
 1

System.IDisposable Interface 1

 2

[ILAsm] 3
.class interface public abstract IDisposable 4

[C#] 5
public interface IDisposable 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Implemented by classes that require explicit control over resource cleanup. 15

Library: BCL 16
 17
Description 18

Objects that need to free resources that cannot safely be reclaimed by the garbage 19
collector implement the System.IDisposable interface. 20
 21
It is a version breaking change to add the System.IDisposable interface to an existing 22
class, as it changes the semantics of the class. 23
 24
[Note: System.IDisposable contains the System.IDisposable.Dispose method. The 25
consumer of an object should call this method when the object is no longer needed. The 26
System.IDisposable interface is generally provided for the release of unmanaged 27
resources that need to be reclaimed in some order or time dependent manner. It is 28
important to note that the actual release of these resources happens at the first call to 29
System.IDisposable.Dispose for any given object that supports this interface. 30
Programmers should take care to pair the creation of objects that implement 31
IDisposable with at most one invocation of the Dispose method. Though it is legal to 32
invoke Dispose more than once, if this happens it might indicate the presence of a bug 33
since such an object is usually rendered otherwise unusable after the first Dispose 34
invocation.] 35
 36
 37

38

 2

 IDisposable.Dispose() Method 1

[ILAsm] 2
.method public hidebysig virtual abstract void Dispose() 3

[C#] 4
void Dispose() 5

Summary 6

Performs application-defined tasks associated with freeing or resetting resources. 7

Description 8

[Note: This method is, by convention, used for all tasks associated with freeing 9
resources held by an object, or preparing an object for reuse. 10
 11
When implementing the System.IDisposable.Dispose method, objects should seek to 12
ensure that all held resources are freed by propagating the call through the containment 13
hierarchy. For example, if an object A allocates an object B, and B allocates an object C, 14
then A's System.IDisposable.Dispose implementation should call 15
System.IDisposable.Dispose on B, which should in turn call 16
System.IDisposable.Dispose on C. Objects should also call the 17
System.IDisposable.Dispose method of their base class if the base class implements 18
System.IDisposable. 19
 20
If an object's System.IDisposable.Dispose method is called more than once, the 21
object should ignore all calls after the first one. The object should not throw an 22
exception if its System.IDisposable.Dispose method is called multiple times. 23
System.IDisposable.Dispose can throw an exception if an error occurs because a 24
resource has already been freed and System.IDisposable.Dispose had not been called 25
previously. 26
 27
A resource type might use a particular convention to denote an allocated state versus a 28
freed state. An example of this is stream classes, which are traditionally thought of as 29
open or closed. Classes that have such conventions might choose to implement a public 30
method with a customized name, which calls the System.IDisposable.Dispose 31
method. 32
 33
Because the System.IDisposable.Dispose method must be called explicitly, objects 34
that implement System.IDisposable should also implement a finalizer to handle freeing 35
resources when System.IDisposable.Dispose is not called. By default, the garbage 36
collector will automatically call an object's finalizer prior to reclaiming its memory. 37
However, once the System.IDisposable.Dispose method has been called, it is typically 38
unnecessary and/or undesirable for the garbage collector to call the disposed object's 39
finalizer. To prevent automatic finalization, System.IDisposable.Dispose 40
implementations can call System.GC.SuppressFinalize. For additional information on 41
implementing finalizers, see System.GC and System.Object.Finalize. 42
 43
] 44

 3

Example 1
 2

Resource classes should follow the pattern illustrated by this example: 3
 4
[C#] 5

class ResourceWrapper: BaseType, IDisposable { 6
 // Pointer to a external resource. 7
 private int handle; 8
 private OtherResource otherRes; //Other resource you use. 9
 private bool disposed = false; 10
 11
 public ResourceWrapper () { 12
 handle = //Allocate on the unmanaged side. 13
 otherRes = new OtherResource (...); 14
 } 15
 // Free your own state. 16
 private void freeState () { 17
 if (!disposed) { 18
 CloseHandle (handle); 19
 dispose = true; 20
 } 21
 } 22
 23
 // Free your own state, call dispose on all state you hold, 24
 // and take yourself off the Finalization queue. 25
 public void Dispose () { 26
 freeState (); 27
 OtherRes.Dispose(); 28
 // If base type implements dispose, call it. 29
 base.Dispose(); 30
 GC.SuppressFinalize(this); 31
 } 32
 33
 // Free your own state (not other state you hold) 34
 // and give your base class a chance to finalize. 35
 ~ResourceWrapper (){ 36
 freeState(); 37
 } 38
} 39
 40
 41

