
 1

System.Security.PermissionSet Class 1

 2

[ILAsm] 3
.class public serializable PermissionSet extends System.Object implements 4
System.Collections.ICollection, System.Collections.IEnumerable 5

[C#] 6
public class PermissionSet: ICollection, IEnumerable 7

Assembly Info: 8

· Name: mscorlib 9
· Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 10
· Version: 2.0.x.x 11
· Attributes: 12

o CLSCompliantAttribute(true) 13

Implements: 14

· System.Collections.ICollection 15
· System.Collections.IEnumerable 16

Summary 17
 18

Represents a collection that can contain different kinds of permissions and perform 19
security operations. 20

Inherits From: System.Object 21
 22
Library: BCL 23
 24
Thread Safety: All public static members of this type are safe for multithreaded operations. 25
No instance members are guaranteed to be thread safe. 26
 27
Description 28

[Note: Use System.Security.PermissionSet to perform operations on different 29
permission types as a group.] 30
 31
 32
 33
The XML encoding of a System.Security.PermissionSet instance is defined below in 34
EBNF format. The following conventions are used: 35

· All non-literals in the grammar below are shown in normal type. 36

 2

· All literals are in bold font. 1

The following meta-language symbols are used: 2

· '*' represents a meta-language symbol suffixing an expression that can appear zero 3
or more times. 4

· '?' represents a meta-language symbol suffixing an expression that can appear zero 5
or one time. 6

· '+' represents a meta-language symbol suffixing an expression that can appear one 7
or more times. 8

· '(',')' is used to group literals, non-literals or a mixture of literals and non-literals. 9

· '|' denotes an exclusive disjunction between two expressions. 10

· '::= ' denotes a production rule where a left hand non-literal is replaced by a right 11
hand expression containing literals, non-literals or both. 12

The XML encoding of a System.Security.PermissionSet instance is as follows: 13
 14
PermissionSet::= 15
 16
 17
(18
 19
 20
<PermissionSet 21
 22
 23
class="System.Security.PermissionSet" 24
 25
 26
version="1" Unrestricted="true"/> 27
 28
 29
) 30
 31
 32
| 33
 34
 35
(36
 37
 38
<PermissionSet 39
 40
 41

 3

class="System.Security.PermissionSet" 1
 2
 3
version="1"> 4
 5
 6
DnsPermissionXML ? 7
 8
 9
SocketPermissionXML ? 10
 11
 12
WebPermissionXML ? 13
 14
 15
EnvironmentPermissionXML ? 16
 17
 18
FileIOPermissionXML ? 19
 20
 21
ReflectionPermissionXML ? 22
 23
 24
SecurityPermissionXML ? 25
 26
 27
CustomPermissionXML * 28
 29
 30
</PermissionSet> 31
 32
 33
) 34
 35
 36
CustomPermissionXML represents any custom permission. The XML encoding for custom 37
permissions makes use of the following symbols: 38
 39
ClassName is the name of the class implementing the permission. 40
 41
AssemblyName is the name of the assembly that contains the class implementing the 42
permission. 43
 44
Version is the version number indicating the version of the assembly implementing the 45
permission. 46
 47
StrongNamePublicKeyToken is the strong name public key token constituting the strong 48

 4

name of the assembly that implements the permission. 1
 2
version is version information for the custom permission. Format and content are defined by 3
the author of the custom permission. 4
 5
PermissionAttributes is any attribute and attribute value on the 6
System.Security.IPermission element used by the permission to represent a particular 7
permission state, for example, unrestricted= "true". Format and content are defined by the 8
author of the custom permission. 9
 10
PermissionXML is any valid XML used by the permission to represent permission state. 11
Format and content are defined by the author of the custom permission. 12
 13
The XML encoding of a custom permission instance is as follows: 14
 15
CustomPermissionXML::= 16
 17
 18
<IPermission class=" 19
 20
 21
ClassName, 22
 23
 24
AssemblyName, 25
 26
 27
Version=Version, 28
 29
 30
Culture=neutral, 31
 32
 33
PublicKeyToken=StrongNamePublicKeyToken" 34
 35
 36
version="version" 37
 38
 39
(PermissionAttributes)* 40
 41
 42
> 43
 44
 45
(PermissionXML)? 46
 47
 48

 5

</IPermission> 1
 2

3

 6

 1

PermissionSet(System.Security.PermissionSe2

t) Constructor 3

[ILAsm] 4
public rtspecialname specialname instance void .ctor(class 5
System.Security.PermissionSet permSet) 6

[C#] 7
public PermissionSet(PermissionSet permSet) 8

Summary 9

Constructs a new instance of the System.Security.PermissionSet class with the 10
values of the specified System.Security.PermissionSet instance. 11

Parameters 12
 13
 14

Parameter Description

permSet
The System.Security.PermissionSet instance with which to initialize the
values of the new instance, or null to initialize an empty permission set.

 15
Description 16

If permSet is not null, the new instance is initialized with copies of the objects in 17
permSet, not references to those objects. If permSet is null, the new instance contains 18
no permissions. 19
 20
[Note: To add a permission to an empty System.Security.PermissionSet, use 21
System.Security.PermissionSet.AddPermission.] 22
 23
 24

Exceptions 25
 26
 27

Exception Condition

System.ArgumentException
permSet is not null and is not an instance of
System.Security.PermissionSet.

 7

 1
 2

3

 8

 1

PermissionSet(System.Security.Permissions.P2

ermissionState) Constructor 3

[ILAsm] 4
public rtspecialname specialname instance void .ctor(valuetype 5
System.Security.Permissions.PermissionState state) 6

[C#] 7
public PermissionSet(PermissionState state) 8

Summary 9

Constructs a new instance of the System.Security.PermissionSet class with the 10
specified value. 11

Parameters 12
 13
 14

Parameter Description

state

A System.Security.Permissions.PermissionState value. This value is either
System.Security.Permissions.PermissionState.None or
System.Security.Permissions.PermissionState. Unrestricted, to specify
fully restricted or fully unrestricted access.

 15
Description 16

[Note: The new instance contains no permissions. To add a permission to the new 17
instance, use System.Security.PermissionSet.AddPermission.] 18
 19
 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentException
state is not a valid
System.Security.Permissions.PermissionState value.

 24
 25

 9

1

 10

 1

PermissionSet.AddPermission(System.Securit2

y.IPermission) Method 3

[ILAsm] 4
.method public hidebysig virtual class System.Security.IPermission 5
AddPermission(class System.Security.IPermission perm) 6

[C#] 7
public virtual IPermission AddPermission(IPermission perm) 8

Summary 9

Adds the specified System.Security.IPermission object to the current instance if that 10
permission does not already exist in the current instance. 11

Parameters 12
 13
 14

Parameter Description

perm The System.Security.IPermission object to add.

 15
Return Value 16
 17

If perm is null, returns null. If a permission of the same type as perm already exists in 18
the current instance, the union of the existing permission and perm is added to the 19
current instance and is returned. 20

Behaviors 21

The System.Security.IPermission is added if perm is not null and a permission of 22
the same type as perm does not already exist in the current instance. 23

 24

Usage 25

Use this method to add permission objects to the current instance. 26

 27

 11

Exceptions 1
 2
 3

Exception Condition

System.ArgumentException perm is not a System.Security.IPermission object.

 4
 5

6

 12

 PermissionSet.Assert() Method 1

[ILAsm] 2
.method public hidebysig virtual void Assert() 3

[C#] 4
public virtual void Assert() 5

Summary 6

Asserts that calling code can access the resources identified by the permissions 7
contained in the current instance through the code that calls this method, even if callers 8
have not been granted permission to access the resource. 9

Description 10

[Note: This method is the only way to assert multiple permissions at the same time 11
within a frame because only a single assert can be active on a frame at one time; 12
subsequent asserts will result in an exception.] 13
 14
 15

Behaviors 16

As described above. 17

 18

Usage 19

Use this method to insure that all callers can access a set of secured resources. 20

 21

Exceptions 22
 23
 24

Exception Condition

System.Security.SecurityException

The asserting code does not have sufficient
permission to call this method.

-or-

This method was called with permissions already
asserted for the current stack frame.

 13

 1
Permissions 2
 3
 4

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to perform the assertion security
operation. See
System.Security.Permissions.SecurityPermissionFlag.

Assertion.

 5
 6

7

 14

 PermissionSet.Copy() Method 1

[ILAsm] 2
.method public hidebysig virtual class System.Security.PermissionSet 3
Copy() 4

[C#] 5
public virtual PermissionSet Copy() 6

Summary 7

Returns a new System.Security.PermissionSet containing copies of the objects in the 8
current instance. 9

Return Value 10
 11

A new System.Security.PermissionSet that is value equal to the current instance. 12

Behaviors 13

This method creates copies of the permission objects in the current instance, and adds 14
them to the new instance. 15

 16

Default 17

This method calls the System.Security.PermissionSet constructor that takes a 18
System.Security.PermissionSet argument, and passes the current instance as that 19
parameter. 20

 21

Usage 22

Use this method to create a new System.Security.PermissionSet instance containing 23
permissions that are identical to the permissions contained in the current instance. 24

 25

26

 15

 PermissionSet.CopyTo(System.Array, 1

System.Int32) Method 2

[ILAsm] 3
.method public hidebysig virtual void CopyTo(class System.Array array, 4
int32 index) 5

[C#] 6
public virtual void CopyTo(Array array, int index) 7

Summary 8

Copies the permission objects in the current instance to the specified location in the 9
specified System.Array. 10

Parameters 11
 12
 13

Parameter Description

array The destination System.Array.

index
A System.Int32 that specifies the zero-based starting position in the array at
which to begin copying.

 14
Description 15

[Note: This method is implemented to support the System.Collections.ICollection 16
interface.] 17
 18
 19

Behaviors 20

As described above. 21

 22

Default 23

The default implementation uses the System.Array.SetValue(System.Object, 24
System.Int32) method to add the value to the array. 25

 26

 16

How and When to Override 1

Override this method to customize the manner in which elements are added to array. 2

 3

Exceptions 4
 5
 6

Exception Condition

System.ArgumentException array has more than one dimension.

System.IndexOutOfRangeException index is outside the range of allowable values for
array.

System.ArgumentNullException array is null.

 7
 8

9

 17

 PermissionSet.Demand() Method 1

[ILAsm] 2
.method public hidebysig virtual void Demand() 3

[C#] 4
public virtual void Demand() 5

Summary 6

Forces a System.Security.SecurityException if all callers do not have the 7
permissions specified by the objects contained in the current instance. 8

Behaviors 9

The permission check for System.Security.PermissionSet.Demand begins with the 10
immediate caller of the code that calls this method and continues until all callers have 11
been checked or a caller has been found that is not granted the demanded permission, 12
in which case a System.Security.SecurityException exception is thrown. 13
 14
If the current instance is empty, a call to System.Security.PermissionSet.Demand 15
succeeds. 16

Usage 17

Use this method to ensure in a single operation that all callers have all permissions 18
contained in a permission set. 19

 20

Exceptions 21
 22
 23

Exception Condition

System.Security.SecurityException A caller does not have the permission specified by
the current instance.

 24
 25

26

 18

 PermissionSet.Deny() Method 1

[ILAsm] 2
.method public hidebysig virtual void Deny() 3

[C#] 4
public virtual void Deny() 5

Summary 6

Denies access to the resources secured by the objects contained in the current instance 7
through the code that calls this method. 8

Description 9

This is the only way to deny multiple permissions at the same time within a frame 10
because only a single deny can be active on a frame at one time; subsequent denies will 11
result in an exception. 12

Behaviors 13

This method is required to prevent callers from accessing all resources protected by the 14
objects in the current instance even if the callers had been granted permission to access 15
them. 16
 17
A call to System.Security.PermissionSet.Deny is effective until the calling code 18
returns. 19

Usage 20

Use this method to force all security checks for the objects contained in the current 21
instance to fail. 22

 23

Exceptions 24
 25
 26

Exception Condition

System.Security.SecurityException
A previous call to Deny has already restricted the
permissions for the current stack frame.

 27
 28

29

 19

 1

PermissionSet.FromXml(System.Security.Sec2

urityElement) Method 3

[ILAsm] 4
.method public hidebysig virtual void FromXml(class 5
System.Security.SecurityElement et) 6

[C#] 7
public virtual void FromXml(SecurityElement et) 8

Summary 9

Reconstructs the state of a System.Security.PermissionSet object using the specified 10
XML encoding. 11

Parameters 12
 13
 14

Parameter Description

et
A System.Security.SecurityElement instance containing the XML encoding to
use to reconstruct the state of a System.Security.PermissionSet object.

 15
Description 16

[Note: For the XML encoding for this class, see the System.Security.PermissionSet 17
class page.] 18
 19
 20

Behaviors 21

When this call completes, the objects in the current instance are required to be identical 22
to the objects in the System.Security.PermissionSet encoded in et. 23

 24

How and When to Override 25

Override this method to reconstruct subclasses of System.Security.PermissionSet. 26

 27

Usage 28

 20

Applications do not typically call this method; it is called by the system. 1

 2

Exceptions 3
 4
 5

Exception Condition

System.ArgumentNullException et is null.

System.ArgumentException

et does not contain an XML encoding for a
System.Security.PermissionSet instance.

-or-

An error occurred while reconstructing et.

 6
 7

8

 21

 PermissionSet.GetEnumerator() Method 1

[ILAsm] 2
.method public hidebysig virtual class System.Collections.IEnumerator 3
GetEnumerator() 4

[C#] 5
public virtual IEnumerator GetEnumerator() 6

Summary 7

Returns an enumerator used to iterate over the permissions in the current instance. 8

Return Value 9
 10

A System.Collections.IEnumerator object for the permissions of the set. 11

Description 12

[Note: This method is implemented to support the System.Collections.ICollection 13
interface, which supports the System.Collections.IEnumerable interface.] 14
 15
 16

Behaviors 17

As described above. 18

 19

How and When to Override 20

Override this method to customize the enumerator returned by this method. 21

 22

23

 22

 1

PermissionSet.IsSubsetOf(System.Security.P2

ermissionSet) Method 3

[ILAsm] 4
.method public hidebysig virtual bool IsSubsetOf(class 5
System.Security.PermissionSet target) 6

[C#] 7
public virtual bool IsSubsetOf(PermissionSet target) 8

Summary 9

Determines whether the current instance is a subset of the specified object. 10

Parameters 11
 12
 13

Parameter Description

target
A System.Security.PermissionSet instance that is to be tested for the subset
relationship.

 14
Return Value 15
 16

true if the current instance is a subset of target; otherwise, false. 17

Description 18

[Note: The current instance is a subset target if all demands that succeed for the current 19
instance also succeed for target. That is, the current instance is a subset of target if 20
target contains at least the permissions contained in the current instance. 21
 22
If this method returns true, the current instance does not describe a level of access to a 23
set of resources that is not already described by target. 24
 25
] 26

Behaviors 27

As described above. 28

 29

 23

Usage 1

Use this method to determine if the all permissions contained in the current instance are 2
also contained in target. 3

 4

5

 24

 PermissionSet.PermitOnly() Method 1

[ILAsm] 2
.method public hidebysig virtual void PermitOnly() 3

[C#] 4
public virtual void PermitOnly() 5

Summary 6

Specifies that only the resources described by the current instance can be accessed by 7
calling code, even if the code has been granted permission to access other resources. 8

Description 9

[Note: System.Security.PermissionSet.PermitOnly is similar to 10
System.Security.PermissionSet.Deny in that both methods cause access to fail where 11
it might otherwise succeed. The difference is that 12
System.Security.PermissionSet.Deny specifies permissions for which to refuse 13
access, while System.Security.PermissionSet.PermitOnly specifies the only 14
permissions that will succeed. 15
 16
This is the only way to permit multiple permissions at the same time within a stack 17
frame because only a single permit at a time can be active on a frame; subsequent 18
permits will result in an exception. 19
 20
] 21

Behaviors 22

Callers are required to be prevented from accessing resources not secured by the 23
contents of the current instance, even if a caller has been granted permission to access 24
such resources. 25
 26
A System.Security.PermissionSet.PermitOnly is in effect until the calling code 27
returns to its caller. 28

Usage 29

Use this method to limit access to a specified set of resources. 30

 31

Exceptions 32
 33
 34

Exception Condition

 25

System.Security.SecurityException
A previous call to PermitOnly has already set the
permissions for the current stack frame.

 1
 2

3

 26

 PermissionSet.ToString() Method 1

[ILAsm] 2
.method public hidebysig virtual string ToString() 3

[C#] 4
public override string ToString() 5

Summary 6

Returns a System.String representation of the state of the current instance. 7

Return Value 8
 9

A System.String containing the XML representation of the state of the current instance. 10

Description 11

[Note: This method overrides System.Object.ToString. 12
 13
] 14

Example 15
 16

The following example displays the XML that encodes the state of a 17
System.Security.PermissionSet. 18
 19
[C#] 20

 21
using System; 22
using System.Security; 23
using System.Security.Permissions; 24
 25
public class PermissionSetToStringExample { 26
 public static void Main() { 27
 28
 PermissionSet ps = new PermissionSet(PermissionState.Unrestricted); 29
 Console.WriteLine(ps.ToString()); 30
 } 31
} 32
 33
 34
The output is 35
 36
<PermissionSet class="System.Security.PermissionSet" version="1" Unrestricted="true"/> 37

38

 27

 PermissionSet.ToXml() Method 1

[ILAsm] 2
.method public hidebysig virtual class System.Security.SecurityElement 3
ToXml() 4

[C#] 5
public virtual SecurityElement ToXml() 6

Summary 7

Returns the XML encoding of the current instance. 8

Return Value 9
 10

A System.Security.SecurityElement containing an XML encoding of the state of the 11
current instance. 12

Behaviors 13

As described above. 14

 15

How and When to Override 16

Override this method to return an object containing the XML encoding for types derived 17
from System.Security.PermissionSet. 18

 19

Usage 20

This method is called by the system. 21

 22

23

 28

 1

PermissionSet.Union(System.Security.Permis2

sionSet) Method 3

[ILAsm] 4
.method public hidebysig virtual class System.Security.PermissionSet 5
Union(class System.Security.PermissionSet other) 6

[C#] 7
public virtual PermissionSet Union(PermissionSet other) 8

Summary 9

Returns a System.Security.PermissionSet object that is the union of the current 10
instance and the specified object. 11

Parameters 12
 13
 14

Parameter Description

other
A System.Security.PermissionSet instance to be combined with the current
instance.

 15
Return Value 16
 17

A new System.Security.PermissionSet instance that represents the union of the 18
current instance and other. If the current instance or other is unrestricted, returns a 19
System.Security.PermissionSet instance that is unrestricted. 20

Description 21

The result of a call to System.Security.PermissionSet.Union is a new 22
System.Security.PermissionSet instance that represents all the operations 23
represented by the current instance as well as all the operations represented by other. If 24
either set is unrestricted, the union is unrestricted, as well. 25

Behaviors 26

As described above. 27

 28

Usage 29

 29

Use this method to create a System.Security.PermissionSet instance that contains all 1
of the permissions of the current instance and other. 2

 3

4

 30

 PermissionSet.Count Property 1

[ILAsm] 2
.property int32 ICollection.Count { public hidebysig virtual abstract 3
specialname int32 get_ICollection.Count() } 4

[C#] 5
int ICollection.Count { get; } 6

Summary 7

Implemented to support the System.Collections.ICollection interface. [Note: For 8
more information, see System.Collections.ICollection.Count.] 9

10

 31

 PermissionSet.IsSynchronized Property 1

[ILAsm] 2
.property bool ICollection.IsSynchronized { public hidebysig virtual 3
abstract specialname bool get_ICollection.IsSynchronized() } 4

[C#] 5
bool ICollection.IsSynchronized { get; } 6

Summary 7

Implemented to support the System.Collections.ICollection interface. [Note: For 8
more information, see System.Collections.ICollection.IsSynchronized.] 9

10

 32

 PermissionSet.SyncRoot Property 1

[ILAsm] 2
.property object ICollection.SyncRoot { public hidebysig virtual abstract 3
specialname object get_ICollection.SyncRoot() } 4

[C#] 5
object ICollection.SyncRoot { get; } 6

Summary 7

Implemented to support the System.Collections.ICollection interface. [Note: For 8
more information, see System.Collections.ICollection.SyncRoot.] 9

 10

	Behaviors
	Usage
	Behaviors
	Usage
	Behaviors
	Default
	Usage
	Behaviors
	Default
	How and When to Override
	Behaviors
	Usage
	Behaviors
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	How and When to Override
	Behaviors
	Usage
	Behaviors
	Usage
	Behaviors
	How and When to Override
	Usage
	Behaviors
	Usage

