
 1

System.Exception Class 1

 2

[ILAsm] 3
.class public serializable Exception extends System.Object 4

[C#] 5
public class Exception 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Represents errors that occur during application execution. 15

Inherits From: System.Object 16
 17
Library: BCL 18
 19
Thread Safety: All public static members of this type are safe for multithreaded operations. 20
No instance members are guaranteed to be thread safe. 21
 22
Description 23

This class is the base class for all Exceptions. 24
 25
When an error occurs, either the system or the currently executing application reports it 26
by throwing an Exception containing information about the error. Once thrown, an 27
Exception is handled by the application or by the default exception handler. 28
 29
[Note: For a description of the exception handling model, see Partition I of the CLI 30
Specification.] 31
 32
 33
 34
[Note: If an application handles exceptions that occur during the execution of a block of 35
application code, the code is required to be placed within a try statement. Application 36
code within a try statement is a try block. Application code that handles Exceptions 37
thrown by a try block is placed within a catch statement, and is called a catch block. 38
Zero or more catch blocks are associated with a try block, and each catch block includes 39
a type filter that determines the types of Exceptions it handles. 40
 41

 2

When an Exception occurs in a try block, the system searches the associated catch 1
blocks in the order they appear in application code, until it locates a catch block that 2
handles the Exception. A catch block handles an exception of type T, if the type filter of 3
the catch block specifies T or any type that T derives from. The system stops searching 4
after it finds the first catch block that handles the Exception. For this reason, in 5
application code, a catch block that handles a type must be specified before a catch 6
block that handles its base types, as demonstrated in the example that follows this 7
section. A catch block that handles System.Exception is specified last. 8
 9
If the catch blocks associated with the current try block do not handle the Exception, 10
and the current try block is nested within other try blocks in the current call, the catch 11
blocks associated with the next enclosing try block are searched. If no catch block for 12
the Exception is found, the system searches previous nesting levels in the current call. If 13
no catch block for the Exception is found in the current call, the Exception is passed up 14
the call stack, and the previous stack frame is searched for a catch block that handles 15
the Exception. The search of the call stack continues until the Exception is handled or 16
there are no more frames in the call stack. If the top of the call stack is reached without 17
finding a catch block that handles the Exception, the default exception handler handles it 18
and the application terminates. 19
 20
] 21
 22
System.Exception types support the following features: 23

· Human-readable text that describes the error. [Note: See 24
System.Exception.Message property.] 25

· The state of the call stack when the Exception was thrown. [Note: See the 26
System.Exception.StackTrace property.] 27

· When there is a causal relationship between two or more Exceptions, this information 28
is maintained via the System.Exception.InnerException property. 29

The Base Class Library provides two types that inherit directly from System.Exception: 30

· System.ApplicationException 31

· System.SystemException 32

[Note: Most user-defined exceptions derive from System.ApplicationException. For more 33
information, see System.ApplicationException and System.SystemException.] 34
 35
 36

Example 37
 38

The following example demonstrates a catch block that is defined to handle 39
System.ArithmeticException errors. This catch block also catches 40
System.DivideByZeroException errors because System.DivideByZeroException 41

 3

derives from System.ArithmeticException, and there is no catch block explicitly 1
defined for System.DivideByZeroException errors. 2
 3
[C#] 4

using System; 5
class ExceptionTestClass { 6
 public static void Main() { 7
 int x = 0; 8
 try { 9
 int y = 100/x; 10
 } 11
 catch (ArithmeticException e) { 12
 Console.WriteLine("ArithmeticException Handler: {0}", e.ToString()); 13
 } 14
 catch (Exception e) { 15
 Console.WriteLine("Generic Exception Handler: {0}", e.ToString()); 16
 } 17
 } 18
} 19
 20
The output is 21

 22
ArithmeticException Handler: System.DivideByZeroException: Attempted to 23
divide by zero. 24
 at ExceptionTestClass.Main() 25
 26

27

 4

 Exception() Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor() 3

[C#] 4
public Exception() 5

Summary 6

Constructs and initializes a new instance of the System.Exception class. 7

Description 8

This constructor initializes the System.Exception.Message property of the new instance 9
to a system-supplied message that describes the error and takes into account the 10
current system culture. The System.Exception.InnerException property is initialized 11
to null and the System.Exception.StackTrace property is initialized to 12
System.String.Empty. 13

14

 5

 Exception(System.String) Constructor 1

[ILAsm] 2
public rtspecialname specialname instance void .ctor(string message) 3

[C#] 4
public Exception(string message) 5

Summary 6

Constructs a new instance of the System.Exception class. 7

Parameters 8
 9
 10

Parameter Description

message
A System.String that describes the error. The content of message is intended
to be understood by humans. The caller of this constructor is required to ensure
that this string has been localized for the current system culture.

 11
Description 12

This constructor initializes the System.Exception.Message property of the new instance 13
using message. If message is null, the System.Exception.Message property is 14
initialized to the system-supplied message provided by the constructor that takes no 15
arguments. The System.Exception.InnerException property is initialized to null and 16
the System.Exception.StackTrace property is initialized to System.String.Empty. 17

18

 6

 Exception(System.String, System.Exception) 1

Constructor 2

[ILAsm] 3
public rtspecialname specialname instance void .ctor(string message, class 4
System.Exception innerException) 5

[C#] 6
public Exception(string message, Exception innerException) 7

Summary 8

Constructs a new instance of the System.Exception class. 9

Parameters 10
 11
 12

Parameter Description

message

A System.String that describes the error. The content of message is
intended to be understood by humans. The caller of this constructor is
required to ensure that this string has been localized for the current system
culture.

innerException
An instance of System.Exception that is the cause of the current exception.
If innerException is non-null, then the current exception was raised in a
catch block handling innerException.

 13
Description 14

This constructor initializes the System.Exception.Message property of the new instance 15
using message, and the System.Exception.InnerException property using 16
innerException. If message is null, the System.Exception.Message property is 17
initialized to the system-supplied message provided by the constructor that takes no 18
arguments. 19
 20
The System.Exception.StackTrace property is initialized to System.String.Empty. 21

22

 7

 Exception.GetBaseException() Method 1

[ILAsm] 2
.method public hidebysig virtual class System.Exception GetBaseException() 3

[C#] 4
public virtual Exception GetBaseException() 5

Summary 6

Returns the System.Exception that is the root cause of one or more subsequent 7
Exceptions. 8

Return Value 9
 10

Returns the first Exception thrown in a chain of Exceptions. If the 11
System.Exception.InnerException property of the current Exception is null, returns 12
the current Exception. 13

Description 14

[Note: A chain of Exceptions consists of a set of Exceptions such that each Exception in 15
the chain was thrown as a direct result of the Exception referenced in its 16
System.Exception.InnerException property. For a given chain, there can be exactly 17
one Exception that is the root cause of all other Exceptions in the chain. This Exception 18
is called the baseexception and its System.Exception.InnerException property always 19
contains a null reference.] 20
 21
 22

Behaviors 23

For all Exceptions in a chain of Exceptions, the System.Exception.GetBaseException 24
method is required to return the same object (the base exception). 25

 26

How and When to Override 27

The System.Exception.GetBaseException method is overridden in classes that require 28
control over the exception content or format. 29

 30

Usage 31

 8

Use the System.Exception.GetBaseException method when you want to find the root 1
cause of an Exception but do not need information about Exceptions that might have 2
occurred between the current Exception and the first Exception. 3

 4

Example 5
 6

The following example shows an implementation of the 7
System.Exception.GetBaseException method. 8
 9
[C#] 10

public virtual Exception GetBaseException() { 11
 Exception inner = InnerException; 12
 Exception back = this; 13
 while (inner != null) { 14
 back = inner; 15
 inner = inner.InnerException; 16
 } 17
 return back; 18
} 19
 20

21

 9

 Exception.ToString() Method 1

[ILAsm] 2
.method public hidebysig virtual string ToString() 3

[C#] 4
public override string ToString() 5

Summary 6

Creates and returns a System.String representation of the current Exception. 7

Return Value 8
 9

A System.String representation of the current Exception. 10

Behaviors 11

System.Exception.ToString returns a representation of the current Exception that is 12
intended to be understood by humans. Where the Exception contains culture-sensitive 13
data, the string representation returned by System.Exception.ToString is required to 14
take into account the current system culture. [Note: Although there are no exact 15
requirements for the format of the returned string, it should as much as possible reflect 16
the value of the object as perceived by the user.] 17
 18
 19
 20
[Note: This method overrides System.Object.ToString.] 21
 22
 23

Default 24

The System.Exception.ToString implementation obtains the fully qualified name of the 25
current Exception, the message, the result of calling System.Exception.ToString on 26
the inner exception, and the result of calling System.Environment.StackTrace. If any 27
of these members is null or equal to System.String.Empty, its value is not included in 28
the returned string. 29

How and When to Override 30

It is recommended, but not required, that System.Exception.ToString be overridden 31
to return information about members declared in the derived class. For example, the 32
System.ArgumentException class overrides System.Exception.ToString so that it 33
returns the value of the System.ArgumentException.ParamName property, if that value 34
is not null. 35

 10

Usage 1

Use the System.Exception.ToString method to obtain a string representation of an 2
Exception. 3

Example 4
 5

The following example causes an Exception and displays the result of calling 6
System.Exception.ToString on that Exception. 7
 8
[C#] 9

using System; 10
public class MyClass {} 11
public class ArgExceptionExample { 12
 public static void Main() { 13
 MyClass my = new MyClass(); 14
 string s = "sometext"; 15
 try { 16
 int i = s.CompareTo(my); 17
 } 18
 catch (Exception e) { 19
 Console.WriteLine("Error: {0}",e.ToString()); 20
 } 21
 } 22
} 23
 24
The output is 25

 26
Error: System.ArgumentException: Object must be of type String. 27
 at System.String.CompareTo(Object value) 28
 at ArgExceptionExample.Main() 29
 30

31

 11

 Exception.InnerException Property 1

[ILAsm] 2
.property class System.Exception InnerException { public hidebysig 3
specialname instance class System.Exception get_InnerException() } 4

[C#] 5
public Exception InnerException { get; } 6

Summary 7

Gets the System.Exception instance that caused the current Exception. 8

Property Value 9
 10

An instance of System.Exception that describes the error that caused the current 11
Exception. 12

Description 13

This property is read-only. 14
 15
[Note: When an Exception X is thrown as a direct result of a previous exception Y, the 16
System.Exception.InnerException property of X should contain a reference to Y.] 17
 18
 19
 20
The System.Exception.InnerException property returns the same value as was 21
passed into the constructor, or null if the inner exception value was not supplied to the 22
constructor. 23
 24
[Note: Using the System.Exception.InnerException property, you can obtain the set 25
of Exceptions that led to the current Exception. System.Exception.GetBaseException 26
includes an example that demonstrates this procedure.] 27
 28
 29

Example 30
 31

The following example demonstrates throwing and catching an Exception that references 32
an inner Exception. 33
 34
[C#] 35

using System; 36
public class MyAppException:ApplicationException { 37
 public MyAppException (String message): base (message) {} 38

 12

 public MyAppException (String message, Exception inner): base(message,inner) 1
{} 2
} 3
public class ExceptExample { 4
 public void ThrowInner () { 5
 throw new MyAppException("ExceptExample inner exception"); 6
 } 7
 public void CatchInner() { 8
 try { 9
 this.ThrowInner(); 10
 } 11
 catch (Exception e) { 12
 throw new MyAppException("Error caused by trying ThrowInner.",e); 13
 } 14
 } 15
} 16
public class Test { 17
 public static void Main() { 18
 ExceptExample testInstance = new ExceptExample(); 19
 try { 20
 testInstance.CatchInner(); 21
 } 22
 catch(Exception e) { 23
 Console.WriteLine ("In Main catch block. Caught: {0}", e.Message); 24
 Console.WriteLine ("Inner Exception is {0}",e.InnerException); 25
 } 26
} 27
} 28
 29
The output is 30

 31
In Main catch block. Caught: Error caused by trying ThrowInner. 32
Inner Exception is MyAppException: ExceptExample inner exception 33
 at ExceptExample.ThrowInner() 34
 at ExceptExample.CatchInner() 35
 36

37

 13

 Exception.Message Property 1

[ILAsm] 2
.property string Message { public hidebysig virtual specialname string 3
get_Message() } 4

[C#] 5
public virtual string Message { get; } 6

Summary 7

Gets a System.String containing a message that describes the current Exception. 8

Property Value 9
 10

A System.String that contains a detailed description of the error, or 11
System.String.Empty. This value is intended to be understood by humans. 12

Description 13

[Note: The text of System.Exception.Message should completely describe the error and 14
should, when possible, explain how to correct it. 15
 16
The value of the System.Exception.Message property is included in the information 17
returned by System.Exception.ToString. 18
 19
] 20
 21
This property is read-only. 22

Behaviors 23

The System.Exception.Message property is set only when creating an Exception 24
instance. 25
 26
If no message was supplied to the constructor for the current instance, the system 27
supplies a default message that is formatted using the current system culture. 28

How and When to Override 29

The System.Exception.Message property is overridden in classes that require control 30
over message content or format. 31

Usage 32

Application code typically accesses this property when there is a need to display 33
information about an exception that has been caught. 34

 14

1

 15

 Exception.StackTrace Property 1

[ILAsm] 2
.property string StackTrace { public hidebysig virtual specialname string 3
get_StackTrace() } 4

[C#] 5
public virtual string StackTrace { get; } 6

Summary 7

Gets a System.String representation of the frames on the call stack at the time the 8
current Exception was thrown. 9

Property Value 10
 11

A System.String that describes the contents of the call stack. 12

Description 13

[Note: System.Exception.StackTrace might not report as many method calls as 14
expected, due to code transformations, such as inlining, that occur during optimization.] 15
 16
 17
 18
This property is read-only. 19

Behaviors 20

The format of the information returned by this property is required to be identical to the 21
format of the information returned by System.Environment.StackTrace. 22

How and When to Override 23

The System.Exception.StackTrace property is overridden in classes that require 24
control over the stack trace content or format. 25

Usage 26

Use the System.Exception.StackTrace property to obtain a string representation of 27
the contents of the call stack at the time the exception was thrown. 28

 29

	Behaviors
	How and When to Override
	Usage
	Behaviors
	Default
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Usage

