 4

[C#] 5
Unmanaged = 4 6

Summary 7

Specifies that the method is implemented in unmanaged code. 8

 9

