
System.Threading.Timer Class

[ILAsm]
.class public sealed Timer extends System.MarshalByRefObject implements System.IDisposable
[C#]
public sealed class Timer: MarshalByRefObject, IDisposable
Assembly Info:
· Name: mscorlib

· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]

· Version: 2.0.x.x

· Attributes:
· CLSCompliantAttribute(true)

Implements:
· System.IDisposable

Summary

Provides a mechanism for executing methods at specified intervals.

Inherits From: System.MarshalByRefObject

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.

Description
A System.Threading.TimerCallback delegate is used to specify the methods associated with a Timer. The methods do not execute in the thread that created the timer; they execute in a separate thread that is automatically allocated by the system. The timer delegate is specified when the timer is constructed, and cannot be changed.

When creating a timer, the application specifies an amount of time to wait before the first invocation of the delegate methods (due time), and an amount of time to wait between subsequent invocations (period). A timer invokes its methods once when its due time elapses, and invokes its methods once per period thereafter. These values can be changed, or the timer disabled using the System.Threading.Timer.Change method.

When a timer is no longer needed, use the System.Threading.Timer.Dispose method to free the resources held by the timer.

Example

The following example demonstrates the features of the System.Threading.Timer class.

[C#]
using System;

using System.Threading;

class TimerExampleState {

 public int counter = 0;

 public Timer tmr;

}

class App {

 public static void Main() {

 TimerExampleState s = new TimerExampleState();

 // Create the delegate that invokes methods for the timer.

 TimerCallback timerDelegate = new TimerCallback(CheckStatus);

 // Create a timer that waits one second, then invokes every second.

 Timer timer = new Timer(timerDelegate, s, 1000, 1000);

 // Keep a handle to the timer, so it can be disposed.

 s.tmr = timer;

 // The main thread does nothing until the timer is disposed.

 while (s.tmr != null)

 Thread.Sleep(0);

 Console.WriteLine("Timer example done.");

 }

 // The following method is called by the timer's delegate.

 static void CheckStatus(Object state) {

 TimerExampleState s = (TimerExampleState) state;

 s.counter++;

 Console.WriteLine("{0} Checking Status {1}.",DateTime.Now.TimeOfDay, s.counter);

 if (s.counter == 5) {

 // Shorten the period. Wait 10 seconds to restart the timer.

 (s.tmr).Change(10000,100);

 Console.WriteLine("changed...");

 }

 if (s.counter == 10) {

 Console.WriteLine("disposing of timer...");

 s.tmr.Dispose();

 s.tmr = null;

 }

 }

}

An example of some output is

10:51:40.5809015 Checking Status 1.

10:51:41.5823515 Checking Status 2.

10:51:42.5838015 Checking Status 3.

10:51:43.5852515 Checking Status 4.

10:51:44.5867015 Checking Status 5.

changed...

10:51:54.5911870 Checking Status 6.

10:51:54.6913320 Checking Status 7.

10:51:54.7914770 Checking Status 8.

10:51:54.8916220 Checking Status 9.

10:51:54.9917670 Checking Status 10.

disposing of timer...

Timer example done.

The exact timings returned by this example will vary.
 Timer(System.Threading.TimerCallback, System.Object, System.Int32, System.Int32) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(class System.Threading.TimerCallback callback, object state, int32 dueTime, int32 period)
[C#]
public Timer(TimerCallback callback, object state, int dueTime, int period)
Summary
Constructs and initializes a new instance of the Timer class.

Parameters

	Parameter
	Description

	callback
	A System.Threading.TimerCallback delegate.

	state
	A System.Object containing application-specific information relevant to the methods invoked by callback, or null.

	dueTime
	A System.Int32 containing the amount of time to delay before callback invokes its methods, in milliseconds. Specify System.Threading.Timeout.Infinite to prevent the timer from starting. Specify zero to start the timer immediately.

	period
	A System.Int32 containing the time interval between invocations of the methods referenced by callback, in milliseconds. Specify System.Threading.Timeout.Infinite to disable periodic signaling.

Description
callback invokes its methods once after dueTime elapses, and then invokes its methods each time the period time interval elapses.

If dueTime is zero, callback performs its first invocation immediately. If dueTime is System.Threading.Timeout.Infinite, callback does not invoke its methods; the timer is disabled, but can be re-enabled using the System.Threading.Timer.Change method.

If period is zero or System.Threading.Timeout.Infinite and dueTime is not System.Threading.Timeout.Infinite, callback invokes its methods exactly once; the periodic behavior of the timer is disabled, but can be re-enabled using the System.Threading.Timer.Change method.

Exceptions

	Exception
	Condition

	System.ArgumentOutOfRangeException
	dueTime or period is negative and is not equal to System.Threading.Timeout.Infinite.

	System.ArgumentNullException
	callback is a null reference.

 Timer(System.Threading.TimerCallback, System.Object, System.TimeSpan, System.TimeSpan) Constructor
[ILAsm]
public rtspecialname specialname instance void .ctor(class System.Threading.TimerCallback callback, object state, valuetype System.TimeSpan dueTime, valuetype System.TimeSpan period)
[C#]
public Timer(TimerCallback callback, object state, TimeSpan dueTime, TimeSpan period)
Summary
Constructs and initializes a new instance of the Timer class.

Parameters

	Parameter
	Description

	callback
	A System.Threading.TimerCallback delegate.

	state
	A System.Object containing application-specific information relevant to the methods invoked by callback, or null.

	dueTime
	A System.TimeSpan set to the amount of time to delay before callback invokes its methods. Set the value to System.Threading.Timeout.Infinite milliseconds to prevent the timer from starting. Specify zero to start the timer immediately.

	period
	A System.TimeSpan set to the time interval between invocations of the methods referenced by callback. Set the value to System.Threading.Timeout.Infinite milliseconds to disable periodic signaling.

Description
The callback delegate invokes its methods once after dueTime elapses, and then invokes its methods each time the period time interval elapses.

If dueTime, in milliseconds, is zero, callback performs its first invocation immediately. If dueTime is System.Threading.Timeout.Infinite, no method invocation occurs. The timer is disabled, but can be re-enabled using the System.Threading.Timer.Change method.

If period is zero or System.Threading.Timeout.Infinite milliseconds and dueTime is not System.Threading.Timeout.Infinite, callback invokes its methods exactly once. The periodic behavior of the timer is disabled, but can be re-enabled using the System.Threading.Timer.Change method.

Exceptions

	Exception
	Condition

	System.ArgumentOutOfRangeException
	The number of milliseconds in the value of dueTime or period is negative and not equal to System.Threading.Timeout.Infinite, or is greater than System.Int32.MaxValue.

	System.ArgumentNullException
	callback is a null reference.

 Timer.Change(System.Int32, System.Int32) Method
[ILAsm]
.method public hidebysig instance bool Change(int32 dueTime, int32 period)
[C#]
public bool Change(int dueTime, int period)
Summary
Changes the start time and interval between method invocations for a timer.

Parameters

	Parameter
	Description

	dueTime
	A System.Int32 containing the amount of time to delay before the delegate specified at System.Threading.Timer construction time invokes its methods, in milliseconds. Specify System.Threading.Timeout.Infinite to prevent the timer from restarting. Specify zero to restart the timer immediately.

	period
	A System.Int32 containing the time interval between invocations of the methods referenced by the delegate specified at System.Threading.Timer construction time, in milliseconds. Specify System.Threading.Timeout.Infinite to disable periodic signaling.

Return Value

true if the current instance has not been disposed; otherwise, false.
Description
The delegate specified at System.Threading.Timer construction time invokes its methods once after dueTime elapses, and then invokes its methods each time the period time interval elapses.

If dueTime is zero, the delegate specified at System.Threading.Timer construction time performs its next invocation immediately. If dueTime is System.Threading.Timeout.Infinite, no method invocation occurs. The timer is disabled, but can be re-enabled by calling this method and specifying a non-negative value for dueTime.

If period is zero or System.Threading.Timeout.Infinite and dueTime is not System.Threading.Timeout.Infinite, the delegate specified at System.Threading.Timer construction time invokes its methods exactly once. The periodic behavior of the timer is disabled, but can be re-enabled by calling this method and specifying a positive value for period.

Exceptions

	Exception
	Condition

	System.ArgumentOutOfRangeException
	dueTime or period is negative and is not equal to System.Threading.Timeout.Infinite.

 Timer.Change(System.TimeSpan, System.TimeSpan) Method
[ILAsm]
.method public hidebysig instance bool Change(valuetype System.TimeSpan dueTime, valuetype System.TimeSpan period)
[C#]
public bool Change(TimeSpan dueTime, TimeSpan period)
Summary
Changes the start time and interval between method invocations for a timer.

Parameters

	Parameter
	Description

	dueTime
	A System.TimeSpan set to the amount of time to delay before the delegate specified at System.Threading.Timer construction time invokes its methods. Specify System.Threading.Timeout.Infinite milliseconds to prevent the timer from restarting. Specify zero to restart the timer immediately.

	period
	A System.TimeSpan set to the time interval between invocations of the methods referenced by the delegate specified at System.Threading.Timer construction time. Specify System.Threading.Timeout.Infinite milliseconds to disable periodic signaling.

Return Value

true if the current instance has not been disposed; otherwise, false.
Description
The delegate specified at System.Threading.Timer construction time invokes its methods once after dueTime elapses, and then invokes its methods each time the period time interval elapses.

If dueTime, in milliseconds, is zero, the delegate specified at System.Threading.Timer construction time performs its next invocation immediately. If dueTime is System.Threading.Timeout.Infinite milliseconds, no method invocation occurs. The timer is disabled, but can be re-enabled by calling this method and specifying a non-negative value for dueTime.

If period is zero or System.Threading.Timeout.Infinite milliseconds and dueTime is not System.Threading.Timeout.Infinite milliseconds, the delegate specified at System.Threading.Timer construction time invokes its methods exactly once. The periodic behavior of the timer is disabled, but can be re-enabled by calling this method and specifying a positive value for period.

Exceptions

	Exception
	Condition

	System.ArgumentOutOfRangeException
	dueTime or period is negative and is not equal to System.Threading.Timeout.Infinite.

 Timer.Dispose() Method
[ILAsm]
.method public final hidebysig virtual void Dispose()
[C#]
public void Dispose()
Summary
Releases the resources held by the current instance.

Description
[Note: This method is implemented to support the System.IDisposable interface.]

 Timer.Dispose(System.Threading.WaitHandle) Method
[ILAsm]
.method public hidebysig instance bool Dispose(class System.Threading.WaitHandle notifyObject)
[C#]
public bool Dispose(WaitHandle notifyObject)
Summary
Releases the resources held by the current instance.

Parameters

	Parameter
	Description

	notifyObject
	Specifies a System.Threading.WaitHandle to be signaled when the timer has been disposed of.

Return Value

true if the call succeeds; otherwise, false.
Description
When this method completes, the System.Threading.WaitHandle specified by notifyObject is signaled.

This method calls System.GC.SuppressFinalize to prevent the garbage collector from finalizing the current instance.

Exceptions

	Exception
	Condition

	System.ArgumentNullException
	notifyObject is null.

 Timer.Finalize() Method
[ILAsm]
.method family hidebysig virtual void Finalize()
[C#]
~Timer()
Summary
Releases the resources held by the current instance.

Description
[Note: Application code does not call this method; it is automatically invoked by during garbage collection unless finalization by the garbage collector has been disabled. For more information, see System.GC.SuppressFinalize, and System.Object.Finalize.

This method overrides System.Object.Finalize.

]

PAGE
1

