
System.Security.Permissions.SecurityPermissionFlag Enum

[ILAsm]
.class public sealed serializable SecurityPermissionFlag extends System.Enum
[C#]
public enum SecurityPermissionFlag
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Type Attributes:
· FlagsAttribute

Summary

Specifies a set of security permissions applied to a System.Security.Permissions.SecurityPermission instance.

Inherits From: System.Enum

Library: BCL

Description
This enumeration is used by System.Security.Permissions.SecurityPermission.

System.Security.Permissions.SecurityPermissionFlag is a bit-field; specify multiple values using the bitwise OR operator.

For information on security, see Partition II of the CLI Specification.

[Note: Many of these flags are powerful and should only be granted to highly trusted code.]

 SecurityPermissionFlag.Assertion Field
[ILAsm]
.field public static literal valuetype System.Security.Permissions.SecurityPermissionFlag Assertion = 0x1
[C#]
Assertion = 0x1
Summary
Specifies the ability to assert that all of the callers of the code granted this permission will pass the check for a specific permission or permission set.

The ability to assert a specific permission or permission set allows code to ensure that its callers do not fail with a security exception for lack of the specific permission or permission set asserted.

[Note: Asserting a permission is often used when writing library code that accesses protected resources but itself does not expose these resources in any exploitable way to the calling code.]

 SecurityPermissionFlag.ControlThread Field
[ILAsm]
.field public static literal valuetype System.Security.Permissions.SecurityPermissionFlag ControlThread = 0x10
[C#]
ControlThread = 0x10
Summary
Specifies the ability to control thread behavior. The operations protected include System.Threading.Thread.Abort and System.Threading.Thread.ResetAbort.

 SecurityPermissionFlag.Execution Field
[ILAsm]
.field public static literal valuetype System.Security.Permissions.SecurityPermissionFlag Execution = 0x8
[C#]
Execution = 0x8
Summary
Specifies permission for the code to run. Without this permission managed code cannot execute.

 SecurityPermissionFlag.NoFlags Field
[ILAsm]
.field public static literal valuetype System.Security.Permissions.SecurityPermissionFlag NoFlags = 0x0
[C#]
NoFlags = 0x0
Summary
Specifies that none of the permissions in this enumeration are available.

 SecurityPermissionFlag.SkipVerification Field
[ILAsm]
.field public static literal valuetype System.Security.Permissions.SecurityPermissionFlag SkipVerification = 0x4
[C#]
SkipVerification = 0x4
Summary
Specifies the right to skip the verification checks that ensure type safety and metadata correctness in an assembly. If an assembly has been granted this permission it will not fail with a System.Security.VerificationException even if the assembly contains unverifiable constructs.

[Note: Code that is unverifiable can execute without causing a System.Security.VerificationException if this permission is granted.]

 SecurityPermissionFlag.UnmanagedCode Field
[ILAsm]
.field public static literal valuetype System.Security.Permissions.SecurityPermissionFlag UnmanagedCode = 0x2
[C#]
UnmanagedCode = 0x2
Summary
Specifies the ability to call unmanaged code.

[Note: Because unmanaged code potentially allows other permissions to be bypassed, this permission should be used with caution. It is used for applications calling native code using PInvoke.]

PAGE
1

