
System.ICloneable Interface

[ILAsm]
.class interface public abstract ICloneable
[C#]
public interface ICloneable
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Summary

Implemented by classes that require control over the way in which copies of instances are constructed.

Library: BCL

Description
[Note: System.ICloneable contains the System.ICloneable.Clone method. The consumer of an object should call this method when a copy of the object is needed.]

 ICloneable.Clone() Method
[ILAsm]
.method public hidebysig virtual abstract object Clone()
[C#]
object Clone()
Summary
Creates a copy of the current instance.

Return Value

A System.Object of the same type as the current instance, containing copies of the non-static members of the current instance.
Description
The exact behavior of this method is unspecified. The intent of the method is to provide a mechanism that constructs instances that are copies of the current instance, without regard for class-specific definitions of the term "copy".

[Note: Use the System.Object.MemberwiseClone method to create a shallow copy of an object. For more information, see System.Object.MemberwiseClone.]

Behaviors

This method is required to return an instance of the same type as the current instance.

How and When to Override

Implement this method to provide class-specific copying behavior.

Usage

Use the System.ICloneable.Clone method to obtain a copy of the current instance.

Example

The following example shows an implementation of System.ICloneable.Clone that uses the System.Object.MemberwiseClone method to create a copy of the current instance.

[C#]
using System;

class MyClass:ICloneable {

 public int myField;

 public MyClass() {

 myField = 0;

 }

 public MyClass(int value) {

 myField = value;

 }

 public object Clone() {

 return this.MemberwiseClone();

 }

}

public class TestMyClass {

 public static void Main() {

 MyClass my1 = new MyClass(44);

 MyClass my2 = (MyClass) my1.Clone();

 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField);

 my2.myField = 22;

 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField);

 }

}

The output is

my1 44 my2 44

my1 44 my2 22

PAGE
1

