
 1

System.Threading.Monitor Class 1

 2

[ILAsm] 3
.class public sealed Monitor extends System.Object 4

[C#] 5
public sealed class Monitor 6

Assembly Info: 7

· Name: mscorlib 8
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 9
· Version: 2.0.x.x 10
· Attributes: 11

o CLSCompliantAttribute(true) 12

Summary 13
 14

Provides a mechanism that synchronizes access to objects. 15

Inherits From: System.Object 16
 17
Library: BCL 18
 19
Thread Safety: All public static members of this type are safe for multithreaded operations. 20
No instance members are guaranteed to be thread safe. 21
 22
Description 23

The System.Threading.Monitor class controls access to objects by granting a single 24
thread a lock for an object. Object locks provide the ability to restrict access to a block 25
of code, commonly called a critical section. While a thread owns the lock for an object 26
no other thread can acquire the lock for the object. Additionally, the 27
System.Threading.Monitor class can be used to ensure that no other thread can 28
access a section of application code being executed by the lock owner, unless the other 29
thread is executing the code using a different locked object. 30
 31
The following information is maintained for each synchronized object: 32

· A reference to the thread that currently holds the lock. 33

· A reference to a "ready queue", which contains the threads that are ready to obtain 34
the lock. 35

· A reference to a "waiting queue", which contains the threads that are waiting for 36
notification of a change in the state of the locked object. 37

 2

The following table describes the actions taken by threads that access synchronized objects: 1

Action Description

Enter

Acquires a lock for an object. Also marks the beginning of a critical section. No
other thread can enter the critical section unless they are executing the
instructions in the critical section using a different locked object. [Note: See the
System.Threading.Monitor.Enter and System.Threading.Monitor.TryEnter
methods.]

Wait

Releases the lock on an object in order to permit other threads to lock and access
the object. The calling thread waits while another thread accesses the object.
Pulse signals (see below) are used to notify waiting threads about changes to an
object's state. [Note: See System.Threading.Monitor.Wait.]

Pulse
(signal)

Sends a signal to one or more waiting threads. The signal notifies a waiting thread
that the state of the locked object has changed, and the owner of the lock is ready
to release the lock. The waiting thread is placed in the object's ready queue so
that it can eventually receive the lock for the object. Once the thread has the lock,
it can check the new state of the object to see if the required state has been
reached. [Note: See System.Threading.Monitor.Pulse and
System.Threading.Monitor.PulseAll.]

Exit
Releases the lock on an object. Also marks the end of a critical section protected
by the locked object. [Note: See System.Threading.Monitor.Exit.]

 2
 3
 4
The System.Threading.Monitor.Enter and System.Threading.Monitor.Exit methods 5
are used to mark the beginning and end of a critical section. If the critical section is a set of 6
contiguous instructions, then the lock acquired by the System.Threading.Monitor.Enter 7
method guarantees that only a single thread can execute the enclosed code with the locked 8
object. This facility is typically used to synchronize access to a static or instance method of 9
a class. If an instance method requires synchronized thread access, the instance method 10
invokes the System.Threading.Monitor.Enter and corresponding 11
System.Threading.Monitor.Exit methods using itself (the current instance) as the object 12
to lock. Since only one thread can hold the lock on the current instance, the method can 13
only be executed by one thread at a time. Static methods are protected in a similar fashion 14
using the System.Type object of the current instance as the locked object. 15
 16
[Note: The functionality provided by the System.Threading.Monitor.Enter and 17
System.Threading.Monitor.Exit methods is identical to that provided by the C# lock 18
statement. 19
 20

 3

If a critical section spans an entire method, the locking facility described above can be 1
achieved by placing the System.Runtime.CompilerServices.MethodImplAttribute on the 2
method, and specifying the 3
System.Runtime.CompilerServices.MethodImplOptions.Synchronized option. Using this 4
attribute, the System.Threading.Monitor.Enter and System.Threading.Monitor.Exit 5
statements are not needed. Note that the attribute causes the current thread to hold the 6
lock until the method returns; if the lock can be released sooner, use the 7
System.Threading.Monitor class (or C# lock statement) instead of the attribute. 8
 9
While it is possible for the System.Threading.Monitor.Enter and 10
System.Threading.Monitor.Exit statements that lock and release a given object to cross 11
member and/or class boundaries, this practice is strongly discouraged. 12
 13
] 14

15

 4

 Monitor.Enter(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static void Enter(object obj) 3

[C#] 4
public static void Enter(object obj) 5

Summary 6

Acquires an exclusive lock on the specified object. 7

Parameters 8
 9
 10

Parameter Description

obj The System.Object on which to acquire the lock.

 11
Description 12

This method acquires an exclusive lock on obj. 13
 14
A caller of this method is required to invoke System.Threading.Monitor.Exit once for 15
each System.Threading.Monitor.Enter invoked. 16
 17
The caller of this method is blocked if another thread has obtained the lock by calling 18
System.Threading.Monitor.Enter and specifying the same object. The caller is not 19
blocked if the current thread holds the lock. The same thread can invoke 20
System.Threading.Monitor.Enter more than once (and it will not block); however, an 21
equal number of System.Threading.Monitor.Exit calls are required to be invoked 22
before other threads waiting on the object will unblock. 23
 24
[Note: Invoking this member is identical to using the C# lock statement.] 25
 26
 27

Exceptions 28
 29
 30

Exception Condition

System.ArgumentNullException obj is null.

 5

 1
 2

3

 6

 Monitor.Exit(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static void Exit(object obj) 3

[C#] 4
public static void Exit(object obj) 5

Summary 6

Releases an exclusive lock on the specified System.Object. 7

Parameters 8
 9
 10

Parameter Description

obj The System.Object on which to release the lock.

 11
Description 12

This method releases an exclusive lock on obj. The caller is required to own the lock on 13
obj. 14
 15
If the caller owns the lock on the specified object, and has made an equal number of 16
System.Threading.Monitor.Exit and System.Threading.Monitor.Enter calls for the 17
object, then the lock is released. If the caller has not invoked 18
System.Threading.Monitor.Exit as many times as 19
System.Threading.Monitor.Enter, the lock is not released. 20
 21
[Note: If the lock is released and there are other threads in the ready queue for the 22
object, one of the threads will acquire the lock. If there are other threads in the waiting 23
queue waiting to acquire the lock, they are not automatically moved to the ready queue 24
when the owner of the lock calls System.Threading.Monitor.Exit. To move one or 25
more waiting threads into the ready queue, call System.Threading.Monitor.Pulse or 26
System.Threading.Monitor.PulseAll prior to invoking 27
System.Threading.Monitor.Exit.] 28
 29
 30

Exceptions 31
 32
 33

Exception Condition

 7

System.ArgumentNullException obj is null.

System.Threading.
SynchronizationLockException

The current thread does not own the lock
for the specified object.

 1
 2

3

 8

 Monitor.Pulse(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static void Pulse(object obj) 3

[C#] 4
public static void Pulse(object obj) 5

Summary 6

Notifies the next waiting thread (if any) of a change in the specified locked object's 7
state. 8

Parameters 9
 10
 11

Parameter Description

obj The System.Object a thread might be waiting for.

 12
Description 13

The thread that currently owns the lock on the specified object invokes this method to 14
signal the next thread in line for the lock (in the queue of threads waiting to acquire the 15
lock on the object). Upon receiving the pulse, the waiting thread is moved to the ready 16
queue. When the thread that invoked Pulse releases the lock, the next thread in the 17
ready queue (which is not necessarily the thread that was pulsed) acquires the lock. 18
 19
[Note: To signal a waiting object using Pulse, you must be the current owner of the 20
lock. 21
 22
To signal multiple threads, use the System.Threading.Monitor.PulseAll method. 23
 24
] 25

Exceptions 26
 27
 28

Exception Condition

System.ArgumentNullException obj is null.

System.Threading. The calling thread does not own the lock for

 9

SynchronizationLockException the specified object.

 1
 2

3

 10

 Monitor.PulseAll(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static void PulseAll(object obj) 3

[C#] 4
public static void PulseAll(object obj) 5

Summary 6

Notifies all waiting threads (if any) of a change in the specified locked object's state. 7

Parameters 8
 9
 10

Parameter Description

obj The System.Object that one or more threads might be waiting for.

 11
Description 12

The thread that currently owns the lock on the specified object invokes this method to 13
signal all threads waiting to acquire the lock on the object. After the signal is sent, the 14
waiting threads are moved to the ready queue. When the thread that invoked PulseAll 15
releases the lock, the next thread in the ready queue acquires the lock. 16
 17
[Note: To signal waiting objects using PulseAll, you must be the current owner of the 18
lock. 19
 20
To signal a single thread, use the System.Threading.Monitor.Pulse method. 21
 22
] 23

Exceptions 24
 25
 26

Exception Condition

System.ArgumentNullException obj is null.

System.Threading.
SynchronizationLockException

The calling thread does not own the lock for
the specified object.

 11

 1
 2

3

 12

 Monitor.TryEnter(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static bool TryEnter(object obj) 3

[C#] 4
public static bool TryEnter(object obj) 5

Summary 6

Attempts to acquire an exclusive lock on the specified object. 7

Parameters 8
 9
 10

Parameter Description

obj The System.Object on which to acquire the lock.

 11
Return Value 12
 13

true if the current thread acquired the lock; otherwise, false. 14

Description 15

If successful, this method acquires an exclusive lock on obj. This method returns 16
immediately, whether or not the lock is available. 17
 18
This method is equivalent to System.Threading.Monitor.TryEnter (obj, 0). 19

Exceptions 20
 21
 22

Exception Condition

System.ArgumentNullException obj is null.

 23
 24

25

 13

 Monitor.TryEnter(System.Object, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig static bool TryEnter(object obj, int32 4
millisecondsTimeout) 5

[C#] 6
public static bool TryEnter(object obj, int millisecondsTimeout) 7

Summary 8

Attempts, for the specified number of milliseconds, to acquire an exclusive lock on the 9
specified object. 10

Parameters 11
 12
 13

Parameter Description

obj The System.Object on which to acquire the lock.

millisecondsTimeout
A System.Int32 containing the maximum number of milliseconds to
wait for the lock.

 14
Return Value 15
 16

true if the current thread acquired the lock; otherwise, false. 17

Description 18

If successful, this method acquires an exclusive lock on obj. 19
 20
If millisecondsTimeout equals System.Threading.Timeout.Infinite, this method is 21
equivalent to System.Threading.Monitor.Enter (obj). If millisecondsTimeout equals 22
zero, this method is equivalent to System.Threading.Monitor.TryEnter (obj). 23

Exceptions 24
 25
 26

Exception Condition

 14

System.ArgumentNullException obj is null.

System.ArgumentOutOfRangeException
millisecondsTimeout is negative, and not equal
to System.Threading.Timeout.Infinite.

 1
 2

3

 15

 Monitor.TryEnter(System.Object, 1

System.TimeSpan) Method 2

[ILAsm] 3
.method public hidebysig static bool TryEnter(object obj, valuetype 4
System.TimeSpan timeout) 5

[C#] 6
public static bool TryEnter(object obj, TimeSpan timeout) 7

Summary 8

Attempts, for the specified amount of time, to acquire an exclusive lock on the specified 9
object. 10

Parameters 11
 12
 13

Parameter Description

obj The System.Object on which to acquire the lock.

timeout A System.TimeSpan set to the maximum amount of time to wait for the lock.

 14
Return Value 15
 16

true if the current thread acquires the lock; otherwise, false. 17

Description 18

If successful, this method acquires an exclusive lock on obj. 19
 20
If the value of timeout converted to milliseconds equals 21
System.Threading.Timeout.Infinite, this method is equivalent to 22
System.Threading.Monitor.Enter (obj). If the value of timeout equals zero, this 23
method is equivalent to System.Threading.Monitor.TryEnter (obj). 24

Exceptions 25
 26
 27

Exception Condition

 16

System.ArgumentNullException obj is null.

System.ArgumentOutOfRangeException

The value of timeout in milliseconds is negative
and is not equal to
System.Threading.Timeout.Infinite, or is
greater than System.Int32.MaxValue.

 1
 2

3

 17

 Monitor.Wait(System.Object, System.Int32) 1

Method 2

[ILAsm] 3
.method public hidebysig static bool Wait(object obj, int32 4
millisecondsTimeout) 5

[C#] 6
public static bool Wait(object obj, int millisecondsTimeout) 7

Summary 8

Releases the lock on an object and blocks the current thread until it reacquires the lock 9
or until a specified amount of time elapses. 10

Parameters 11
 12
 13

Parameter Description

obj The System.Object on which to wait.

millisecondsTimeout
A System.Int32 containing the maximum number of milliseconds to
wait before this method returns.

 14
Return Value 15
 16

true if the lock was reacquired before the specified time elapsed; otherwise, false. 17

Description 18

If successful, this method reacquires an exclusive lock on obj. 19
 20
This method behaves identically to System.Threading.Monitor.Wait (obj), except that 21
it does not block indefinitely unless System.Threading.Timeout.Infinite is specified 22
for millisecondsTimeout. Once the specified time has elapsed, this method returns a 23
value that indicates whether the lock has been reacquired by the caller. If 24
millisecondsTimeout equals 0, this method returns immediately. 25
 26
[Note: This method is called when the caller is waiting for a change in the state of the 27
object, which occurs as a result of another thread's operations on the object. For 28
additional details, see System.Threading.Monitor.Wait (obj).] 29
 30
 31

 18

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException obj is null.

System.Threading.
SynchronizationLockException

The calling thread does not own the lock for
the specified object.

System.ArgumentOutOfRangeException
The value of millisecondsTimeout is negative,
and not equal to
System.Threading.Timeout.Infinite.

 4
 5

6

 19

 Monitor.Wait(System.Object, 1

System.TimeSpan) Method 2

[ILAsm] 3
.method public hidebysig static bool Wait(object obj, valuetype 4
System.TimeSpan timeout) 5

[C#] 6
public static bool Wait(object obj, TimeSpan timeout) 7

Summary 8

Releases the lock on an object and blocks the current thread until it reacquires the lock 9
or until a specified amount of time elapses. 10

Parameters 11
 12
 13

Parameter Description

obj The System.Object on which to wait.

timeout
A System.TimeSpan set to the maximum amount of time to wait before this
method returns.

 14
Return Value 15
 16

true if the lock was reacquired before the specified time elapsed; otherwise, false. 17

Description 18

If successful, this method reacquires an exclusive lock on obj. 19
 20
This method behaves identically to System.Threading.Monitor.Wait (obj), except that 21
it does not block indefinitely unless System.Threading.Timeout.Infinite milliseconds 22
is specified for timeout. Once the specified time has elapsed, this method returns a 23
value that indicates whether the lock has been reacquired by the caller. If timeout 24
equals 0, this method returns immediately. 25
 26
[Note: This method is called when the caller is waiting for a change in the state of the 27
object, which occurs as a result of another thread's operations on the object. For 28
additional details, see System.Threading.Monitor.Wait (obj).] 29
 30
 31

 20

Exceptions 1
 2
 3

Exception Condition

System.ArgumentNullException obj is null.

System.Threading.
SynchronizationLockException

The calling thread does not own the lock for
the specified object.

System.ArgumentOutOfRangeException
If timeout is negative, and is not equal to
System.Threading.Timeout.Infinite, or is
greater than System.Int32.MaxValue.

 4
 5

6

 21

 Monitor.Wait(System.Object) Method 1

[ILAsm] 2
.method public hidebysig static bool Wait(object obj) 3

[C#] 4
public static bool Wait(object obj) 5

Summary 6

Releases the lock on an object and blocks the current thread until it reacquires the lock. 7

Parameters 8
 9
 10

Parameter Description

obj The System.Object on which to wait.

 11
Return Value 12
 13

true if the call returned because the caller reacquired the lock for the specified object. 14
This method does not return if the lock is not reacquired. 15

Description 16

This method reacquires an exclusive lock on obj. 17
 18
The thread that currently owns the lock on the specified object invokes this method in 19
order to release the object so that another thread can access it. The caller is blocked 20
while waiting to reacquire the lock. This method is called when the caller is waiting for a 21
change in the state of the object, which occurs as a result of another thread's operations 22
on the object. 23
 24
When a thread calls Wait, it releases the lock on the object and enters the object's 25
waiting queue. The next thread in the object's ready queue (if there is one) acquires the 26
lock and has exclusive use of the object. All threads that call Wait remain in the waiting 27
queue until they receive a signal via System.Threading.Monitor.Pulse or 28
System.Threading.Monitor.PulseAll sent by the owner of the lock. If Pulse is sent, 29
only the thread at the head of the waiting queue is affected. If PulseAll is sent, all 30
threads that are waiting for the object are affected. When the signal is received, one or 31
more threads leave the waiting queue and enter the ready queue. A thread in the ready 32
queue is permitted to reacquire the lock. 33
 34
This method returns when the calling thread reacquires the lock on the object. Note that 35

 22

this method blocks indefinitely if the holder of the lock does not call 1
System.Threading.Monitor.Pulse or System.Threading.Monitor.PulseAll. 2
 3
The caller executes System.Threading.Monitor.Wait once, regardless of the number of 4
times System.Threading.Monitor.Enter has been invoked for the specified object. 5
Conceptually, the System.Threading.Monitor.Wait method stores the number of times 6
the caller invoked System.Threading.Monitor.Enter on the object and invokes 7
System.Threading.Monitor.Exit as many times as necessary to fully release the 8
locked object. The caller then blocks while waiting to reacquire the object. When the 9
caller reacquires the lock, the system calls System.Threading.Monitor.Enter as many 10
times as necessary to restore the saved Enter count for the caller. 11
 12
Calling System.Threading.Monitor.Wait releases the lock for the specified object only; 13
if the caller is the owner of locks on other objects, these locks are not released. 14

Exceptions 15
 16
 17

Exception Condition

System.ArgumentNullException obj is null.

System.Threading.
SynchronizationLockException

The calling thread does not own the lock for
the specified object.

 18
 19

