
 1

System.Threading.Parallel.ParallelLoop<T> 1

Class 2

 3

[ILAsm] 4
.class public abstract serializable ParallelLoop<T> implements 5
System.IDisposable 6

[C#] 7
public abstract class ParallelLoop<T>: IDisposable 8

Assembly Info: 9

· Name: System.Threading.Parallel 10
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 11
· Version: 2.0.x.x 12
· Attributes: 13

o CLSCompliantAttribute(true) 14

Implements: 15

· System.IDisposable 16

Summary 17
 18

A parallel loop over iteration values of type T. 19

Inherits From: System.Object 20
 21
Library: Parallel 22
 23
Thread Safety: All public static members of this type are safe for multithreaded operations. 24
No instance members, unless specifically stated, are guaranteed to be thread safe. 25
 26
Description 27

Abstract generic class System.Threading.Parallel.ParallelLoop<T> abstracts 28
common behavior of the loop classes that iterate over values of type T. Its derived 29
classes differ in how the iteration space is defined. 30
 31
Iteration commences once method 32
System.Threading.Parallel.ParallelLoop<T>.BeginRun is called. The callback is 33
applied to each iteration value. A conforming implementation can use the thread calling 34
System.Threading.Parallel.ParallelLoop<T>.BeginRun to execute all iterations, 35
regardless of the value of System.Threading.Parallel.ParallelLoop<T>.MaxThreads. 36
The thread that calls System.Threading.Parallel.ParallelLoop<T>.BeginRun shall 37

 2

call method System.Threading.Parallel.ParallelLoop<T>.EndRun to block until all 1
iterations complete or are cancelled. When 2
System.Threading.Parallel.ParallelLoop<T>.EndRun is called, the calling thread can 3
be employed as a worker thread. 4
 5
Calling method System.Threading.Parallel.ParallelLoop<T>.Run is equivalent to 6
calling System.Threading.Parallel.ParallelLoop<T>.BeginRun followed by calling 7
â€œSystem.Threading.Parallel.ParallelLoop<T>.EndRun. 8
 9
A parallel loop can be cancelled at any time (even before it starts running) by calling 10
method System.Threading.Parallel.ParallelLoop<T>.Cancel. Cancellation is 11
asynchronous in the sense that method 12
System.Threading.Parallel.ParallelLoop<T>.Cancel can return while portions of 13
the loop are still running. Any number of threads can call 14
System.Threading.Parallel.ParallelLoop<T>.Cancel on the same object. 15
Cancellation affects only iterations that have not yet been issued to worker threads. 16
Outstanding iterations are completed normally. 17
 18
If one or more invocations of a callback throws an unhandled exception, the rest of the 19
loop is cancelled. One of the exceptions is saved inside the 20
System.Threading.Parallel.ParallelLoop<T> until the loop has stopped running, and 21
then the saved exception is rethrown when method 22
System.Threading.Parallel.ParallelLoop<T>.EndRun is invoked. In the case of 23
multiple exceptions, the implementation can choose any one of the exceptions to save 24
and rethrow. 25

26

 3

 1

ParallelLoop<T>.BeginRun(System.Action<T2

>) Method 3

[ILAsm] 4
.method public hidebysig abstract void BeginRun(class System.Action<!0> 5
action) 6

[C#] 7
public abstract void BeginRun(Action<T> action) 8

Summary 9

Begin executing iterations, applying the action delegate to each iteration value. 10

Parameters 11
 12
 13

Parameter Description

action The System.Delegateto apply to each iteration value.

 14
Description 15

This method is not thread safe. It should be called only once for a given instance of a 16
System.Threading.Parallel.ParallelLoop<T>. 17
 18
If one or more invocations of a callback throws an unhandled exception, the rest of the 19
loop is cancelled. One of the exceptions is saved inside the 20
System.Threading.Parallel.ParallelLoop<T>until the loop has stopped running, and 21
then the saved exception is rethrown when method EndRun is invoked. In the case of 22
multiple exceptions, the implementation can choose any one of the exceptions to save 23
and rethrow. 24
 25
[Note: Implementations, particularly on single-threaded hardware, are free to employ 26
the calling thread to execute all loop iterations.] 27
 28
 29
 30
[Note: The return value is void, not System.IAsyncResult, and there is no callBack or 31
stateObject arguments. This departure from the usual asynchronous call pattern (e.g. 32
FileStreamBeginRead) is deliberate, because in typical scenarios the extra complexity 33
would just add pointless burden on the implementation.] 34
 35
 36

 4

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException action is null.

 4
 5

6

 5

 ParallelLoop<T>.Cancel() Method 1

[ILAsm] 2
.method public hidebysig abstract virtual void Cancel() 3

[C#] 4
public abstract void Cancel() 5

Summary 6

Eventually cancel issuance of any further iterations 7

Description 8

A System.Threading.Parallel.ParallelLoop<T> can be cancelled at any time (even 9
before it starts running) by calling method Cancel. Cancellation is asynchronous in the 10
sense that method Cancel can return while portions of the loop are still running. Any 11
number of threads can concurrently call Cancel on the same object. Cancellation affects 12
only iterations that have not yet been issued to worker threads. Outstanding iterations 13
are completed normally. 14

15

 6

 ParallelLoop<T>.EndRun() Method 1

[ILAsm] 2
.method public hidebysig virtual void EndRun() 3

[C#] 4
public void EndRun() 5

Summary 6

Wait until all iterations are finished (or cancelled). 7

Description 8

This method is not thread safe. It should be called exactly once by the thread that called 9
System.Threading.Parallel.ParallelLoop<T>.BeginRun. 10

11

 7

 ParallelLoop<T>.Run(System.Action<T>) 1

Method 2

[ILAsm] 3
.method public hidebysig virtual abstract void Run(class System.Action<!0> 4
action) 5

[C#] 6
public void Run(Action<T> action) 7

Summary 8

Start processing of loop iterations and wait until done. 9

Parameters 10
 11
 12

Parameter Description

action The System.Delegate applied to each iteration value

 13
 14

This method is equivalent to calling 15
System.Threading.Parallel.ParallelLoop<T>.BeginRun followed by calling 16
System.Threading.Parallel.ParallelLoop<T>.EndRun. 17

Exceptions 18
 19
 20

Exception Condition

System.ArgumentNullException action is null.

 21
 22

