
 1

System.Collections.Generic.IEnumerator<T> 1

Interface 2

 3

[ILAsm] 4
.class interface public abstract IEnumerator`1<T> implements 5
System.IDisposable, System.Collections.IEnumerator 6

[C#] 7
public interface IEnumerator<T>: IDisposable, IEnumerator 8

Assembly Info: 9

· Name: mscorlib 10
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 11
· Version: 2.0.x.x 12
· Attributes: 13

o CLSCompliantAttribute(true) 14

Implements: 15

· System.IDisposable 16
· System.Collections.IEnumerator 17

Summary 18
 19

Implemented by generic classes that support a simple iteration over a collection. 20

Library: BCL 21
 22
Description 23

Enumerators can be used to read the data in the collection, but they cannot be used to 24
modify the underlying collection. 25
 26
Initially, the enumerator is positioned before the first element in the collection. At this 27
position, callingSystem.Collections.Generic.IEnumerator<T>.Current is unspecified. 28
Therefore, you must call System.Collections.IEnumerator.MoveNext to advance the 29
enumerator to the first element of the collection before reading the value of 30
System.Collections.Generic.IEnumerator<T>.Current. 31
 32
System.Collections.Generic.IEnumerator<T>.Current returns the same object until 33
System.Collections.IEnumerator.MoveNext is called. 34
System.Collections.IEnumerator.MoveNext sets 35
System.Collections.Generic.IEnumerator<T>.Current to the next element. 36
 37
If System.Collections.IEnumerator.MoveNext passes the end of the collection, the 38

 2

enumerator is positioned after the last element in the collection and 1
System.Collections.IEnumerator.MoveNext returns false. When the enumerator is at 2
this position, subsequent calls to System.Collections.IEnumerator.MoveNext also 3
return false. If the last call to System.Collections.IEnumerator.MoveNext returned 4
false, calling System.Collections.Generic.IEnumerator<T>.Current is unspecified. 5
You cannot set System.Collections.Generic.IEnumerator<T>.Current to the first 6
element of the collection again; you must create a new enumerator instance instead. 7
 8
An enumerator remains valid as long as the collection remains unchanged and the 9
enumerator is not disposed. If changes are made to the collection, such as adding, 10
modifying, or deleting elements, the enumerator is irrecoverably invalidated and its 11
behavior is unspecified. 12
 13
The enumerator does not have exclusive access to the collection; therefore, 14
enumerating through a collection is intrinsically not a thread-safe procedure. To 15
guarantee thread safety during enumeration, you can lock the collection during the 16
entire enumeration. To allow the collection to be accessed by multiple threads for 17
reading and writing, you must implement your own synchronization. 18
 19
Default implementations of collections in System.Collections.Generic are not 20
synchronized. 21
 22
[Note: Implementing this interface requires implementing the non-generic interface 23
System.Collections.IEnumerator. The methods MoveNext, Reset and Dispose do not 24
depend on the type parameter T, and appear only on the non-generic interface 25
System.Collections.IEnumerator. The property Current appears on both interfaces, 26
but with different return types. Implementations should provide the non-generic 27
Current property as an explicit interface member implementation. This allows any 28
consumer of the non-generic interface to consume the generic interface.] 29

30

 3

 IEnumerator<T>.Current Property 1

[ILAsm] 2
.property !0 Current { public hidebysig virtual abstract specialname !0 3
get_Current() } 4

[C#] 5
T Current { get; } 6

Summary 7

Gets the element in the collection over which the current instance is positioned. 8

Property Value 9
 10

The element in the collection over which the current instance is positioned. 11

Description 12

System.Collections.Generic.IEnumerator<T>.Current is unspecified after any of the 13
following conditions: 14

· The enumerator is positioned before the first element in the collection, immediately 15
after the enumerator is created. System.Collections.IEnumerator.MoveNext must 16
be called to advance the enumerator to the first element of the collection before 17
reading the value of System.Collections.Generic.IEnumerator<T>.Current. 18

· The last call to System.Collections.IEnumerator.MoveNext returned false, which 19
indicates the end of the collection. 20

· The enumerator is invalidated due to changes made in the collection, such as adding, 21
repositioning, or deleting elements. 22

· If it has been disposed. 23

If System.Collections.Generic.IEnumerator<T>.Current is accessed when its value is 24
unspecified, an exception of unspecified type can be, but need not be, thrown. 25
 26
System.Collections.Generic.IEnumerator<T>.Current returns the same object until 27
System.Collections.IEnumerator.MoveNext is called. 28
System.Collections.IEnumerator.MoveNext sets 29
System.Collections.Generic.IEnumerator<T>.Current to the next element. 30
 31
This property is read-only. 32

 4

Exceptions 1
 2
 3

Exception Condition

An unspecified
exception type

If System.Collections.IEnumerator.MoveNext is not called before the
first call to System.Collections.Generic.IEnumerator<T>.Current.

-or-

If the previous call to System.Collections.IEnumerator.MoveNext
returned false, indicating the end of the collection.

 4
 5

