
System.Exception Class

[ILAsm]
.class public serializable Exception extends System.Object
[C#]
public class Exception
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Summary

Represents errors that occur during application execution.

Inherits From: System.Object

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.

Description
This class is the base class for all Exceptions.

When an error occurs, either the system or the currently executing application reports it by throwing an Exception containing information about the error. Once thrown, an Exception is handled by the application or by the default exception handler.

[Note: For a description of the exception handling model, see Partition I of the CLI Specification.]

[Note: If an application handles exceptions that occur during the execution of a block of application code, the code is required to be placed within a try statement. Application code within a try statement is a try block. Application code that handles Exceptions thrown by a try block is placed within a catch statement, and is called a catch block. Zero or more catch blocks are associated with a try block, and each catch block includes a type filter that determines the types of Exceptions it handles.

When an Exception occurs in a try block, the system searches the associated catch blocks in the order they appear in application code, until it locates a catch block that handles the Exception. A catch block handles an exception of type T, if the type filter of the catch block specifies T or any type that T derives from. The system stops searching after it finds the first catch block that handles the Exception. For this reason, in application code, a catch block that handles a type must be specified before a catch block that handles its base types, as demonstrated in the example that follows this section. A catch block that handles System.Exception is specified last.

If the catch blocks associated with the current try block do not handle the Exception, and the current try block is nested within other try blocks in the current call, the catch blocks associated with the next enclosing try block are searched. If no catch block for the Exception is found, the system searches previous nesting levels in the current call. If no catch block for the Exception is found in the current call, the Exception is passed up the call stack, and the previous stack frame is searched for a catch block that handles the Exception. The search of the call stack continues until the Exception is handled or there are no more frames in the call stack. If the top of the call stack is reached without finding a catch block that handles the Exception, the default exception handler handles it and the application terminates.

]

System.Exception types support the following features:

· Human-readable text that describes the error. [Note: See System.Exception.Message property.]

· The state of the call stack when the Exception was thrown. [Note: See the System.Exception.StackTrace property.]

· When there is a causal relationship between two or more Exceptions, this information is maintained via the System.Exception.InnerException property.

The Base Class Library provides two types that inherit directly from System.Exception:

· System.ApplicationException
· System.SystemException
[Note: Most user-defined exceptions derive from System.ApplicationException. For more information, see System.ApplicationException and System.SystemException.]

Example

The following example demonstrates a catch block that is defined to handle System.ArithmeticException errors. This catch block also catches System.DivideByZeroException errors because System.DivideByZeroException derives from System.ArithmeticException, and there is no catch block explicitly defined for System.DivideByZeroException errors.

[C#]
using System;

class ExceptionTestClass {

 public static void Main() {

 int x = 0;

 try {

 int y = 100/x;

 }

 catch (ArithmeticException e) {

 Console.WriteLine("ArithmeticException Handler: {0}", e.ToString());

 }

 catch (Exception e) {

 Console.WriteLine("Generic Exception Handler: {0}", e.ToString());

 }

 }

}

The output is
ArithmeticException Handler: System.DivideByZeroException: Attempted to divide by zero.

 at ExceptionTestClass.Main()

 Exception() Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor()
[C#]
public Exception()
Summary
Constructs and initializes a new instance of the System.Exception class.

Description
This constructor initializes the System.Exception.Message property of the new instance to a system-supplied message that describes the error and takes into account the current system culture. The System.Exception.InnerException property is initialized to null and the System.Exception.StackTrace property is initialized to System.String.Empty.

 Exception(System.String) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(string message)
[C#]
public Exception(string message)
Summary
Constructs a new instance of the System.Exception class.

Parameters

	Parameter
	Description

	message
	A System.String that describes the error. The content of message is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.

Description
This constructor initializes the System.Exception.Message property of the new instance using message. If message is null, the System.Exception.Message property is initialized to the system-supplied message provided by the constructor that takes no arguments. The System.Exception.InnerException property is initialized to null and the System.Exception.StackTrace property is initialized to System.String.Empty.

 Exception(System.String, System.Exception) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(string message, class System.Exception innerException)
[C#]
public Exception(string message, Exception innerException)
Summary
Constructs a new instance of the System.Exception class.

Parameters

	Parameter
	Description

	message
	A System.String that describes the error. The content of message is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.

	innerException
	An instance of System.Exception that is the cause of the current exception. If innerException is non-null, then the current exception was raised in a catch block handling innerException.

Description
This constructor initializes the System.Exception.Message property of the new instance using message, and the System.Exception.InnerException property using innerException. If message is null, the System.Exception.Message property is initialized to the system-supplied message provided by the constructor that takes no arguments.

The System.Exception.StackTrace property is initialized to System.String.Empty.

 Exception.GetBaseException() Method
[ILAsm]
.method public hidebysig virtual class System.Exception GetBaseException()
[C#]
public virtual Exception GetBaseException()
Summary
Returns the System.Exception that is the root cause of one or more subsequent Exceptions.

Return Value

Returns the first Exception thrown in a chain of Exceptions. If the System.Exception.InnerException property of the current Exception is null, returns the current Exception.
Description
[Note: A chain of Exceptions consists of a set of Exceptions such that each Exception in the chain was thrown as a direct result of the Exception referenced in its System.Exception.InnerException property. For a given chain, there can be exactly one Exception that is the root cause of all other Exceptions in the chain. This Exception is called the baseexception and its System.Exception.InnerException property always contains a null reference.]

Behaviors

For all Exceptions in a chain of Exceptions, the System.Exception.GetBaseException method is required to return the same object (the base exception).

How and When to Override

The System.Exception.GetBaseException method is overridden in classes that require control over the exception content or format.

Usage

Use the System.Exception.GetBaseException method when you want to find the root cause of an Exception but do not need information about Exceptions that might have occurred between the current Exception and the first Exception.

Example

The following example shows an implementation of the System.Exception.GetBaseException method.

[C#]
public virtual Exception GetBaseException() {

 Exception inner = InnerException;

 Exception back = this;

 while (inner != null) {

 back = inner;

 inner = inner.InnerException;

 }

 return back;

}

 Exception.ToString() Method
[ILAsm]
.method public hidebysig virtual string ToString()
[C#]
public override string ToString()
Summary
Creates and returns a System.String representation of the current Exception.

Return Value

A System.String representation of the current Exception.
Behaviors

System.Exception.ToString returns a representation of the current Exception that is intended to be understood by humans. Where the Exception contains culture-sensitive data, the string representation returned by System.Exception.ToString is required to take into account the current system culture. [Note: Although there are no exact requirements for the format of the returned string, it should as much as possible reflect the value of the object as perceived by the user.]

[Note: This method overrides System.Object.ToString.]

Default

The System.Exception.ToString implementation obtains the fully qualified name of the current Exception, the message, the result of calling System.Exception.ToString on the inner exception, and the result of calling System.Environment.StackTrace. If any of these members is null or equal to System.String.Empty, its value is not included in the returned string.
How and When to Override

It is recommended, but not required, that System.Exception.ToString be overridden to return information about members declared in the derived class. For example, the System.ArgumentException class overrides System.Exception.ToString so that it returns the value of the System.ArgumentException.ParamName property, if that value is not null.
Usage

Use the System.Exception.ToString method to obtain a string representation of an Exception.
Example

The following example causes an Exception and displays the result of calling System.Exception.ToString on that Exception.

[C#]
using System;

public class MyClass {}

public class ArgExceptionExample {

 public static void Main() {

 MyClass my = new MyClass();

 string s = "sometext";

 try {

 int i = s.CompareTo(my);

 }

 catch (Exception e) {

 Console.WriteLine("Error: {0}",e.ToString());

 }

 }

}

The output is
Error: System.ArgumentException: Object must be of type String.

 at System.String.CompareTo(Object value)

 at ArgExceptionExample.Main()

 Exception.InnerException Property
[ILAsm]
.property class System.Exception InnerException { public hidebysig specialname instance class System.Exception get_InnerException() }
[C#]
public Exception InnerException { get; }
Summary
Gets the System.Exception instance that caused the current Exception.

Property Value

An instance of System.Exception that describes the error that caused the current Exception.
Description
This property is read-only.

[Note: When an Exception X is thrown as a direct result of a previous exception Y, the System.Exception.InnerException property of X should contain a reference to Y.]

The System.Exception.InnerException property returns the same value as was passed into the constructor, or null if the inner exception value was not supplied to the constructor.

[Note: Using the System.Exception.InnerException property, you can obtain the set of Exceptions that led to the current Exception. System.Exception.GetBaseException includes an example that demonstrates this procedure.]

Example

The following example demonstrates throwing and catching an Exception that references an inner Exception.

[C#]
using System;

public class MyAppException:ApplicationException {

 public MyAppException (String message): base (message) {}

 public MyAppException (String message, Exception inner): base(message,inner) {}

}

public class ExceptExample {

 public void ThrowInner () {

 throw new MyAppException("ExceptExample inner exception");

 }

 public void CatchInner() {

 try {

 this.ThrowInner();

 }

 catch (Exception e) {

 throw new MyAppException("Error caused by trying ThrowInner.",e);

 }

 }

}

public class Test {

 public static void Main() {

 ExceptExample testInstance = new ExceptExample();

 try {

 testInstance.CatchInner();

 }

 catch(Exception e) {

 Console.WriteLine ("In Main catch block. Caught: {0}", e.Message);

 Console.WriteLine ("Inner Exception is {0}",e.InnerException);

 }

}

}

The output is
In Main catch block. Caught: Error caused by trying ThrowInner.

Inner Exception is MyAppException: ExceptExample inner exception

 at ExceptExample.ThrowInner()

 at ExceptExample.CatchInner()

 Exception.Message Property
[ILAsm]
.property string Message { public hidebysig virtual specialname string get_Message() }
[C#]
public virtual string Message { get; }
Summary
Gets a System.String containing a message that describes the current Exception.

Property Value

A System.String that contains a detailed description of the error, or System.String.Empty. This value is intended to be understood by humans.
Description
[Note: The text of System.Exception.Message should completely describe the error and should, when possible, explain how to correct it.

The value of the System.Exception.Message property is included in the information returned by System.Exception.ToString.

]

This property is read-only.

Behaviors

The System.Exception.Message property is set only when creating an Exception instance.

If no message was supplied to the constructor for the current instance, the system supplies a default message that is formatted using the current system culture.

How and When to Override

The System.Exception.Message property is overridden in classes that require control over message content or format.

Usage

Application code typically accesses this property when there is a need to display information about an exception that has been caught.

 Exception.StackTrace Property
[ILAsm]
.property string StackTrace { public hidebysig virtual specialname string get_StackTrace() }
[C#]
public virtual string StackTrace { get; }
Summary
Gets a System.String representation of the frames on the call stack at the time the current Exception was thrown.

Property Value

A System.String that describes the contents of the call stack.
Description
[Note: System.Exception.StackTrace might not report as many method calls as expected, due to code transformations, such as inlining, that occur during optimization.]

This property is read-only.

Behaviors

The format of the information returned by this property is required to be identical to the format of the information returned by System.Environment.StackTrace.

How and When to Override

The System.Exception.StackTrace property is overridden in classes that require control over the stack trace content or format.

Usage

Use the System.Exception.StackTrace property to obtain a string representation of the contents of the call stack at the time the exception was thrown.

PAGE
1

