
System.IO.TextReader Class

[ILAsm]
.class public abstract serializable TextReader extends System.MarshalByRefObject implements System.IDisposable
[C#]
public abstract class TextReader: MarshalByRefObject, IDisposable
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Implements:
· System.IDisposable

Summary

Represents an object that can read a sequential series of characters.

Inherits From: System.MarshalByRefObject

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.

Description
System.IO.TextReader is designed for character input, whereas the System.IO.StreamReader is designed for byte input and the System.IO.StringReader class is designed for reading from a string.

By default, a System.IO.TextReader is not thread safe. For information on creating a thread-safe System.IO.TextReader, see System.IO.TextReader.Synchronized.

 TextReader() Constructor
[ILAsm]
family rtspecialname specialname instance void .ctor()
[C#]
protected TextReader()
Summary
Constructs a new instance of the System.IO.TextReader class.

 TextReader.Null Field
[ILAsm]
.field public static initOnly class System.IO.TextReader Null
[C#]
public static readonly TextReader Null
Summary
Provides a System.IO.TextReader with no data to read from.

Description
Reading from the System.IO.TextReader.Null text reader is similar to reading from the end of a stream:

· System.IO.TextReader.Read() and System.IO.TextReader.Peek methods return -1

· System.IO.TextReader.Read(System.Char[], System.Int32, System.Int32) and System.IO.TextReader.ReadBlock methods return zero

· System.IO.TextReader.ReadLine and System.IO.TextReader.ReadToEnd methods return null.

 TextReader.Close() Method
[ILAsm]
.method public hidebysig virtual void Close()
[C#]
public virtual void Close()
Summary
Closes the current System.IO.TextReader instance and releases any system resources associated with it.

Description
[Note: After a call to System.IO.TextReader.Close, any IO operation on the current instance might throw an exception.

]

Behaviors

This method is equivalent to System.IO.TextReader.Dispose(true).

Usage

Use this method to close the current instance and free any resources associated with it.

 TextReader.Dispose(System.Boolean) Method
[ILAsm]
.method family hidebysig virtual void Dispose(bool disposing)
[C#]
protected virtual void Dispose(bool disposing)
Summary
Releases the unmanaged resources used by the System.IO.TextReader and optionally releases the managed resources.

Parameters

	Parameter
	Description

	disposing
	true to release both managed and unmanaged resources; false to release only unmanaged resources.

Description
When the disposing parameter is true, this method releases all resources held by any managed objects that this System.IO.TextReader references. This method invokes the Dispose() method of each referenced object.

[Note: System.IO.TextReader.Dispose can be called multiple times by other objects. When overriding System.IO.TextReader.Dispose(System.Boolean), be careful not to reference objects that have been previously disposed in an earlier call to System.IO.TextReader.Dispose.]

 TextReader.Peek() Method
[ILAsm]
.method public hidebysig virtual int32 Peek()
[C#]
public virtual int Peek()
Summary
Reads the next character without changing the state of the reader or the character source.

Return Value

The next character to be read, or -1 if no more characters are available.
Description
The position of the System.IO.TextReader in the source is not changed by this operation.

Behaviors

As described above.

Default

The default implementation returns -1.

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error has occurred.

 TextReader.Read(System.Char[], System.Int32, System.Int32) Method
[ILAsm]
.method public hidebysig virtual int32 Read(class System.Char[] buffer, int32 index, int32 count)
[C#]
public virtual int Read(char[] buffer, int index, int count)
Summary
Reads at most the specified number of characters from the current character source, and writes them to the provided character array.

Parameters

	Parameter
	Description

	buffer
	A System.Char array. When this method returns, contains the specified character array with the values between index and (index + count -1) replaced by the characters read from the current source.

	index
	A System.Int32 that specifies the place in buffer at which to begin writing.

	count
	A System.Int32 that specifies the maximum number of characters to read. If the end of the stream is reached before count of characters is read into buffer, this method returns.

Return Value

A System.Int32 containing the number of characters that were read, or zero if there were no more characters left to read. Can be less than count if the end of the stream has been reached.
Description
System.IO.TextReader.ReadBlock is a blocking version of this method.

Behaviors

The provided character array can be changed only in the specified range.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentException
	(index + count) > buffer.Length.

	System.ArgumentOutOfRangeException
	index < 0

- or-

count < 0.

	System.IO.IOException
	An I/O error occurred.

 TextReader.Read() Method
[ILAsm]
.method public hidebysig virtual int32 Read()
[C#]
public virtual int Read()
Summary
Reads the next character from the character source and advances the character position by one character.

Return Value

The next character from the character source represented as a System.Int32, or -1 if at the end of the stream.
Behaviors

As described above.

Default

The default implementation returns -1.

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error occurred.

 TextReader.ReadBlock(System.Char[], System.Int32, System.Int32) Method
[ILAsm]
.method public hidebysig virtual int32 ReadBlock(class System.Char[] buffer, int32 index, int32 count)
[C#]
public virtual int ReadBlock(char[] buffer, int index, int count)
Summary
Reads a specified number of characters from the current stream into a provided character array.

Parameters

	Parameter
	Description

	buffer
	A System.Char array. When this method returns, contains the specified character array with the values between index and (index + count - 1) replaced by the characters read from the current source.

	index
	A System.Int32 that specifies the index in buffer at which to begin writing.

	count
	A System.Int32 that specifies the maximum number of characters to read.

Return Value

A System.Int32 containing the number of characters that were read, or zero if there were no more characters left to read. Can be less than count if the end of the stream has been reached.
Description
The method blocks until either the specified number of characters are read, or no more characters are available in the source.

Behaviors

As described above.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	buffer is null.

	System.ArgumentException
	(index + count - 1) > buffer.Length.

	System.ArgumentOutOfRangeException
	index < 0

- or-

count < 0.

	System.IO.IOException
	An I/O error occurred.

 TextReader.ReadLine() Method
[ILAsm]
.method public hidebysig virtual string ReadLine()
[C#]
public virtual string ReadLine()
Summary
Reads a line of characters from the current character source.

Return Value

A System.String containing the next line from the input stream, or null if all lines have been read. The returned string does not contain the line terminating character.
Description
A line is defined as a sequence of characters followed by a carriage return (0x000d), a line feed (0x000a), System.Environment.NewLine, or the end of stream marker.

Behaviors

As described above.

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error occurred.

	System.OutOfMemoryException
	There is insufficient memory to allocate a buffer for the returned string.

	System.ArgumentOutOfRangeException
	The number of characters in the next line is larger than System.Int32.MaxValue.

 TextReader.ReadToEnd() Method
[ILAsm]
.method public hidebysig virtual string ReadToEnd()
[C#]
public virtual string ReadToEnd()
Summary
Reads all characters from the current position in the character source to the end of the source.

Return Value

A string containing all characters from the current position to the end of the character source.
Behaviors

As described above.

Exceptions

	Exception
	Condition

	System.IO.IOException
	An I/O error occurred.

	System.OutOfMemoryException
	There is insufficient memory to allocate a buffer for the returned string.

	System.ArgumentOutOfRangeException
	The number of characters from the current position to the end of the underlying stream is larger than System.Int32.MaxValue.

 TextReader.Synchronized(System.IO.TextReader) Method
[ILAsm]
.method public hidebysig static class System.IO.TextReader Synchronized(class System.IO.TextReader reader)
[C#]
public static TextReader Synchronized(TextReader reader)
Summary
Creates a thread-safe wrapper around the specified System.IO.TextReader instance.

Parameters

	Parameter
	Description

	reader
	The System.IO.TextReader to synchronize.

Return Value

A thread-safe System.IO.TextReader.
Description
This method returns a System.IO.TextReader instance that wraps around the specified System.IO.TextReader instance and restricts concurrent access to it by multiple threads.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	The reader parameter is null.

 TextReader.System.IDisposable.Dispose() Method
[ILAsm]
.method private final hidebysig virtual void System.IDisposable.Dispose()
[C#]
void IDisposable.Dispose()
Summary
Implemented to support the System.IDisposable interface. [Note: For more information, see System.IDisposable.Dispose.]

PAGE
1

