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1 Introduction  

This specification provides the normative description of the metadata: its physical layout (as a file format), its 

logical contents (as a set of tables and their relationships), and its semantics (as seen from a hypothetical 

assembler, ilasm).  
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2 Overview 

This partition focuses on the semantics and the structure of metadata.  The semantics of metadata, which dictate 

much of the operation of the VES, are described using the syntax of ILAsm, an assembly language for CIL.  

The ILAsm syntax itself (contained in clauses 5 through 21) is considered a normative part of this International 

Standard.  (An implementation of an assembler for ILAsm is described in Partition VI.)  The structure (both 

logical and physical) is covered in clauses 22 through 25. 

[Rationale: An assembly language is really just syntax for specifying the metadata in a file, and the CIL 

instructions in that file.   Specifying ILAsm provides a means of interchanging programs written directly for the 

CLI without the use of a higher-level language; it also provides a convenient way to express examples. 

The semantics of the metadata can also be described independently of the actual format in which the metadata 

is stored.  This point is important because the storage format as specified in clauses 22 through 25 is engineered 

to be efficient for both storage space and access time, but this comes at the cost of the simplicity desirable for 

describing its semantics. end rationale] 

Partition%20VI%20Annexes.doc
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3 Validation and verification  

Validation refers to the application of a set of tests on any file to check that the file‘s format, metadata, and CIL 

are self-consistent. These tests are intended to ensure that the file conforms to the normative requirements of 

this specification.  When a conforming implementation of the CLI is presented with a non-conforming file, the 

behavior is unspecified. 

Verification refers to the checking of both CIL and its related metadata to ensure that the CIL code sequences 

do not permit any access to memory outside the program‘s logical address space. In conjunction with the 

validation tests, verification ensures that the program cannot access memory or other resources to which it is 

not granted access.  

Partition III specifies the rules for both correct and verifiable use of CIL instructions.  Partition III also provides 

an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit 

indirectly, from the specification in this Partition); it also contains a normative description of the verification 

algorithm.  A mathematical proof of soundness of the underlying type system is possible, and provides the 
basis for the verification requirements.  Aside from these rules, this standard leaves as unspecified: 

 The time at which (if ever) such an algorithm should be performed. 

 What a conforming implementation should do in the event of a verification failure. 

The following figure makes this relationship clearer (see next paragraph for a description): 

 

Figure 1: Relationship between correct and verifiable CIL 

In the above figure, the outer circle contains all code permitted by the ILAsm syntax. The next inner circle 

represents all code that is correct CIL. The striped inner circle represents all type-safe code.  Finally, the black 

innermost circle contains all code that is verifiable.  (The difference between type-safe code and verifiable code 
is one of provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that 

simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type-safe).  

Note that even if a program follows the syntax described in Partition VI, the code might still not be valid, 

because valid code shall adhere to restrictions presented in this Partition and in Partition III. 

The verification process is very stringent. There are many programs that will pass validation, but will fail 

verification. The VES cannot guarantee that these programs do not access memory or resources to which they 

are not granted access. Nonetheless, they might have been correctly constructed so that they do not access these 

resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs. 

Ordinarily, a conforming implementation of the CLI can allow unverifiable code  (valid code that does not pass 

verification) to be executed, although this can be subject to administrative trust controls that are not part of this 

standard.  A conforming implementation of the CLI shall allow the execution of verifiable code, although this 

can be subject to additional implementation-specified trust controls. 

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc
Partition%20VI%20Annexes.doc
Partition%20III%20CIL.doc
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4 Introductory examples 

This clause and its subclauses contain only informative text. 

4.1   “Hello world!”  

To get the general feel of ILAsm, consider the following simple example, which prints the well known ―Hello 

world!‖ salutation. The salutation is written by calling WriteLine, a static method found in the class 

System.Console that is part of the standard assembly mscorlib (see Partition IV). [Example: 

.assembly extern mscorlib {} 

.assembly hello {} 

.method static public void main() cil managed 

{ .entrypoint 
  .maxstack 1 

  ldstr "Hello world!" 

  call void [mscorlib]System.Console::WriteLine(class System.String) 

  ret 

} 

end example] 

The .assembly extern declaration references an external assembly, mscorlib, which contains the 

definition of System.Console. The .assembly declaration in the second line declares the name of the 

assembly for this program.  (Assemblies are the deployment unit for executable content for the CLI.)  The 

.method declaration defines the global method main, the body of which follows, enclosed in braces.  The first 

line in the body indicates that this method is the entry point for the assembly (.entrypoint), and the second 

line in the body specifies that it requires at most one stack slot (.maxstack). 

Method main contains only three instructions: ldstr, call, and ret. The ldstr instruction pushes the string 

constant "Hello world!" onto the stack and the call instruction invokes System.Console::WriteLine, passing 

the string as its only argument. (Note that string literals in CIL are instances of the standard class 

System.String.) As shown, call instructions shall include the full signature of the called method. Finally, the 

last instruction, ret, returns from main. 

4.2  Other examples  

This Partition contains integrated examples for most features of the CLI metadata. Many subclauses conclude 

with an example showing a typical use of some feature. All these examples are written using the ILAsm 
assembly language.  In addition, Partition VI  contains a longer example of a program written in the ILAsm 

assembly language.  All examples are, of course, informative only. 

End informative text 

Partition%20IV%20Library.doc
Partition%20VI%20Annexes.doc
Partition%20V%20Annexes.doc#_Sample
Partition%20V%20Annexes.doc#_Sample
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5 General syntax 

This clause describes aspects of the ILAsm syntax that are common to many parts of the grammar. 

5.1  General syntax notat ion 

This partition uses a modified form of the BNF syntax notation. The following is a brief summary of this 

notation. 

Terminals are written in a constant-width font (e.g., .assembly, extern, and float64); however, 

terminals consisting solely of punctuation characters are enclosed in single quotes (e.g., „:‟, „[‟, and „(‟). 

The names of syntax categories are capitalized and italicized (e.g.  ClassDecl) and shall be replaced by actual 

instances of the category.  Items placed in [ ] brackets (e.g., [Filename] and [Float]), are optional, and any item 

followed by * (e.g., HexByte* and [„.‟ Id]*) can appear zero or more times.  The character ―|‖ means that the 

items on either side of it are acceptable (e.g., true | false).  The options are sorted in alphabetical order (to 

be more specific: in ASCII order, and case-insensitive).  If a rule starts with an optional term, the optional term 

is not considered for sorting purposes. 

ILAsm is a case-sensitive language. All terminals shall be used with the same case as specified in this clause. 

[Example: A grammar such as 

Top ::= Int32  |  float Float  |  floats  [ Float  [ „,‟ Float ]* ]  |  else QSTRING 

would consider all of the following to be valid: 

12 

float 3 

float –4.3e7 

floats 

floats 2.4 

floats 2.4, 3.7 

else "Something \t weird" 

but all of the following to be invalid: 

else 3 

3, 4 

float 4.3, 2.4 

float else 

stuff 

end example] 

5.2  Basic syntax categories  

These categories are used to describe syntactic constraints on the input intended to convey logical restrictions 

on the information encoded in the metadata. 

Int32 is either a decimal number or ―0x‖ followed by a hexadecimal number, and shall be represented in 
32 bits. [Note:  ILAsm has no concept of 8- or 16-bit integer constants. Instead, situations requiring such a 

constant (such as int8(...) and int16(...) in §16.2) accept an Int32 instead, and use only the least-significant 

bytes. end note] 

Int64 is either a decimal number or ―0x‖ followed by a hexadecimal number, and shall be represented in 

64 bits. 

HexByte is a hexadecimal number that is a pair of characters from the set 0–9, a–f, and A–F. 

RealNumber is any syntactic representation for a floating-point number that is distinct from that for all other 

syntax categories.  In this partition, a period (.) is used to separate the integer and fractional parts, and ―e‖ 

or ―E‖ separates the mantissa from the exponent.  Either of the period or the mantissa separator (but not both) 

can be omitted. 

[Note: A complete assembler might also provide syntax for infinities and NaNs. end note] 
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QSTRING is a string surrounded by double quote (″) marks. Within the quoted string the character ―\‖ can be 

used as an escape character, with ―\t‖ representing a tab character, ―\n‖ representing a newline character, and 

―\‖ followed by three octal digits representing a byte with that value. The ―+‖ operator can be used to 

concatenate string literals. This way, a long string can be broken across multiple lines by using ―+‖ and a new 

string on each line. An alternative is to use ―\‖ as the last character in a line, in which case, that character and 

the line break following it are not entered into the generated string. Any white space characters (space, line-
feed, carriage-return, and tab) between the ―\‖ and the first non-white space character on the next line are 

ignored. [Note: To include a double quote character in a QSTRING, use an octal escape sequence. end note] 

[Example: The following result in strings that are equivalent to "Hello World from CIL!": 

ldstr "Hello " + "World " + 

"from CIL!" 

and 

ldstr "Hello World\ 

 \040from CIL!" 

end example] 

[Note: A complete assembler will need to deal with the full set of issues required to support Unicode 

encodings, see Partition I (especially CLS Rule 4). end note] 

SQSTRING is just like QSTRING except that the former uses single quote (′) marks instead of double quote. 

[Note: To include a single quote character in an SQSTRING, use an octal escape sequence. end note] 

ID is a contiguous string of characters which starts with either an alphabetic character (A–Z, a–z) or one of ―_‖, 

―$‖, ―@‖, ―`‖ (grave accent), or ―?‖, and is followed by any number of alphanumeric characters  (A–Z, a–z, 0–
9) or the characters ―_‖, ―$‖, ―@‖, ―`‖ (grave accent), and ―?‖. An ID is used in only two ways: 

 As a label of a CIL instruction (§5.4). 

 As an Id (§5.3). 

5.3  Identifiers  

Identifiers are used to name entities. Simple identifiers are equivalent to an ID. However, the ILAsm syntax 

allows the use of any identifier that can be formed using the Unicode character set (see Partition I). To achieve 

this, an identifier shall be placed within single quotation marks. This is summarized in the following grammar. 

Id ::=  

  ID 

| SQSTRING 

 

A keyword shall only be used as an identifier if that keyword appears in single quotes (see Partition VI  for a 

list of all keywords). 

Several Ids can be combined to form a larger Id, by separating adjacent pairs with a dot (.). An Id formed in 

this way is called a DottedName. 

DottedName ::= Id [„.‟ Id]* 

 

[Rationale: DottedName is provided for convenience, since ―.‖ can be included in an Id using the SQSTRING 

syntax.  DottedName is used in the grammar where ―.‖ is considered a common character (e.g., in fully 

qualified type names) end rationale] 

[Example: The following are simple identifiers: 

A  Test   $Test   @Foo?   ?_X_   MyType`1 

The following are identifiers in single quotes: 

′Weird Identifier′   ′Odd\102Char′   ′Embedded\nReturn′ 

Partition%20I%20Architecture.doc
Partition%20I%20Architecture.doc#References
Partition%20VI%20Annexes.doc
Partition%20V%20Annexes.doc#_ilasmKeywords
Partition%20V%20Annexes.doc#_ilasmKeywords
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The following are dotted names: 

System.Console  ′My Project′.′My Component′.′My Name′   System.IComparable`1 

end example] 

5.4  Labels and l is ts of labels  

Labels are provided as a programming convenience; they represent a number that is encoded in the metadata.  

The value represented by a label is typically an offset in bytes from the beginning of the current method, 

although the precise encoding differs depending on where in the logical metadata structure or CIL stream the 

label occurs.  For details of how labels are encoded in the metadata, see clauses 22 through 25; for their 

encoding in CIL instructions see Partition III. 

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an Id. Thus, 
labels can be single quoted and can contain Unicode characters. 

A list of labels is comma separated, and can be any combination of simple labels. 

LabelOrOffset ::= Id 

Labels ::= LabelOrOffset [ „,‟ LabelOrOffset ]* 

 

[Note: In a real assembler the syntax for LabelOrOffset might allow the direct specification of a number rather 

than requiring symbolic labels. end note] 

ILAsm distinguishes between two kinds of labels: code labels and data labels. Code labels are followed by a 

colon (―:‖) and represent the address of an instruction to be executed. Code labels appear before an instruction 

and they represent the address of the instruction that immediately follows the label. A particular code label 

name shall not be declared more than once in a method. 

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon 

character. A data label shall not be used as a code label, and a code label shall not be used as a data label. A 

particular data label name shall not be declared more than once in a module. 

CodeLabel ::= Id „:‟ 

DataLabel ::= Id 

 

[Example: The following defines a code label, ldstr_label, that represents the address of the ldstr 

instruction: 

ldstr_label: ldstr "A label" 

end example] 

5.5  Lists of hex bytes  

A list of bytes consists simply of one or more hexbytes. 

Bytes ::= HexByte [ HexByte* ] 

 

5.6  Floating-point numbers  

There are two different ways to specify a floating-point number: 

1. As a RealNumber. 

2. By using the keyword float32 or float64, followed by an integer in parentheses, where the 

integer value is the binary representation of the desired floating-point number. For example, 

float32(1) results in the 4-byte value 1.401298E-45, while float64(1) results in the 8-byte 

value 4.94065645841247E-324. 

Float32 ::= 
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  RealNumber 

| float32 „(‟ Int32 „)‟ 

Float64 ::= 

  RealNumber 

| float64 „(‟ Int64 „)‟ 

 

[Example:  

5.5 

1.1e10 

float64(128) // note: this results in an 8-byte value whose bits are the same 

  // as those for the integer value 128. 

end example] 

5.7  Source l ine information 

The metadata does not encode information about the lexical scope of variables or the mapping from source line 

numbers to CIL instructions.  Nonetheless, it is useful to specify an assembler syntax for providing this 

information for use in creating alternate encodings of the information. 

.line takes a line number, optionally followed by a column number (preceded by a colon), optionally 

followed by a single-quoted string that specifies the name of the file to which the line number is referring: 

ExternSourceDecl ::= .line Int32 [ „:‟ Int32 ] [ SQSTRING ] 

 

5.8  File names  

Some grammar elements require that a file name be supplied. A file name is like any other name where ―.‖ is 

considered a normal constituent character. The specific syntax for file names follows the specifications of the 

underlying operating system. 

Filename ::= Clause 

  DottedName 5.3 

 

5.9  Attributes and metadata 

Attributes of types and their members attach descriptive information to their definition. The most common 

attributes are predefined and have a specific encoding in the metadata associated with them (§23).  In addition, 

the metadata provides a way of attaching user-defined attributes to metadata, using several different encodings. 

From a syntactic point of view, there are several ways for specifying attributes in ILAsm: 

 Using special syntax built into ILAsm. For example, the keyword private in a ClassAttr 

specifies that the visibility attribute on a type shall be set to allow access only within the defining 

assembly. 

 Using a general-purpose syntax in ILAsm.  The non-terminal CustomDecl describes this grammar 

(§21). For some attributes, called pseudo-custom attributes, this grammar actually results in 

setting special encodings within the metadata (§21.2.1). 

 Security attributes are treated specially.  There is special syntax in ILAsm that allows the XML 

representing security attributes to be described directly (§20).  While all other attributes defined 

either in the standard library or by user-provided extension are encoded in the metadata using one 

common mechanism described in §22.10, security attributes (distinguished by the fact that they 

inherit, directly or indirectly from System.Security.Permissions.SecurityAttribute , see 

Partition IV) shall be encoded as described in §22.11. 

Partition%20IV%20Library.doc
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5.10  i lasm source files  

An input to ilasm is a sequence of top-level declarations, defined as follows: 

ILFile ::= Reference 

 Decl* 5.10 

 

The complete grammar for a top-level declaration is shown below. The reference subclauses contain details of 

the corresponding productions of this grammar. These productions begin with a name having a ‗.‘ prefix. Such 

a name is referred to as a directive. 

Decl ::= Reference 

  .assembly DottedName „{‟ AsmDecl* „}‟ 6.2 

| .assembly extern DottedName „{‟ AsmRefDecl* „}‟ 6.3 

| .class ClassHeader „{‟ ClassMember* „}‟ 10 

| .class extern ExportAttr DottedName „{‟ ExternClassDecl* „}‟ 6.7 

| .corflags Int32 6.2 

| .custom CustomDecl 21 

| .data DataDecl 16.3.1 

| .field FieldDecl 16 

| .file [ nometadata ] Filename .hash „=’ „(’ Bytes „)’ [ .entrypoint ]  6.2.3 

| .method MethodHeader „{‟ MethodBodyItem* „}‟ 15 

| .module [ Filename ] 6.4 

| .module extern Filename 6.5 

| .mresource [ public  | private ] DottedName „{‟ ManResDecl* „}‟ 6.2.2 

| .subsystem Int32 6.2 

| .vtfixup VTFixupDecl 15.5.1 

| ExternSourceDecl 5.7 

| SecurityDecl 20 
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6 Assemblies,  manifests and modules 

Assemblies and modules are grouping constructs, each playing a different role in the CLI. 

An assembly is a set of one or more files deployed as a unit.  An assembly always contains a manifest that 

specifies (§6.1): 

 Version, name, culture, and security requirements for the assembly.  

 Which other files, if any, belong to the assembly, along with a cryptographic hash of each file.  

The manifest itself resides in the metadata part of a file, and that file is always part of the 

assembly. 

 The types defined in other files of the assembly that are to be exported from the assembly.  Types 

defined in the same file as the manifest are exported based on attributes of the type itself.  

 Optionally, a digital signature for the manifest itself, and the public key used to compute it. 

A module is a single file containing executable content in the format specified here.  If the module contains a 
manifest then it also specifies the modules (including itself) that constitute the assembly.  An assembly shall 

contain only one manifest amongst all its constituent files. For an assembly that is to be executed (rather than 

simply being dynamically loaded) the manifest shall reside in the module that contains the entry point. 

While some programming languages introduce the concept of a namespace, the only support in the CLI for this 

concept is as a metadata encoding technique.  Type names are always specified by their full name relative to 

the assembly in which they are defined. 

6.1  Overview of modules,  assemblies,  and fi les  

This subclause contains informative text only. 

Consider the following figure: 

 

Figure 2: References to Modules and Files 

Eight files are shown, each with its name written below it. The six files that each declare a module have an 

additional border around them, and their names begin with M. The other two files have a name beginning 

with F. These files can be resource files (such as bitmaps) or other files that do not contain CIL code.  

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B, 

respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines. For 
example, assembly A references M2 and M3, and assembly B references M3 and M5. Thus, both assemblies 

reference M3.  

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When 

assembly A is loaded at runtime, an instance of M3 will be loaded for it. When assembly B is loaded into the 

same application domain, possibly simultaneously with assembly A, M3 will be shared for both assemblies. 

Both assemblies also reference F2, for which similar rules apply.  
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The module M2 references F1, shown by dotted lines. As a consequence, F1 will be loaded as part of 

assembly A, when A is executed. Thus, the file reference shall also appear with the assembly declaration. 

Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows that 

assembly B shall also have a module reference to M6. 

End informative text 

6.2  Defining an assembly  

An assembly is specified as a module that contains a manifest in the metadata; see §22.2.  The information for 
the manifest is created from the following portions of the grammar:   

Decl ::= Clause 

  .assembly DottedName „{‟ AsmDecl* „}‟ 6.2 

| .assembly extern DottedName „{‟ AsmRefDecl* „}‟ 6.3 

| .corflags Int32 6.2 

| .file [ nometadata ] Filename .hash „=‟ „(‟ Bytes „)‟ [ .entrypoint ] 6.2.3 

| .module extern Filename 6.5 

| .mresource [ public | private ] DottedName „{‟ ManResDecl* „}‟ 6.2.2 

| .subsystem Int32 6.2 

| …  

 

The .assembly directive declares the manifest and specifies to which assembly the current module belongs. 

A module shall contain at most one .assembly directive. The DottedName specifies the name of the 

assembly. [Note: The standard library assemblies are described in Partition IV. end note]) 

[Note: Since some platforms treat names in a case-insensitive manner, two assemblies that have names that 

differ only in case should not be declared. end note] 

The .corflags directive sets a field in the CLI header of the output PE file (see §25.3.3.1).  A conforming 

implementation of the CLI shall expect this field‘s value to be 1.  For backwards compatibility, the three least-

significant bits are reserved.  Future versions of this standard might provide definitions for values between 8 

and 65,535. Experimental and non-standard uses should thus use values greater than 65,535. 

The .subsystem directive is used only when the assembly is executed directly (as opposed to its being used 

as a library for another program).  This directive specifies the kind of application environment required for the 

program, by storing the specified value in the PE file header (see §25.2.2).  While any 32-bit integer value can 

be supplied, a conforming implementation of the CLI need only respect the following two values: 

 If the value is 2, the program should be run using whatever conventions are appropriate for an application 

that has a graphical user interface. 

 If the value is 3, the program should be run using whatever conventions are appropriate for an application 

that has a direct console attached. 

 

[Example: 

.assembly CountDown 

{ .hash algorithm 32772 

  .ver 1:0:0:0 

} 

.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7  

02 BE E7 52 3A CB 17 AF) 

end example] 

Partition%20IV%20Library.doc


 

20 Partition II 

6.2.1 Informati on about the assembly (AsmDecl )  

The following grammar shows the information that can be specified about an assembly: 

AsmDecl ::= Description Claus

e 

  .custom CustomDecl Custom attributes 21 

| .hash algorithm Int32 Hash algorithm used in the .file directive 6.2.1.1 

| .culture QSTRING Culture for which this assembly is built 6.2.1.2 

| .publickey „=‟ „(‟ Bytes „)‟ The originator's public key. 6.2.1.3 

| .ver Int32 „:‟ Int32 „:‟ Int32 „:‟ Int32 Major version, minor version, build, and 

revision 

6.2.1.4 

| SecurityDecl Permissions needed, desired, or prohibited 20 

 

6.2.1.1 Hash algorithm 

AsmDecl ::= .hash algorithm Int32 | … 

 

When an assembly consists of more than one file (see §6.2.3), the manifest for the assembly specifies both the 

name and cryptographic hash of the contents of each file other than its own.  The algorithm used to compute the 

hash can be specified, and shall be the same for all files included in the assembly.  All values are reserved for 

future use, and conforming implementations of the CLI shall use the SHA-1 (see FIPS 180-1 in Partition I, 3) 

hash function and shall specify this algorithm by using a value of 32772 (0x8004). 

[Rationale: SHA-1 was chosen as the best widely available technology at the time of standardization (see 

Partition I).   A single algorithm was chosen since all conforming implementations of the CLI would be 
required to implement all algorithms to ensure portability of executable images.end rationale] 

6.2.1.2 Culture  

AsmDecl ::= .culture QSTRING | … 

 

When present, this indicates that the assembly has been customized for a specific culture.  The strings that shall 

be used here are those specified in Partition IV as acceptable with the class 

System.Globalization.CultureInfo. When used for comparison between an assembly reference and an 

assembly definition these strings shall be compared in a case-insensitive manner. (See §23.1.3.) 

[Note: The culture names follow the IETF RFC1766 names. The format is ―<language>-<country/region>‖, 

where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter 
code in ISO 3166. end note] 

6.2.1.3 Originator’s public  key 

AsmDecl ::= .publickey „=‟ „(‟ Bytes „)‟ | … 

 

The CLI metadata allows the producer of an assembly to compute a cryptographic hash of that assembly (using 

the SHA-1 hash function) and then to encrypt it using the RSA algorithm (see Partition I) and a public/private 

key pair of the producer‘s choosing.  The results of this (an ―SHA-1/RSA digital signature‖) can then be stored 

in the metadata (§25.3.3) along with the public part of the key pair required by the RSA algorithm.  The 

.publickey directive is used to specify the public key that was used to compute the signature.  To calculate 

the hash, the signature is zeroed, the hash calculated, and then the result is stored into the signature. 

All of the assemblies in the Standard Library (see Partition IV) use the public key 00 00 00 00 00 00 00 00 04 

00 00 00 00 00 00 00. This key is known as the Standard Public Key in this standard. 
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A reference to an assembly (§6.3) captures some of this information at compile time.  At runtime, the 

information contained in the assembly reference can be combined with the information from the manifest of the 

assembly located at runtime to ensure that the same private key was used to create both the assembly seen when 

the reference was created (compile time) and when it is resolved (runtime). 

The Strong Name (SN) signing process uses standard hash and cipher algorithms for Strong name signing. An 

SHA-1 hash over most of the PE file is generated. That hash value is RSA-signed with the SN private key. For 
verification purposes the public key is stored into the PE file as well as the signed hash value.  

Except for the following, all portions of the PE File are hashed: 

 The Authenticode Signature entry: PE files can be authenticode signed. The authenticode 

signature is contained in the 8-byte entry at offset 128 of the PE Header Data Directory 

(―Certificate Table‖ in §25.2.3.3) and the contents of the PE File in the range specified by this 

directory entry.  [Note: In a conforming PE File, this entry shall be zero. end note] 

 The Strong Name Blob: The 8-byte entry at offset 32 of the CLI Header (―StrongNameSignature‖ 

in §25.3.3) and the contents of the hash data contained at this RVA in the PE File. If the 8-byte 

entry is 0, there is no associated strong name signature. 

 The PE Header Checksum: The 4-byte entry at offset 64 of the PE Header Windows NT-Specific 

Fields (―File Checksum‖ in §25.2.3.2). [Note: In a conforming PE File, this entry shall be zero. 
end note] 

6.2.1.4 Version numbers  

AsmDecl ::= .ver Int32 „:‟ Int32 „:‟ Int32 „:‟ Int32 | … 

 

The version number of an assembly is specified as four 32-bit integers.  This version number shall be captured 

at compile time and used as part of all references to the assembly within the compiled module. 

All standardized assemblies shall have the last two 32-bit integers set to 0.  This standard places no other 

requirement on the use of the version numbers, although individual implementers are urged to avoid setting 

both of the last two 32-bit integers to 0 to avoid a possible collision with future versions of this standard. 

Future versions of this standard shall change one or both of the first two 32-bit integers specified for a 
standardized assembly if any additional functionality is added or any additional features of the VES are 

required to implement it.  Furthermore, future versions of this standard shall change one or both of the first two 

32-bit integers specified for the mscorlib assembly so that its version number can be used (if desired) to 

distinguish between different versions of the Execution Engine required to run programs. 

[Note: A conforming implementation can ignore version numbers entirely, or it can require that they match 

precisely when binding a reference, or it can exhibit any other behavior deemed appropriate.  By convention: 

1. The first of these 32-bit integers is considered to be the major version number, and assemblies with the 

same name, but different major versions, are not interchangeable.  This would be appropriate, for example, 

for a major rewrite of a product where backwards compatibility cannot be assumed. 

2. The second of these 32-bit integers is considered to be the minor version number, and assemblies with the 

same name and major version, but different minor versions, indicate significant enhancements, but with the 
intention of being backwards compatible.  This would be appropriate, for example, on a ―point release‖ of 

a product or a fully backward compatible new version of a product. 

3. The third of these 32-bit integers is considered to be the build number, and assemblies that differ only by 

build number are intended to represent a recompilation from the same source.  This would be appropriate, 

for example, because of processor, platform, or compiler changes. 

4. The fourth of these 32-bit integers is considered to be the revision number, and assemblies with the same 

name, major and minor version number, but different revisions, are intended to be fully interchangeable. 

This would be appropriate, for example, to fix a security hole in a previously released assembly. 

end note] 
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6.2.2 Manifest  resources  

A manifest resource is simply a named item of data associated with an assembly. A manifest resource is 

introduced using the .mresource directive, which adds the manifest resource to the assembly manifest 

begun by a preceding .assembly declaration. 

Decl ::= Clause 

  .mresource [ public | private ] DottedName „{‟ ManResDecl* „}‟  

| … 5.10 

 

If the manifest resource is declared public, it is exported from the assembly. If it is declared private, it is 

not exported, in which case, it is only available from within the assembly. The DottedName is the name of the 

resource.  

ManResDecl ::= Description Clause 

  .assembly extern DottedName Manifest resource is in external 

assembly with name DottedName. 

6.3 

| .custom CustomDecl Custom attribute. 21 

| .file DottedName at Int32 Manifest resource is in file DottedName 

at byte offset Int32. 

 

 

For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared 

in the manifest using a separate (top-level) .file declaration (see §6.2.3) and the byte offset shall be zero.  A 

resource that is defined in another assembly is referenced using .assembly extern, which requires that 

the assembly has been defined in a separate (top-level) .assembly extern directive (§6.3). 

6.2.3 Associating f i les with an assembly 

Assemblies can be associated with other files (such as documentation and other files that are used during 

execution). The declaration .file is used to add a reference to such a file to the manifest of the assembly:  

(See §22.19) 

Decl ::= Clause 

  .file [ nometadata ] Filename .hash „=‟ „(‟ Bytes „)‟ [ .entrypoint ]   

| … 5.10 

 

The attribute nometadata is specified if the file is not a module according to this specification.  Files that are 

marked as nometadata can have any format; they are considered pure data files. 

The Bytes after the .hash specify a hash value computed for the file. The VES shall recompute this hash value 

prior to accessing this file and if the two do not match, the behavior is unspecified. The algorithm used to 

calculate this hash value is specified with .hash algorithm (§6.2.1.1). 

If specified, the .entrypoint directive indicates that the entrypoint of a multi-module assembly is contained 

in this file. 

6.3  Referencing assemblies  

Decl ::= Clause 

  .assembly extern DottedName [ as DottedName ] „{‟ AsmRefDecl* „}‟  

| … 5.10 
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An assembly mediates all accesses to other assemblies from the files that it contains.  This is done through the 

metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly 

referenced by the executing code.  A top-level .assembly extern declaration is used for this purpose.  

The optional as clause provides an alias, which allows ILAsm to address external assemblies that have the 

same name, but differing in version, culture, etc. 

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared 

with an .assembly directive, in a case-sensitive manner.  (So, even though an assembly might be stored 

within a file, within a file system that is case-insensitive, the names stored internally within metadata are case-

sensitive, and shall match exactly.)  

AsmRefDecl ::= Description Clause 

  .hash „=‟ „(‟ Bytes „)‟ Hash of referenced assembly  6.2.3 

| .custom CustomDecl Custom attributes 21 

| .culture QSTRING Culture of the referenced assembly 6.2.1.2 

| .publickeytoken „=‟ „(‟ Bytes „)‟ The low 8 bytes of the SHA-1 hash of the 

originator's public key. 

6.3 

| .publickey „=‟ „(‟ Bytes „)‟ The originator‘s full public key 6.2.1.3 

| .ver Int32 „:‟ Int32 „:‟ Int32 „:‟ Int32 Major version, minor version, build, and 

revision 

6.2.1.4 

 

These declarations are the same as those for .assembly declarations (§6.2.1), except for the addition of 

.publickeytoken.  This declaration is used to store the low 8 bytes of the SHA-1 hash of the originator‘s 

public key in the assembly reference, rather than the full public key.  

An assembly reference can store either a full public key or an 8-byte ―public key token.‖ Either can be used to 

validate that the same private key used to sign the assembly at compile time also signed the assembly used at 
runtime.  Neither is required to be present, and while both can be stored, this is not useful.  

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it 

can refuse to load an assembly for which the validation fails.  A conforming implementation of the CLI can 

also refuse to permit access to an assembly unless the assembly reference contains either the public key or the 

public key token.  A conforming implementation of the CLI shall make the same access decision independent 

of whether a public key or a token is used. 

[Rationale: The public key or public key token stored in an assembly reference is used to ensure that the 

assembly being referenced and the assembly actually used at runtime were produced by an entity in possession 

of the same private key, and can therefore be assumed to have been intended for the same purpose. While the 

full public key is cryptographically safer, it requires more storage in the reference. The use of the public key 

token reduces the space required to store the reference while only weakening the validation process slightly. 

end rationale] 

[Note: To validate that an assembly‘s contents have not been tampered with since it was created, the full public 

key in the assembly‘s own identity is used, not the public key or public key token stored in a reference to the 

assembly. end note] 

[Example:  

.assembly extern MyComponents 

{ .publickeytoken = (BB AA BB EE 11 22 33 00) 

  .hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24) 

  .ver 2:10:2002:0 

} 

end example] 
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6.4  Declaring modules  

All CIL files are modules and are referenced by a logical name carried in the metadata rather than by their file 

name.  See §22.30. 

Decl ::= Clause 

| .module Filename  

| … 5.10 

 

[Example:  

.module CountDown.exe 

end example] 

6.5  Referencing modules  

When an item is in the current assembly, but is part of a module other than the one containing the manifest, the 

defining module shall be declared in the manifest of the assembly using the .module extern directive.  

The name used in the .module extern directive of the referencing assembly shall exactly match the name 

used in the .module directive (§6.4) of the defining module.  See §22.31.   

Decl ::= Clause 

| .module extern Filename  

| … 5.10 

 

[Example:  

.module extern Counter.dll 

end example] 

6.6  Declarations ins ide a module or assembly  

Declarations inside a module or assembly are specified by the following grammar. More information on each 

option can be found in the corresponding clause or subclause. 

Decl ::= Clause 

| .class ClassHeader „{‟ ClassMember* „}‟ 10 

| .custom CustomDecl 21 

| .data DataDecl 16.3.1 

| .field FieldDecl 16 

| .method MethodHeader „{‟ MethodBodyItem* „}‟ 15 

| ExternSourceDecl 5.7 

| SecurityDecl 20 

| …  

 

6.7  Exported type definit ions  

The manifest module, of which there can only be one per assembly, includes the .assembly directive.  To 

export a type defined in any other module of an assembly requires an entry in the assembly‘s manifest.  The 

following grammar is used to construct such an entry in the manifest: 
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Decl ::= Clause 

  .class extern ExportAttr DottedName „{‟ ExternClassDecl* „}‟  

| …  

 

ExternClassDecl ::= Clause 

.file DottedName  

| .class extern DottedName  

| .custom CustomDecl 21 

 

The ExportAttr value shall be either public or nested public and shall match the visibility of the type. 

For example, suppose an assembly consists of two modules, A.EXE and B.DLL.  A.EXE contains the manifest.  

A public class Foo is defined in B.DLL.  In order to export it—that is, to make it visible by, and usable from, 

other assemblies—a .class extern directive shall be included in A.EXE. Conversely, a public class Bar 

defined in A.EXE does not need any .class extern directive. 

[Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete 

set of types defined by the assembly.  Therefore, information from other modules within the assembly is 

replicated in the manifest module.  By convention, the manifest module is also known as the assembly. end 

rationale] 

6.8  Type forwarders  

A type forwarder indicates that a type originally in this assembly is now located in a different assembly, the 

VES shall resolve references for the type to the other assembly. The type forwarding information is stored in 

the ExportedType table (§Error! Reference source not found.). The following grammar is used to construct 
the entry in the ExportedType table: 

Decl ::= Clause 

  .class extern forwarder DottedName  

                                „{‟.assembly extern DottedName „}‟ 

 

| …  

 

[Rationale: Type forwarders allow assemblies which reference the original assembly for the type to function 

correctly without recompilation if the type is moved to another assembly.  end rationale] 
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7 Types and signatures 

The metadata provides mechanisms to both define and reference types. §10 describes the metadata associated 

with a type definition, regardless of whether the type is an interface, class, or value type. The mechanism used 

to reference types is divided into two parts: 

 A logical description of user-defined types that are referenced, but (typically) not defined in the current 

module.  This is stored in a table in the metadata (§22.38). 

 A signature that encodes one or more type references, along with a variety of modifiers.  The grammar 

non-terminal Type describes an individual entry in a signature.  The encoding of a signature is specified 

in §23.1.16. 

7.1  Types  

The following grammar completely specifies all built-in types (including pointer types) of the CLI system. It 

also shows the syntax for user defined types that can be defined in the CLI system: 

Type ::= Description Clause 

  „!‟ Int32 Generic parameter in a type definition, 

accessed by index from 0 

9.1 

| „!!‟ Int32 Generic parameter in a method 

definition, accessed by index from 0 

9.2 

| bool Boolean 7.2 

| char 16-bit Unicode code point 7.2 

| class TypeReference User defined reference type 7.3 

| float32 32-bit floating-point number 7.2 

| float64 64-bit floating-point number 7.2 

| int8 Signed 8-bit integer 7.2 

| int16 Signed 16-bit integer 7.2 

| int32 Signed 32-bit integer 7.2 

| int64 Signed 64-bit integer 7.2 

| method CallConv Type „*‟  

      „(‟ Parameters „)‟ 

Method pointer 14.5 

| native int 32- or 64-bit signed integer whose size 

is platform-specific 

7.2 

| native unsigned int 32- or 64-bit unsigned integer whose 

size is platform-specific 

7.2 

| object See System.Object in Partition IV  

| string See System.String in Partition IV  

| Type „&‟ Managed pointer to Type. Type shall 

not be a managed pointer type or 
typedref 

14.4 

| Type „*‟ Unmanaged pointer to Type 14.4 

| Type „<‟ GenArgs  „>‟ Instantiation of generic type 9.4 
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Type ::= Description Clause 

| Type „[‟ [ Bound [ „,‟ Bound ]*] „]‟ Array of Type with optional rank 

(number of dimensions) and bounds. 

14.1and 14.2 

| Type modopt „(‟ TypeReference „)‟ Custom modifier that can be ignored 

by the caller. 

7.1.1 

| Type modreq „(‟ TypeReference „)‟ Custom modifier that the caller shall 

understand. 

7.1.1 

| Type pinned For local variables only. The garbage 

collector shall not move the referenced 

value. 

7.1.2 

| typedref Typed reference (i.e., a value of type 

System.TypedReference), created by 

mkrefany and used by 

refanytype or refanyval. 

7.2 

| valuetype TypeReference (Unboxed) user defined value type 13 

| unsigned int8 Unsigned 8-bit integer 7.2 

| unsigned int16 Unsigned 16-bit integer 7.2 

| unsigned int32 Unsigned 32-bit integer 7.2 

| unsigned int64 Unsigned 64-bit integer 7.2 

| void No type.  Only allowed as a return 

type or as part of void * 

7.2 

 

In several situations the grammar permits the use of a slightly simpler representation for specifying types; e.g., 

―System.GC‖ can be used instead of  ―class System.GC‖.  Such representations are called type specifications: 

TypeSpec ::= Clause 

  „[‟ [ .module ] DottedName „]‟ 7.3 

| TypeReference 7.2 

| Type 7.1 

 

7.1.1 modreq and modopt  

Custom modifiers, defined using modreq (―required modifier‖) and modopt (―optional modifier‖),  are 

similar to custom attributes (§21) except that modifiers are part of a signature rather than being attached to a 

declaration.  Each modifer associates a type reference with an item in the signature. 

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only 
by the addition of a custom modifier (required or optional) shall not be considered to match.  Custom modifiers 

have no other effect on the operation of the VES. 

[Rationale: The distinction between required and optional modifiers is important to tools other than the CLI 

that deal with the metadata, typically compilers and program analysers.  A required modifier indicates that 

there is a special semantics to the modified item that should not be ignored, while an optional modifier can 

simply be ignored.   

For example, the const qualifier in the C programming language can be modelled with an optional modifier 

since the caller of a method that has a const-qualified parameter need not treat it in any special way.  On the 

other hand, a parameter that shall be copy-constructed in C++ shall be marked with a required custom attribute 

since it is the caller who makes the copy. end rationale] 
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7.1.2 pinned 

The signature encoding for pinned shall appear only in signatures that describe local variables (§15.4.1.3).  

While a method with a pinned local variable is executing, the VES shall not relocate the object to which the 

local refers.  That is, if the implementation of the CLI uses a garbage collector that moves objects, the collector 

shall not move objects that are referenced by an active pinned local variable. 

[Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned.  This 

happens, for example, when a managed object is passed to a method designed to operate with unmanaged data. 

end rationale] 

7.2  Built- in types  

The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be 

referenced in signatures only using their special encodings (i.e., not using the general purpose valuetype 

TypeReference syntax).  Partition I specifies the built-in types. 

7.3  References to user-defined types (TypeReference ) 

User-defined types are referenced either using their full name and a resolution scope or, if one is available in 

the same module, a type definition (§10). 

A TypeReference is used to capture the full name and resolution scope:   

TypeReference ::= 

  [ ResolutionScope ] DottedName [ „/‟ DottedName ]* 

 

ResolutionScope ::= 

„[‟ .module Filename „]‟ 

| „[‟ AssemblyRefName „]‟ 

 

AssemblyRefName ::= Clause 

  DottedName 5.1 

 

The following resolution scopes are specified for un-nested types: 

 Current module (and, hence, assembly).  This is the most common case and is the default if no 

resolution scope is specified.  The type shall be resolved to a definition only if the definition 

occurs in the same module as the reference.   

[Note: A type reference that refers to a type in the same module and assembly is better represented using a type 

definition.  Where this is not possible (e.g., when referencing a nested type that has compilercontrolled 

accessibility) or convenient (e.g., in some one-pass compilers) a type reference is equivalent and can be used. 

end note] 

 Different module, current assembly.  The resolution scope shall be a module reference 

syntactically represented using the notation [.module Filename]. The type shall be resolved to 

a definition only if the referenced module (§6.4) and type (§6.7) have been declared by the 

current assembly and hence have entries in the assembly‘s manifest.  Note that in this case the 

manifest is not physically stored with the referencing module.  

 Different assembly.  The resolution scope shall be an assembly reference syntactically 

represented using the notation [AssemblyRefName]. The referenced assembly shall be declared in 

the manifest for the current assembly (§6.3), the type shall be declared in the referenced 

assembly‘s manifest, and the type shall be marked as exported from that assembly (§6.7 

and §10.1.1). 
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 For nested types, the resolution scope is always the enclosing type.   (See §10.6).  This is indicated 

syntactically by using a slash (―/‖) to separate the enclosing type name from the nested type‘s 

name. 

[Example: The type System.Console defined in the base class library (found in the assembly named mscorlib): 

.assembly extern mscorlib { } 

.class [mscorlib]System.Console 

A reference to the type named C.D in the module named x in the current assembly: 

.module extern x 

.class [.module x]C.D 

A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named 

MyAssembly: 

.assembly extern MyAssembly { } 

.class [MyAssembly]Foo.Bar/C 

end example] 

7.4  Native data types  

Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that 

specify data types required to perform certain functions.  The metadata allows interaction with these native data 

types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native 

data types.  This marshalling information can be specified (using the keyword marshal) for 

 the return type of a method, indicating that a native data type is actually returned and shall be 

marshalled back into the specified CLI data type 

 a parameter to a method, indicating that the CLI data type provided by the caller shall be 

marshalled into the specified native data type. (If the parameter is passed by reference, the 

updated value shall be marshalled back from the native data type into the CLI data type when the 

call is completed.) 

 a field of a user-defined type, indicating that any attempt to pass the object in which it occurs, to 

platform methods shall make a copy of the object, replacing the field by the specified native data 

type. (If the object is passed by reference, then the updated value shall be marshalled back when 

the call is completed.) 

The following table lists all native types supported by the CLI, and provides a description for each of them. (A 

more complete description can be found in Partition IV in the definition of the enum 

System.Runtime.Interopservices.UnmanagedType, which provides the actual values used to encode these 

types.)  All encoding values in the range 0–63, inclusive, are reserved for backward compatibility with existing 

implementations of the CLI.  Values in the range 64–127 are reserved for future use in this and related 

Standards. 

NativeType ::= Description Name in the class 

library enum type 
UnmanagedType 

„[‟ „]‟ Native array. Type and size are determined at 

runtime from the actual marshaled array. 

LPArray 

| bool Boolean. 4-byte integer value where any non-

zero value represents TRUE, and 0 represents 

FALSE. 

Bool 

| float32 32-bit floating-point number. R4 

| float64 64-bit floating-point number. R8 
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NativeType ::= Description Name in the class 

library enum type 
UnmanagedType 

| [ unsigned ] int Signed or unsigned integer, sized to hold a 

pointer on the platform 
SysUInt or SysInt 

| [ unsigned ] int8 Signed or unsigned 8-bit integer U1 or I1 

| [ unsigned ] int16 Signed or unsigned 16-bit integer U2 or I2 

| [ unsigned ] int32 Signed or unsigned 32-bit integer U4 or I4 

| [ unsigned ] int64 Signed or unsigned 64-bit integer U8 or I8 

| lpstr A pointer to a null-terminated array of ANSI 

characters.  The code page is implementation-

specific. 

LPStr 

| lpwstr A pointer to a null-terminated array of Unicode 

characters.  The character encoding is 

implementation-specific. 

LPWStr 

| method A function pointer. FunctionPtr 

| NativeType „[‟ „]‟ Array of NativeType. The length is determined 

at runtime by the size of the actual marshaled 

array. 

LPArray 

| NativeType „[‟ Int32 „]‟ Array of NativeType of length Int32. LPArray 

| NativeType  

„[‟ „+‟ Int32 „]‟ 

Array of NativeType with runtime supplied 

element size. The Int32 specifies a parameter to 

the current method (counting from parameter 

number 0) that, at runtime, will contain the size 

of an element of the array in bytes.  Can only be 

applied to methods, not fields. 

LPArray 

| NativeType  

„[‟ Int32 „+‟ Int32 „]‟ 

Array of NativeType with runtime supplied 

element size. The first Int32 specifies the 

number of elements in the array.  The second 
Int32 specifies which parameter to the current 

method (counting from parameter number 0) 

will specify the additional number of elements 

in the array.   Can only be applied to methods, 

not fields. 

LPArray 

 

 

[Example:  

.method int32 M1( int32 marshal(int32), bool[] marshal(bool[5]) ) 

Method M1 takes two arguments: an int32, and an array of 5 bools. 

.method int32 M2( int32 marshal(int32), bool[] marshal(bool[+1]) ) 

Method M2 takes two arguments: an int32, and an array of bools: the number of elements in that array is 

given by the value of the first parameter. 

.method int32 M3( int32 marshal(int32), bool[] marshal(bool[7+1]) ) 

Method M3 takes two arguments: an int32, and an array of bools: the number of elements in that array is 

given as 7 plus the value of the first parameter. end example] 
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8 Visibi lity,  accessibi lity and hiding 

Partition I specifies visibility and accessibility.  In addition to these attributes, the metadata stores information 

about method name hiding. Hiding controls which method names inherited from a base type are available for 

compile-time name binding.  

8.1  Vis ibility of top-level types and access ibil ity of nested types  

Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the 

same assembly, or visible to types regardless of assembly. For nested types (i.e., types that are members of 

another type) the nested type has an accessibility that further refines the set of methods that can reference the 

type. A nested type can have any of the seven accessibility modes (see Partition I), but has no direct visibility 

attribute of its own, using the visibility of its enclosing type instead. 

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type 

cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an 

assembly then a nested type with public accessibility is still only available within that assembly. By contrast, 

a nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing 

type is visible outside the assembly. 

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility 

of a nested type are encoded using the same mechanism in the logical model of §23.1.15. 

8.2  Access ibil ity  

Accessibility is encoded directly in the metadata (see §22.26 for an example). 

8.3  Hiding  

Hiding is a compile-time concept that applies to individual methods of a type. The CTS specifies two 

mechanisms for hiding, specified by a single bit: 

 hide-by-name, meaning that the introduction of a name in a given type hides all inherited 

members of the same kind with the same name. 

 hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited 

member of the same kind, but with precisely the same type (in the case of nested types and fields) 

or signature (in the case of methods, properties, and events). 

There is no runtime support for hiding.  A conforming implementation of the CLI treats all references as though 
the names were marked hide-by-name-and-sig.  Compilers that desire the effect of hide-by-name can do so by 

marking method definitions with the newslot attribute (§15.4.2.3) and correctly choosing the type used to 

resolve a method reference (§15.1.3). 

Partition%20I%20Architecture.doc#_Accessibility_2
Partition%20I%20Architecture.doc#_Accessibility


 

32 Partition II 

9 Generics  

As mentioned in Partition I, generics allows a whole family of types and methods to be defined using a pattern, 

which includes placeholders called generic parameters.  These generic parameters are replaced, as required, by 

specific types, to instantiate whichever member of the family is actually required.  For example, class 

List<T>{}, represents a whole family of possible Lists; List<string>, List<int> and List<Button> are three 

possible instantiations; however, as we‘ll see below, the CLS-compliant names of these types are really class 

List`1<T>{}, List`1<string>, List`1<int>, and List`1<Button>. 

A generic type consists of a name followed by a <…>-delimited list of generic parameters, as in C<T>. Two or 

more generic types shall not be defined with the same name, but different numbers of generic parameters, in the 

same scope. However, to allow such overloading on generic arity at the source language level, CLS Rule 43 is 

defined to map generic type names to unique CIL names. That Rule states that the CLS-compliant name of a 

type C having one or more generic parameters, shall have a suffix of the form `n, where n is a decimal integer 

constant (without leading zeros) representing the number of generic parameters that C has. For example: the 

types C, C<T>, and C<K,V> have CLS-compliant names of C, C`1<T>, and C`2<K,V>, respectively. [Note: The 

names of all standard library types are CLS-compliant; e.g., 

System.Collections.Generic.IEnumerable`1<T>. end note] 

Before generics is discussed in detail, here are the definitions of some new terms: 

 public class List`1<T> {} is a generic type definition.  

 <T> is a generic parameter list, and T is a generic parameter.  

 List`1<T> is a generic type; it is sometimes termed a generic type, or open generic type because 

it has at least one generic parameter.  This partition will use the term open type. 

 List`1<int> is a closed generic type because it has no unbound generic parameters.  (It is 

sometimes called an instantiated generic type or a generic type instantiation).  This partition will 
use the term closed type. 

 Note that generics includes generic types which are neither strictly open nor strictly closed; e.g., 

the base class B, in: .public class D`1<V> extends B`2<!0,int32> {}, given .public class 

B`2<T,U> {}.  

 If a distinction need be made between generic types and ordinary types, the latter are referred to 

as non-generic types.  

 <int> is a generic argument list, and int is a generic argument.  

 This standard maintains the distinction between generic parameters and generic arguments. If at 

all possible, use the phrase ―int is the type used for generic parameter T” when speaking of 

List`1<int>. (In Reflection, this is sometimes referred to as ―T is bound to int‖)  

 “(C1, …, Cn) T” is a generic parameter constraint on the generic parameter T. 

[Note: Conside the following definition: 

class C`2<(I1,I2) S, (Base,I3) T> { … } 

This denotes a class called C, with two generic parameters, S and T.  S is constrained to implement two 

interfaces, I1 and I2.  T is constrained to derive from the class Base, and also to implement the interface I3. 

end note] 

Within a generic type definition, its generic parameters are referred to by their index.  Generic parameter zero 

is referred to as !0, generic parameter one as !1, and so on.  Similarly, within the body of a generic method 

definition, its generic parameters are referred to by their index; generic parameter zero is referred to as !!0, 

generic parameter one as !!1, and so on.  

??.htm
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9.1  Generic type definit ions  

A generic type definition is one that includes generic parameters.  Each such generic parameter can have a 

name and an optional set of constraints—types with which generic arguments shall be assignment-compatible. 

Optional variance notation is also permitted (§10.1.7). (For an explanation of the ! and !! notation used below, 
see §9.4) The generic parameter is in scope in the declarations of:  

 its constraints (e.g., .class … C`1<(class IComparable`1<!0>) T>) 

 any base class from which the type-under-definition derives (e.g., .class … MultiSet`1<T> 

extends class Set`1<!0[]>) 

 any interfaces that the type-under-definition implements (e.g., .class … Hashtable`2<K,D> 

implements class IDictionary`2<!0,!1>) 

 all members (instance and static fields, methods, constructors, properties and events) except 

nested classes.  [Note: C# allows generic parameters from an enclosing class to be used in a 

nested class, but adds any required extra generic parameters to the nested class definition in 

metadata. end note] 

A generic type definition can include static, instance, and virtual methods. 

Generic type definitions are subject to the following restrictions: 

 A generic parameter, on its own, cannot be used to specify the base class, or any implemented 

interfaces.  So, for example, .class … G`1<T> extends !0 is invalid.  However, it is valid for 

the base class, or interfaces, to use that generic parameter when nested within another generic 

type.  For example, .class … G`1<T> extends class H`1<!0> and .class … G`1<T> extends 

class B`2<!0,int32> are valid.   

[Rationale: This permits checking that generic types are valid at definition time rather than at 

instantiation time. e.g., in .class … G`1<T> extends !0, we do not know what methods would override 

what others because no information is available about the base class; indeed, we do not even know 

whether T is a class: it might be an array or an interface.  Similarly, for .class … C`2<(!1)T,U> where 

we are in the same situation of knowing nothing about the base class/interface definition. end rationale] 

 Varargs methods cannot be members of generic types 

[Rationale: Implementing this feature would take considerable effort.  Since varargs has very limited use 

among languages targetting the CLI, it was decided to exclude varargs methods from generic types. end 

rationale] 

 When generic parameters are ignored, there shall be no cycles in the inheritance/interface 

hierarchy.  To be precise, define a graph whose nodes are possibly-generic (but open) classes and 

interfaces, and whose edges are the following: 

o If a (possibly-generic) class or interface D extends or implements a class or 

interface B, then add an edge from D to B. 

o If a (possibly-generic) class or interface D extends or implements an instantiated class 

or interface B<type-1, …, type-n>, then add an edge from D to B. 

o The graph is valid if it contains no cycles. 

[Note: This algorithm is a natural generalization of the rules for non-generic types.  See Partition I, §8.9.9 

end note] 

9.2  Generics and recurs ive inheritance graphs  

[Rationale: Although inheritance graphs cannot be directly cyclic, instantiations given in parent classes or 

interfaces may introduce either direct or indirect cyclic dependencies, some of which are allowed (e.g., 

C : IComparable<C>), and some of which are disallowed (e.g., class A<T> : B<A<A<T>>> given class B<U>).  

end rationale] 

Each type definition shall generate a finite instantiation closure. An instantiation closure is defined as follows: 
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1. Create a set containing a single generic type definition. 

2. Form the closure of this set by adding all generic types referenced in the type signatures of 

base classes and implemented interfaces of all types in the set. Include nested instantiations in 

this set, so a referenced type Stack<List<T>> actually counts as both List<T> and 

Stack<List<T>>.  

3. Construct a graph: 

 Whose nodes are the formal type parameters of types in the set. Use alpha-renaming as 

needed to avoid name clashes. 

 If T appears as the actual type argument to be substituted for U in some referenced 

type D<…, U, …> add a non-expanding (->) edge from T to U.  

 If T appears somewhere inside (but not as) the actual type argument to be substituted 

for U in referenced type D<…, U, …> add an expanding (=>) edge from T to U.  

An expanding-cycle is a cycle in the instantiation closure that contains at least one expanding-edge 

(=>). The instantiation-closure of the system is finite if and only if the graph as constructed above 

contains no expanding-cycles.  

[Example: 

class B<U> 

class A<T> : B<A<A<T>>>  

generates the edges (using => for expanding-edges and -> for non-expanding-edges) 

T  ->   T   (generated by referenced type A<T>) 

T  =>  T   (generated by referenced type A<A<T>>) 

T  =>  U   (generated by referenced type B<A<A<T>>>) 

This graph does contain an expanding-cycle, so the instantiation closure is infinite.  end example] 

[Example: 

class B<U> 

class A<T> : B<A<T>> 

generates the edges 

T -> T (generated by referenced type A<T>) 

T => U (generated by referenced type B<A<T>>) 

This graph does not contain an expanding-cycle, so the instantiation closure is finite.  end example] 

[Example: 

class P<T> 

class C<U,V> : P<D<V,U>> 

class D<W,X> : P<C<W,X>> 

generates the edges 

U -> X    V -> W   U => T   V => T   (generated by referenced type D<V,U> and P<D<V,U>>)  

W -> U   X -> V   W => T   X => T  (generated by referenced type C<W,X> and P<C<W,X>>) 

This graph contains non-expanding-cycles (e.g. U -> X -> V -> W -> U), but no expanding-cycle, so 

the instantiation closure is finite. end example] 

9.3  Generic method definit ions  

A generic method definition is one that includes a generic parameter list.  A generic method can be defined 

within a non-generic type; or within a generic type, in which case the method‘s generic parameter(s) shall be 

additional to the generic parameter(s) of the owner.  As with generic type definitions, each generic parameter 

on a generic method definition has a name and an optional set of constraints.  

Generic methods can be static, instance, or virtual.  Class or instance constructors (.cctor, or .ctor, 

respectively) shall not be generic. 
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The method generic parameters are in scope in the signature and body of the method, and in the generic 

parameter constraints.  [Note: The signature includes the method return type.  So, in the example:  

.method … !!0 M`1<T>() { … } 

the !!0 is in scope—it‘s the generic parameter of M`1<T> even though it preceeds that parameter in the 
declaration..  end note] 

Generic instance (virtual and non-virtual) methods can be defined as members of generic types, in which case 

the generic parameters of both the generic type and the generic method are in scope in the method signature and 

body, and in constraints on method generic parameters. 

9.4  Instantiat ing generic types  

GenArgs is used to represent a generic argument list:   

GenArgs ::= 

  Type   [„,‟  Type ]* 

 

We say that a type is closed if it contains no generic parameters; otherwise, it is open.   

A given generic type definition can be instantiated with generic arguments to produce an instantiated type.   

[Example: Given suitable definitions for the generic class MyList and value type Pair, we could instantiate 

them as follows: 

newobj instance void class MyList`1<int32>::.ctor() 

initobj valuetype Pair`2<int32, valuetype Pair<string,int32>> 

end example]  

[Example:  

ldtoken !0   // !0 = generic parameter 0 in generic type definition 

castclass class List`1<!1> // !1 = generic parameter 1 in generic type definition 

box !!1    // !!1 = generic parameter 1 in generic method definition 

end example]  

The number of generic arguments in an instantiation shall match the number of generic parameters specified in 
the type or method definition. 

The CLI does not support partial instantiation of generic types.  And generic types shall not appear 

uninstantiated anywhere in metadata signature blobs. 

The following kinds of type cannot be used as arguments in instantiations (of generic types or methods): 

 Byref types (e.g., System.Generic.Collection.List`1<string&> is invalid) 

 Byref-like types, i.e. value types that contain fields that can point into the CIL evaluation stack 

(e.g.,  List<System.RuntimeArgumentHandle> is invalid) 

 Typed references (e.g. List<System.TypedReference> is invalid) 

 Unmanaged pointers (e.g. List<int32*> is invalid) 

 void (e.g., List<System.Void> is invalid) 

 [Rationale: Byrefs types cannot be used as generic arguments because some, indeed most, instantiations would 
be invalid.  For example, since byrefs are not allowed as field types or as method return types, in the definition 

of List`1<string&>, one could not declare a field of type !0, nor a method that returned a type of !0. end 

rationale] 

[Rationale: Unmanaged pointers are disallowed because as currently specified unmanaged pointers are not 

technically subclasses of System.Object.  This restriction can be lifted, but currently the runtime enforces this 

restriction and this spec reflects that. ] 
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Objects of instantiated types shall carry sufficient information to recover at runtime their exact type (including 

the types and number of their generic arguments).  [Rationale: This is required to correctly implement casting 

and instance-of testing, as well as in reflection capabilities (System.Object::GetType). end rationale] 

9.5  Generics variance  

The CLI supports covariance and contravariance of generic parameters, but only in the signatures of interfaces 

and delegate classes.  

The symbol ―+‖ is used in the syntax of §10.1.7 to denote a covariant generic parameter, while ―-‖ is used to 

denote a contravariant generic parameter 

This block contains only informative text  

Suppose we have a generic interface, which is covariant in its one generic parameter; e.g., IA`1<+T>. Then all 

instantiations satisfy IA`1<GenArgB> := IA`1<GenArgA>, so long as GenArgB := GenArgA using the notion from 

assignment compatibility.  So, for example, an instance of type IA`1<string> can be assigned to a local of type 

type IA`1<object>. 

Generic contravariance operates in the opposite sense: supposing that we have a contravariant interface IB`1<-

T>, then IB`1<GenArgB> := IB`1<GenArgA>, so long as GenArgA := GenArgB. 

[Example:  (The syntax used is illustrative of a high-level language.) 

// Covariant parameters can be used as result types 

interface IEnumerator<+T> { 

 T Current { get; } 

 bool MoveNext(); 

} 

// Covariant parameters can be used in covariant result types 

interface IEnumerable<+T> { 

 IEnumerator<T> GetEnumerator(); 

} 

// Contravariant parameters can be used as argument types 

interface IComparer<-T> {  

 bool Compare(T x, T y); 

} 

// Contravariant parameters can be used in contravariant interface types 

interface IKeyComparer<-T> : IComparer<T> { 

 bool Equals(T x, T y); 

 int GetHashCode(T obj); 

} 

// A contravariant delegate type 

delegate void EventHandler<-T>(T arg); 

// No annotation indicates non-variance.  Non-variant parameters can be used anywhere. 

// The following type shall be non-variant because T appears in as a method argument as 

// well as in a covariant interface type 

interface ICollection<T> : IEnumerable<T> { 

 void CopyTo(T[] array, int index);  

 int Count { get; } 

} 

end example] 

End informative text 

9.6  Assignment compatibil ity of instantiated types  

 Assignment compatibility is defined in Partition I.8.7.  

[Example: 
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Assuming Employee := Manager, 

IEnumerable<Manager> eManager = ... 

IEnumerable<Employee> eEmployee = eManager;   // Covariance  

IComparer<object> objComp = ... 

IComparer<string> strComp = objComp;    // Contravariance  

EventHandler<Employee> employeeHandler = ... 

EventHandler<Manager> managerHandler = employeeHandler; // Contravariance 

end example] 

 [Example: Given the following: 

interface IConverter<-T,+U> { 

  U Convert(T x); 

} 

IConverter<string, object> := IConverter<object, string> 

Given the following: 

delegate U Function<-T,+U>(T arg); 

Function<string, object> := Function<object, string>. end example] 

[Example:  

IComparer<object> objComp = ... 

// Contravariance and interface inheritance 

IKeyComparer<string> strKeyComp = objComp; 

IEnumerable<string[]> strArrEnum = … 

// Covariance on IEnumerable and covariance on arrays 

IEnumerable<object[]> objArrEnum = strArrEnum; 

IEnumerable<string>[] strEnumArr = ... 

// Covariance on IEnumerable and covariance on arrays 

IEnumerable<object>[] objEnumArr = strEnumArr; 

IComparer<object[]> objArrComp = ... 

// Contravariance on IComparer and covariance on arrays 

IComparer<string[]> strArrComp = objArrComp; 

IComparer<object>[] objCompArr = ... 

// Contravariance on IComparer and covariance on arrays 

IComparer<string>[] strCompArr = objCompArr; 

end example] 

9.7  Validity of member signatures  

To achieve type safety, it is necessary to impose additional requirements on the well-formedness of signatures 
of members of covariant and contravariant generic types. 

This block contains only informative text  

 Covariant parameters can only appear in ―producer ,‖ ―reader,‖ or ―getter‖ positions in the type 
definition; i.e., in 

o result types of methods 

o inherited interfaces 

 Contravariant parameters can only appear in ―consumer ,‖ ―writer,‖ or ―setter‖ positions in the 

type definition; i.e., in 

o argument types of methods 

 NonVariant parameters can appear anywhere.  

End informative text 
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We now define formally what it means for a co/contravariant generic type definition to be valid. 

Generic type definition: A generic type definition G<var_1 T_1, …, var_n T_n> is valid if G is an interface or 

delegate type, and each of the following holds, given S = <var_1 T_1, …, var_n T_n>, where var_n is +, -, or 

nothing: 

 Every instance method and virtual method declaration is valid with respect to S 

 Every inherited interface declaration is valid with respect to S 

 There are no restrictions on static members, instance constructors, or on the type‘s own generic 

parameter constraints. 

Given the annotated generic parameters S = <var_1 T_1, …, var_n T_n>, we define what it means for various 

components of the type definition to be valid with respect to S. We define a negation operation on annotations, 

written –S, to mean ―flip negatives to positives, and positives to negatives‖. 

Think of  

 ―valid with respect to S‖ as ―behaves covariantly‖  

 ―valid with respect to ¬S‖ as ―behaves contravariantly‖  

 ―valid with respect to S and to ¬S‖ as ―behaves non-variantly‖.  

Note that the last of these has the effect of prohibiting covariant and contravariant parameters from a type; i.e., 

all generic parameters appearing shall be non-variant. 

Methods. A method signature t meth(t_1,…,t_n) is valid with respect to S if 

 its result type signature t is valid with respect to S; and 

 each argument type signature t_i is valid with respect to ¬S. 

 each method generic parameter constraint type t_j is valid with respect to ¬S. 

[Note: In other words, the result behaves covariantly and the arguments behave contravariantly. Constraints on 

generic parameters also behave contravariantly. end note] 

Type signatures. A type signature t is valid with respect to S if it is 

 a non-generic type (e.g., an ordinary class or value type) 

 a generic parameter T_i for which var_i is + or none (i.e., it is a generic parameter that is marked 

covariant or non-variant) 

 an array type u[] and u is valid with respect to S; i.e., array types behave covariantly 

 a closed generic type G<t_1,…,t_n> for which each  

o t_i is valid with respect to S, if the i‘th parameter of G is declared covariant 

o t_i is valid with respect to ¬S, if the i‘th parameter of G is declared contravariant 

o t_i is valid with respect to S and with respect to ¬S, if the i’th parameter of G is 

declared non-variant. 

9.8  Signatures and binding  

Members (fields and methods) of a generic type are referenced in CIL instructions using a metadata token, 

which specifies an entry in the MemberRef table (§22.25). Abstractly, the reference consists of two parts: 

1. The type in which the member is declared, in this case, an instantiation of the generic type 

definition.  For example: IComparer`1<String>. 

2. The name and generic (uninstantiated) signature of the member.  For example: int32 

Compare(!0,!0). 
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It is possible for distinct members to have identical types when instantiated, but which can be distinguished by 

MemberRef. 

[Example: 

.class public C`2<S,T> { 

  .field string f 

  .field !0 f 

  .method instance void m(!0 x) {...} 

  .method instance void m(!1 x) {...} 

  .method instance void m(string x) {...} 

}  

The closed type C`2<string,string> is valid: it has three methods called m, all with the same parameter type; 

and two fields called f with the same type.  They are all distinguished through the MemberRef encoding 

described above: 

string C`2<string, string>::f 

!0  C<string, string>::f 

void C`2<string, string>::m(!0) 

void C`2<string, string>::m(!1) 

void C`2<string, string>::m(string) 

The way in which a source language might resolve this kind of overloading is left to each individual language.  

For example, many might disallow such overloads. 

end example] 

9.9  Inheritance and overriding  

Member inheritance is defined in Partition I, in  ―Member Inheritance‖. (Overriding and hiding are also defined 

in that partition, in ―Hiding, overriding, and layout‖.) This definition is extended, in an obvious manner, in the 

presence of generics.  Specifically, in order to determine whether a member hides (for static or instance 

members) or overrides (for virtual methods) a member from a base class or interface, simply substitute each 

generic parameter with its generic argument, and compare the resulting member signatures.  [Example: The 

following illustrates this point: 

Suppose the following definitions of a base class B, and a derived class D. 

.class B  

{ .method public virtual void V(int32 i) { … } } 

.class D extends B 

{ .method public virtual void V(int32 i) { … } } 

In class D, D.V overrides the inherited method B.V, because their names and signatures match.   

How does this simple example extend in the presence of generics, where class D derives from a generic 

instantiation?  Consider this example: 

.class B`1<T> 

{ .method public virtual void V(!0) { … } } 

.class D extends B`1<int32> 

{ .method public virtual void V(int32) { … } } 

.class E extends B`1<string> 

{ .method public virtual void V(int32) { … } } 

Class D derives from B<int32>.  And class B<int32> defines the method: 

   public virtual void V(int32 t) { … } 

where we have simply substituted B‘s generic parameter T, with the specific generic argument int32.  This 

matches the method D.V (same name and signature).  Thus, for the same reasons as in the non-generic example 

above, it‘s clear that D.V overrides the inherited method B.V.   

Contrast this with class E, which derives from B<string>.  In this case, substituting B‘s T with string, we see 

that B.V has this signature: 

   public virtual void V(string t) { … } 
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This signature differs from method E.V, which therefore does not override the base class‘s B.V method.    

end example] 

Type definitions are invalid if, after substituting base class generic arguments, two methods result in the same 

name and signature (including return type).  The following illustrates this point: 

[Example: 

.class B`1<T> 

{ .method public virtual void V(!0 t)     { … } 

  .method public virtual void V(string x) { … } 

} 

.class D extends B`1<string> { } // Invalid 

Class D is invalid, because it will inherit from B<string> two methods with identical signatures: 

void V(string) 

However, the following version of D is valid: 

.class D extends B`1<string> 

{ .method public virtual void  V(string t)  { … } 

  .method public virtual void  W(string t) 

  { … 

    .override  method instance void class B`1<string>::V(!0) 

    … 

  } 

} 

end example] 

When overriding generic methods (that is, methods with their own generic parameters) the number of generic 

parameters shall match exactly those of the overridden method.   If an overridden generic method has one or 

more constraints on its generic arguments then: 

 The overriding method can have constraints only on the same generic arguments; 

 Any such constraint on a generic argument specified by the overriding method shall be no more 
restrictive than the constraint specified by the overridden method for the same generic argument;  

 [Note: Within the body of an overriding method, only constraints directly specified in its signature apply. 

When a method is invoked, it‘s the constraints associated with the metadata token in the call or callvirt 
instruction that are enforced. end note] 

9.10  Explicit method overrides  

A type, be it generic or non-generic, can implement particular virtual methods (whether the method was 

introduced in an interface or base class) using an explicit override. (See §10.3.2 and §15.1.4.) 

The rules governing overrides are extended, in the presence of generics, as follows: 

 If the implementing method is part of a non-generic type or a closed generic type, then the 

declaring method shall be part of a base class of that type or an interface implemented by that 

type. [Example: 

.class interface I`1<T> 

{ .method public abstract virtual void M(!0) {} 

} 

.class C implements class I`1<string> 

{ .override method instance void class I`1<string>::M(!0) with  

  method instance void class C::MInC(string) 

  .method virtual void MInC(string s) 

  { ldstr "I.M" 

    call void [mscorlib]System.Console::WriteLine(string) 

    ret 

  } 

} 

end example] 
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 If the implementing method is generic, then the declared method shall also be generic and shall 

have the same number of method generic parameters.  

Neither the implementing method nor the declared method shall be an instantiated generic method.  This 

means that an instantiated generic method cannot be used to implement an interface method, and that it is 

not possible to provide a special method for instantiating a generic method with specific generic 

parameters. 
[Example: Given the following 
  .class interface I 
{ .method public abstract virtual void M<T>(!!0) {} 

  .method public abstract virtual void N() {} 

} 

neither of the following .override statements is allowed 

.class C implements class I`1<string> 

{ .override class I::M<string> with instance void class C::MInC(string) 

  .override class I::N with instance void class C::MyFn<string> 

  .method virtual void MInC(string s) { … } 

  .method virtual void MyFn<T>() { … } 

} 

end example] 

9.11  Constraints on generic parameters  

A generic parameter declared on a generic class or generic method can be constrained by one or more types  

(for encoding, see GenericParamConstraint table in §22.21) and by one or more special constraints (§10.1.7).  

Generic parameters can be instantiated only with generic arguments that are assignment compatible (when 

boxed) with each of the declared constraints and that satisfy all specified special constraints. 

Generic parameter constraints shall have at least the same visibility as the generic type definition or generic 

method definition itself.  

[Note: There are no other restrictions on generic parameter constraints.  In particular, the following uses are 

valid: Constraints on generic parameters of generic classes can make recursive reference to the generic 

parameters, and even to the class itself.  
 

.class public Set`1<(class IComparable<!0>) T> { … } 

// can only be instantiated by a derived class! 

.class public C`1<(class C<!0>) T> {} 

.class public D extends C`1<class D> { … } 

 

Constraints on generic parameters of generic methods can make recursive reference to the generic 

parameters of both the generic method and its enclosing class (if generic). The constraints can also 

reference the enclosing class itself.  

.class public A`1<T> { 

  .method public void M<(class IDictionary<!0,!!0>) U>() {} 

} 

 

Generic parameter constraints can be generic parameters or non-generic types such as arrays.  

.class public List`1<T> { 

  // The constraint on U is T itself 

  .method public void AddRange<(!0) U>(class IEnumerable`1<!!0> items) { … } 

} 

 end note] 

Generic parameters can have multiple constraints: to inherit from at most one base class (if none is specified, 

the CLI defaults to inheriting from System.Object); and to implement zero or more interfaces. (The syntax for 

using constraints with a class or method is defined in §10.1.7.) [Example:   

The following declaration shows a generic class OrderedSet<T>, in which the generic parameter T is 

constrained to inherit both from the class Employee, and to implement the interface IComparable<T>: 
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.class OrderedSet`1<(Employee, class [mscorlib]System.IComparable`1<!0>) T> { … } 

 

end example] 

[Note: Constraints on a generic parameter only restrict the types that the generic parameter may be instantiated 

with. Verification (see Partition III) requires that a field, property or method that a generic parameter is known 

to provide through meeting a constraint, cannot be directly accessed/called via the generic parameter unless it is 

first boxed (see Partition III) or the callvirt instruction is prefixed with the constrained. prefix instruction (see 
Partition III). end note] 

This block contains only informative text  

9.12  References to members of generic types  

CIL instructions that reference type members are generalized to permit reference to members of instantiated 

types. 

The number of generic arguments specified in the reference shall match the number specified in the 

definition of the type. 

CIL instructions that reference methods are generalized to permit reference to instantiated generic methods. 

End informative text 
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10 Defining types 

Types (i.e., classes, value types, and interfaces) can be defined at the top-level of a module: 

Decl ::= 

  .class ClassHeader „{‟ ClassMember* „}‟ 

| … 

 

The logical metadata table created by this declaration is specified in §22.37. 

[Rationale: For historical reasons, many of the syntactic categories used for defining types incorrectly use 

―class‖ instead of ―type‖ in their name.  All classes are types, but ―types‖ is a broader term encompassing value 

types, and interfaces as well. end rationale] 

10.1  Type header (ClassHeader)  

A type header consists of 

 any number of type attributes, 

 optional generic parameters 

 a name (an Id), 

 a base type (or base class type), which defaults to [mscorlib]System.Object, and 

 an optional list of interfaces whose contract this type and all its descendent types shall satisfy. 

ClassHeader ::= 

  ClassAttr* Id [„<‟ GenPars „>‟ ] [ extends TypeSpec  [ implements TypeSpec ] [ „,‟ 

TypeSpec ]* ] 

 

The optional generic parameters are used when defining a generic type (§10.1.7). 

The extends keyword specifies the base type of a type. A type shall extend from exactly one other type. If no 

type is specified, ilasm will add an extends clause to make the type inherit from System.Object. 

The implements keyword specifies the interfaces of a type.  By listing an interface here, a type declares that 

all of its concrete implementations will support the contract of that interface, including providing 

implementations of any virtual methods the interface declares.  See also §11 and §12. 

[Example: This code declares the class CounterTextBox, which extends the class 

System.Windows.Forms.TextBox in the assembly System.Windows.Forms, and implements the interface 

CountDisplay in the module Counter of the current assembly. The attributes private, auto and autochar 

are described in the following subclauses. 

.class private auto autochar CounterTextBox 

   extends [System.Windows.Forms]System.Windows.Forms.TextBox 

   implements [.module Counter]CountDisplay 

{ // body of the class 

} 

end example] 

A type can have any number of custom attributes attached.  Custom attributes are attached as described in §21. 

The other (predefined) attributes of a type can be grouped into attributes that specify visibility, type layout 

information, type semantics information, inheritance rules, interoperation information, and information on 

special handling. The following subclauses provide additional information on each group of predefined 

attributes. 

ClassAttr ::= Description Clause 
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ClassAttr ::= Description Clause 

  abstract Type is abstract. 10.1.4 

| ansi Marshal strings to platform as ANSI. 10.1.5 

| auto Layout of fields is provided automatically. 10.1.2 

| autochar Marshal strings to platform as ANSI or Unicode 

(platform-specific). 

10.1.5 

| beforefieldinit Need not initialize the type before a static method is 

called. 

10.1.6 

| explicit Layout of fields is provided explicitly. 10.1.2 

| interface Declares an interface. 10.1.3 

| nested assembly Assembly accessibility for nested type. 10.1.1 

| nested famandassem Family and assembly accessibility for nested type. 10.1.1 

| nested family Family accessibility for nested type. 10.1.1 

| nested famorassem Family or assembly accessibility for nested type. 10.1.1 

| nested private Private accessibility for nested type. 10.1.1 

| nested public Public accessibility for nested type. 10.1.1 

| private Private visibility of top-level type. 10.1.1 

| public Public visibility of top-level type. 10.1.1 

| rtspecialname Special treatment by runtime. 10.1.6 

| sealed The type cannot be derived from. 10.1.4 

| sequential Layout of fields is sequential. 10.1.2 

| serializable Reserved (to indicate this type can be serialized). 10.1.6 

| specialname Might get special treatment by tools. 10.1.6 

| unicode Marshal strings to platform as Unicode. 10.1.5 

 

10.1.1 Visibi l i ty and accessibi l i ty attr ibutes 

ClassAttr ::= … 

| nested assembly 

| nested famandassem 

| nested family 

| nested famorassem 

| nested private 

| nested public 

| private 

| public 

 

See Partition I.  A type that is not nested inside another type shall have exactly one visibility (private or 

public) and shall not have an accessiblity.  Nested types shall have no visibility, but instead shall have 

exactly one of the accessibility attributes nested assembly, nested famandassem, nested 
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family, nested famorassem, nested private, or nested public. The default visibility for top-

level types is private. The default accessibility for nested types is nested private. 

10.1.2 Type layout attr ibutes  

ClassAttr ::= … 

| auto 

| explicit 

| sequential 

 

The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one 

layout attribute specified.  By convention, ilasm supplies auto if no layout attribute is specified. The layout 

attributes are: 

auto: The layout shall be done by the CLI, with no user-supplied constraints. 

explicit: The layout of the fields is explicitly provided (§10.7). However, a generic type shall not have 

explicit layout. 

sequential: The CLI shall lay out the fields in sequential order, based on the order of the fields in the 

logical metadata table (§22.15). 

[Rationale: The default auto layout should provide the best layout for the platform on which the code is 

executing.  sequential layout is intended to instruct the CLI to match layout rules commonly followed by 

languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable 

layout.  explicit layout allows the CIL generator to specify the precise layout semantics. end rationale] 

10.1.3 Type semantics attr ibutes  

ClassAttr ::= … 

| interface 

 

The type semantic attributes specify whether an interface, class, or value type shall be defined.  The 

interface attribute specifies an interface.  If this attribute is not present and the definition extends (directly 

or indirectly) System.ValueType, and the definition is not for System.Enum, a value type shall be defined (§13).   

Otherwise, a class shall be defined (§11). 

[Example:  

.class interface public abstract auto ansi ‟System.IComparable‟ { … } 

System.IComparable is an interface because the interface attribute is present. 

.class public sequential ansi serializable sealed beforefieldinit 

    ‟System.Double‟ extends System.ValueType implements System.IComparable, 

     … { … } 

System.Double directly extends System.ValueType; System.Double is not the type System.Enum; so 

System.Double is a value type. 

.class public abstract auto ansi serializable beforefieldinit ’System.Enum‟ 

    extends System.ValueType implements System.IComparable, … { … } 

Although System.Enum directly extends System.ValueType, System.Enum is not a value type, so it is a class. 

.class public auto ansi serializable beforefieldinit ‟System.Random‟ 

    extends System.Object { … } 

System.Random is a class because it is not an interface or a value type. 

end example] 



 

46 Partition II 

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes) 

10.1.4 Inheritance attr ibutes  

ClassAttr ::= … 

| abstract 

| sealed 

 

Attributes that specify special semantics are abstract and sealed. These attributes can be used together. 

abstract specifies that this type shall not be instantiated.  If a type contains abstract methods, that type 

shall be declared as an abstract type. 

sealed specifies that a type shall not have derived classes.  All value types shall be sealed. 

[Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden. 

Framework authors should use sealed classes sparingly since they do not provide a convenient building block 

for user extensibility.  Sealed classes can be necessary when the implementation of a set of virtual methods for 

a single class (typically multiple interfaces) becomes interdependent or depends critically on implementation 
details not visible to potential derived classes.  

A type that is both abstract and sealed should have only static members, and serves as what some 

languages call a ―namespace‖ or ―static class‖. end rationale] 

10.1.5 Interoperation attr ibutes  

ClassAttr ::= … 

| ansi 

| autochar 

| unicode 

 

These attributes are for interoperation with unmanaged code.  They specify the default behavior to be used 

when calling a method (static, instance, or virtual) on the class, that has an argument or return type of 

System.String and does not itself specify marshalling behavior.  Only one value shall be specified for any 

type, and the default value is ansi. The interoperation attributes are: 

ansi specifies that marshalling shall be to and from ANSI strings. 

autochar specifies marshalling behavior (either ANSI or Unicode), depending on the platform on which the 

CLI is running. 

unicode specifies that marshalling shall be to and from Unicode strings. 

In addition to these three attributes, §23.1.15 specifies an additional set of bit patterns (CustomFormatClass and 

CustomStringFormatMask), which have no standardized meaning. If these bits are set, but an implementation 

has no support for them, a System.NotSupportedException is thrown. 

10.1.6 Special  handling attr ibutes  

ClassAttr ::= … 

| beforefieldinit 

| rtspecialname 

| serializable 

| specialname 

 

These attributes can be combined in any way. 
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beforefieldinit instructs the CLI that it need not initialize the type before a static method is called.  See 

§10.5.3. 

rtspecialname indicates that the name of this item has special significance to the CLI.  There are no 

currently defined special type names; this is for future use.  Any item marked rtspecialname shall also be 

marked specialname. 

serializable Reserved for future use, to indicate that the fields of the type are to be serialized into a data 

stream (should such support be provided by the implementation). 

specialname indicates that the name of this item can have special significance to tools other than the CLI.  

See, for example, Partition I . 

[Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that.  The 

converse is not true. end rationale] 

10.1.7 Generic  parameters (GenPars) 

Generic parameters are included when defining a generic type.   

GenPars ::= 

  GenPar [ „,‟ GenPars ] 

The GenPar non-terminal has the following production: 

GenPar::= 

     [  GenParAttribs ]* [ „(‟ [ GenConstraints ] „)‟ ]  Id  

 

GenParAttribs::= 

  „+‟  

| „-‟  

| class  

| valuetype  

| .ctor  

 

+ denotes a covariant generic parameter (§9.5). 

- denotes a contravariant generic parameter (§9.5). 

class is a special-purpose constraint that constrains Id to being a reference type. [Note: This includes type 

parameters which are themselves constrained to be reference types through a class or base type constraint. end 

note] 

valuetype is a special-purpose constraint that constrains Id to being a value type, except that that type shall 

not be System.Nullable<T> or any concrete closed type of System.Nullable<T>. [Note: This includes type 

parameters which are themselves constrained to be value types. end note] 

.ctor is a special-purpose constraint that constrains Id to being a concrete reference type (i.e., not abstract) 

that has a public constructor taking no arguments (the default constructor), or to being a value type. [Note: This 

includes type parameters which are, themselves, constrained either to be concrete reference types, or to being a 

value type. end note] 

class and valuetype shall not both be specified for the same Id. 

[Example:  
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.class C< + class .ctor (class System.IComparable<!0>) T > { … } 

 
This declares a generic class C<T>, which has a covariant generic parameter named T. T is constrained such that 

it must implement System.IComparable<T>, and must be a concrete class with a public default constructor. end 

example] 

Finally, the GenConstraints non-terminal has the following production: 

GenConstraints ::= 

  Type [ „,‟ GenConstraints ] 

 

There shall be no duplicates of Id in the GenPars production.  

[Example: Given appropriate definitions for interfaces I1 and I2, and for class Base, the following code defines 

a class Dict that has two generic parameters, K and V, where K is constrained to implement both interfaces I1 

and I2, and V is constrained to derive from class Base: 

.class Dict`2<(I1,I2)K, (Base)V> { … } 

end example] 

The following table shows the valid combinations of type and special constraints for a representative set of 

types. The first set of rows (Type Constraint System.Object) applies either when no base class constraint is 

specified or when the base class constraint is System.Object. The symbol  means ―set‖, the symbol  means 

―not set‖, and the symbol * means ―either set or not set‖ or ―don‘t care‖. 

 

Type Constraint Special Constraint Meaning 

class valuetype .ctor 

(System.Object)    Any type 

   Any reference type 

   Any reference type having a default 
constructor 

  * Any value type except 
System.Nullable<T> 

   Any type with a public default 
constructor 

  * Invalid 

System.ValueType    Any value type including 
System.Nullable<T> 

  * Any value type except 
System.Nullable<T> 

   Any value type and System.ValueType, 

and System.Enum 

   System.ValueType and System.Enum only 

   Not meaningful: Cannot be instantiated 
(no instantiable reference type can be 

derived from System.ValueType) 

  * Invalid 



 

 Partition II 49 

System.Enum    Any enum type 

  * 

   Any enum type and System.Enum 

   System.Enum only 

   Not meaningful: Cannot be instantiated 
(no instantiable reference type can be 

derived from System.Enum) 

  * Invalid 

System.Exception (an 
example of any non-special 

reference Type) 

   System.Exception, or any class derived 
from System.Exception 

   Any System.Exception with a public 
default constructor 

   System.Exception, or any class derived 
from System.Exception. This is exactly 
the same result as if the class constraint 
was not specified 

   Any Exception with a public default 
constructor. 

  * Not meaningful: Cannot be instantiated 
(a value type cannot be derived from a 
reference type) 

  * Invalid 

System.Delegate    System.Delegate, or any class derived 
from System.Delegate 

   Not meaningful: Cannot be instantiated 
(there is no default constructor) 

   System.Delegate, or any class derived 
from System.Delegate 

   Any Delegate with a public .ctor. Invalid 

for known delegates (System.Delegate) 

  * Not meaningful: Cannot be instantiated 
(a value type cannot be derived from a 
reference type) 

  * Invalid 

System.Array    Any array 

*   Not meaningful: Cannot be instantiated 
(no default constructor) 

   Any array 

  * Not meaningful: Cannot be instantiated 
(a value type cannot be derived from a 
reference type) 
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  * Invalid 

 

[Example: The following instantiations are allowed or disallowed, based on the constraint. In all of these 

instances, the declaration itself is allowed. Items marked Invalid indicate where the attempt to instantiate the 

specified type fails verification, while those marked Valid do not. 

.class public auto ansi beforefieldinit Bar`1<valuetype T> 

Valid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<Nullable`1<int32>> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 

.class public auto ansi beforefieldinit 'Bar`1'<class T> 

Invalid ldtoken  class Bar`1<int32> 

Valid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 

Valid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 

.class public auto ansi beforefieldinit Bar`1<(class 

 [mscorlib]System.ValueType) T> 

Valid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Valid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 

Valid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 

.class public auto ansi beforefieldinit Bar`1<class (int32)> T> 

Invalid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 

Note: This type cannot be instantiated as no reference type can extend int32 

.class public auto ansi beforefieldinit Bar`1<valuetype 

  (class [mscorlib]System.Exception)> T> 

Invalid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>  

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType>  

Note: This type cannot be instantiated as no value type can extend System.Exception 

.class public auto ansi beforefieldinit Bar`1<.ctor (class Foo) T> 

where Foo has no public .ctor, but FooBar, which derives from Foo, has a public .ctor: 

Invalid ldtoken  class Bar`1<class Foo> 

Valid ldtoken  class Bar`1<class FooBar> 

end example] 
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10.2  Body of a type definit ion 

A type can contain any number of further declarations. The directives .event, .field, .method, and 

.property are used to declare members of a type. The directive .class inside a type declaration is used to 

create a nested type, which is discussed in further detail in §10.6. 

ClassMember ::= Description Clause 

  .class ClassHeader „{‟ ClassMember* „}‟ Defines a nested type. 10.6 

| .custom CustomDecl Custom attribute. 21 

| .data DataDecl Defines static data 

associated with the type. 

16.3 

| .event EventHeader „{‟ EventMember* „}‟ Declares an event. 18 

| .field FieldDecl Declares a field belonging 

to the type. 

16 

| .method MethodHeader „{‟ MethodBodyItem* „}‟ Declares a method of the 

type. 

15 

| .override TypeSpec „::‟ MethodName with 

CallConv Type TypeSpec „::‟ MethodName „(‟ 

Parameters „)‟ 

Specifies that the first 

method is overridden by 

the definition of the 

second method. 

10.3.2 

| .pack Int32 Used for explicit layout of 

fields. 

10.7 

| .param type „[‟ Int32 „]‟ Specifies a type parameter 

for a generic type; for use 

in associating a custom 

attribute with that type 
parameter. 

15.4.1.5 

| .property PropHeader „{‟ PropMember* „}‟ Declares a property of the 

type. 

17 

| .size Int32 Used for explicit layout of 

fields. 

10.7 

| ExternSourceDecl Source line information. 5.7 

| SecurityDecl Declarative security 

permissions. 

20 

 

10.3  Introducing and overriding virtual methods 

A virtual method of a base type is overridden by providing a direct implementation of the method (using a 

method definition, see §15.4) and not specifying it to be newslot (§15.4.2.3).  An existing method body can 

also be used to implement a given virtual declaration using the .override directive (§10.3.2). 

10.3.1 Introducing a virtual  method 

A virtual method is introduced in the inheritance hierarchy by defining a virtual method (§15.4).  The definition 

can be marked newslot to always create a new virtual method for the defining class and any classes derived 

from it: 

 If the definition is marked newslot, the definition always creates a new virtual method, even if 

a base class provides a matching virtual method.  A reference to the virtual method via the class 

containing the method definition, or via a class derived from that class, refer s to the new 
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definition (unless hidden by a newslot definition in a derived class).  Any reference to the 

virtual method not via the class containing the method definition, nor via its derived classes, 

refers to the original definition. 

 If the definition is not marked newslot, the definition creates a new virtual method only if there 

is not virtual method of the same name and signature inherited from a base class.  

It follows that when a virtual method is marked newslot, its introduction will not affect any existing 

references to matching virtual methods in its base classes. 

10.3.2 The .override directive  

The .override directive specifies that a virtual method shall be implemented (overridden), in this type, by a 

virtual method with a different name, but with the same signature.  This directive can be used to provide an 

implementation for a virtual method inherited from a base class, or a virtual method specified in an interface 

implemented by this type.  The .override directive specifies a Method Implementation (MethodImpl) in the 

metadata (§15.1.4). 

ClassMember ::= Clause 

  .override TypeSpec „::‟ MethodName with CallConv Type TypeSpec „::‟ 

MethodName „(‟ Parameters „)‟ 

 

  .override method CallConv Type TypeSpec „::‟ MethodName GenArity „(‟ 

Parameters „)‟ with method CallConv Type TypeSpec „::‟ MethodName GenArity 

„(‟ Parameters „)‟ 

 

| … 10.2 

 

 

GenArity ::= [ „<‟ „[‟ Int32 „]‟ „>‟ ] 

 

Int32 is the number of generic parameters. 

The first TypeSpec::MethodName pair specifies the virtual method that is being overridden, and shall be either 

an inherited virtual method or a virtual method on an interface that the current type implements.  The remaining 

information specifies the virtual method that provides the implementation.   

While the syntax specified here (as well as the actual metadata format (§22.27 )) allows any virtual method to 

be used to provide an implementation, a conforming program shall provide a virtual method actually 

implemented directly on the type containing the .override directive. 

[Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the 

VES. end rationale] 

[Example: The following shows a typical use of the .override directive. A method implementation is 

provided for a method declared in an interface (see §12). 

.class interface I 

{ .method public virtual abstract void M() cil managed {} 

} 

.class C implements I 

{ .method virtual public void M2() 

  { // body of M2 

  } 

  .override I::M with instance void C::M2() 

} 

The .override directive specifies that the C::M2 body shall provide the implementation of be used to 

implement I::M on objects of class C. 
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end example] 

10.3.3 Accessibi l i ty and overriding 

If the strict flag (§23.1.10) is specified then only accessible virtual methods can be overridden.  

If a type overrides an inherited method through means other than a MethodImpl, it can widen, but it shall not 

narrow, the accessibility of that method.  As a principle, if a client of a type is allowed to access a method of 

that type, then it should also be able to access that method (identified by name and signature) in any derived 
type.  Table 7.1 specifies narrow and widen in this context—a ―Yes‖ denotes that the derived class can apply 

that accessibility, a ―No‖ denotes it is invalid. 

If a type overrides an inherited method via a MethodImpl, it can widen or narrow the accessibility of that 

method. 

Table 7.1: Valid Widening of Access to a Virtual Method 

Derived 

class\Base type 

Accessibility 

Compiler-

controlled 

private family assembly famandassem famorassem public 

Compiler-

controlled 

See note 3 No No No No No No 

private See note 3 Yes No No No No No 

family See note 3 Yes Yes No Yes See note 1 No 

assembly See note 3 Yes No See note 2 See note 2 No No 

famandassem See note 3 Yes No No See note 2 No No 

famorassem See note 3 Yes Yes See note 2 Yes Yes No 

public See note 3 Yes Yes Yes Yes Yes Yes 

 
1 Yes, provided both are in different assemblies; otherwise, No. 

2 Yes, provided both are in the same assembly; otherwise, No. 

3 Yes, provided both are in the same module; otherwise, No. 

[Note: A method can be overridden even if it might not be accessed by the derived class.  

If a method has assembly accessibility, then it shall have public accessibility if it is being overridden by a 

method in a different assembly. A similar rule applies to famandassem, where also famorassem is allowed 

outside the assembly. In both cases assembly or famandassem, respectively, can be used inside the same 

assembly. end note] 

A special rule applies to famorassem, as shown in the table. This is the only case where the accessibility is 

apparently narrowed by the derived class. A famorassem method can be overridden with family 

accessibility by a type in another assembly.  

[Rationale: Because there is no way to specify ―family or specific other assembly‖ it is not possible to specify 

that the accessibility should be unchanged.  To avoid narrowing access, it would be necessary to specify an 

accessibility of public, which would force widening of access even when it is not desired.  As a compromise, 

the minor narrowing of ―family‖ alone is permitted. end rationale] 

10.4  Method implementation requirements  

A type (concrete or abstract) can provide  

 implementations for instance, static, and virtual methods that it introduces  
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 implementations for methods declared in interfaces that it has specified it will implement, or that 

its base type has specified it will implement 

 alternative implementations for virtual methods inherited from its base class 

 implementations for virtual methods inherited from an abstract base type that did not provide an 

implementation 

A concrete (i.e., non-abstract) type shall provide, either directly or by inheritance, an implementation for 

 all methods declared by the type itself 

 all virtual methods of interfaces implemented by the type 

 all virtual methods that the type inherits from its base type  

10.5  Special members  

There are three special members, all of which are methods that can be defined as part of a type: instance 

constructors, instance finalizers, and type initializers.  

10.5.1 Instance constr uctor  

An instance constructor initializes an instance of a type, and is called when an instance of a type is created by 

the newobj instruction (see Partition III).  An instance constructor shall be an instance (not static or virtual) 

method, it shall be named .ctor, and marked instance, rtspecialname, and specialname 

(§15.4.2.6). An instance constructor can have parameters, but shall not return a value. An instance constructor 

cannot take generic type parameters. An instance constructor can be overloaded (i.e., a type can have several 

instance constructors). Each instance constructor for a type shall have a unique signature. Unlike other 

methods, instance constructors can write into fields of the type that are marked with the initonly attribute 

(§16.1.2). 

[Example: The following shows the definition of an instance constructor that does not take any parameters: 

.class X { 

  .method public rtspecialname specialname instance void .ctor() cil managed 

    { .maxstack 1 

    // call super constructor 

    ldarg.0  // load this pointer 

    call instance void [mscorlib]System.Object::.ctor() 

    // do other initialization work 

    ret 

  } 

} 

end example] 

10.5.2 Instance f inal izer 

The behavior of finalizers is specified in Partition I.  The finalize method for a particular type is specified by 

overriding the virtual method Finalize in System.Object. 

10.5.3 Type init ial izer 

A type (class, interface, or value type) can contain a special method called a type initializer, which is used to 

initialize the type itself. This method shall be static, take no parameters, return no value, be marked with 

rtspecialname and specialname (§15.4.2.6), and be named .cctor.  

Like instance constructors, type initializers can write into static fields of their type that are marked with the 

initonly attribute (§16.1.2). 

[Example: The following shows the definition of a type initializer: 
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.class public EngineeringData extends [mscorlib]System.Object 

{ 

.field private static initonly float64[] coefficient 

.method private specialname rtspecialname static void .cctor() cil managed 

  { 

  .maxstack 1 

  // allocate array of 4 Double 

  ldc.i4.4 

  newarr     [mscorlib]System.Double 

  // point initonly field to new array 

  stsfld     float64[] EngineeringData::coefficient 

  // code to initialize array elements goes here 

  ret 

  } 

} 

end example] 

[Note: Type initializers are often simple methods that initialize the type‘s static fields from stored constants or 

via simple computations. There are, however, no limitations on what code is permitted in a type initializer. end 

note] 

10.5.3.1 Type init ial izat ion guarantees  

The CLI shall provide the following guarantees regarding type initialization (but see also §10.5.3.2 and 

§10.5.3.3): 

1. As to when type initializers are executed is specified in Partition I. 

2. A type initializer shall be executed exactly once for any given type, unless explicitly called by 
user code. 

3. No methods other than those called directly or indirectly from the type initializer are able to 

access members of a type before its initializer completes execution.  

10.5.3.2 Relaxed guarantees 

A type can be marked with the attribute beforefieldinit (§10.1.6) to indicate that the guarantees 

specified in §10.5.3.1 are not necessarily required.  In particular, the final requirement above need not be 

provided: the type initializer need not be executed before a static method is called or referenced. 

[Rationale: When code can be executed in multiple application domains it becomes particularly expensive to 

ensure this final guarantee.  At the same time, examination of large bodies of managed code have shown that 

this final guarantee is rarely required, since type initializers are almost always simple methods for initializing 

static fields.  Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether 

this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees. 

end rationale] 

10.5.3.3 Races and deadlocks 

In addition to the type initialization guarantees specified in §10.5.3.1, the CLI shall ensure two further 

guarantees for code that is called from a type initializer: 

1. Static variables of a type are in a known state prior to any access whatsoever.  

2. Type initialization alone shall not create a deadlock unless some code called from a type 

initializer (directly or indirectly) explicitly invokes blocking operations. 

[Rationale: Consider the following two class definitions: 
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.class public A extends [mscorlib]System.Object 

{ .field static public class A a 

  .field static public class B b 

  .method public static rtspecialname specialname void .cctor () 

  { ldnull   // b=null 

    stsfld class B A::b 

    ldsfld class A B::a // a=B.a 

    stsfld class A A::a 

    ret 

  } 

} 

.class public B extends [mscorlib]System.Object 

{ .field static public class A a 

  .field static public class B b 

  .method public static rtspecialname specialname void .cctor () 

  { ldnull   // a=null 

    stsfld class A B::a 

    ldsfld class B A::b // b=A.b 

    stsfld class B B::b 

    ret 

  } 

} 

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type 

initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no 

access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the 

CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But 

this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to 

guarantee repeatable results. 

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system. 

In these cases, for example, two separate threads might start attempting to access static variables of separate 

types (A and B) and then each would have to wait for the other to complete initialization. 

A rough outline of an algorithm to ensure points 1 and 2 above is as follows: 

1. At class load-time (hence prior to initialization time) store zero or null into all static fields of the type. 

2. If the type is initialized, you are done. 

2.1. If the type is not yet initialized, try to take an initialization lock.   

2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3. 

2.2.1. If not successful, see whether this thread or any thread waiting for this thread to complete already holds 

the lock. 

2.2.2. If so, return since blocking would create a deadlock.  This thread will now see an incompletely initialized 

state for the type, but no deadlock will arise. 

2.2.3 If not, block until the type is initialized then return. 

2.3 Initialize the base class type and then all interfaces implemented by this type. 

2.4 Execute the type initialization code for this type. 

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be 

initialized, and return. 

end rationale] 

10.6  Nested types  

Nested types are specified in Partition I. For information about the logical tables associated with nested types, 

see §22.32. 
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[Note: A nested type is not associated with an instance of its enclosing type. The nested type has its own base 

type, and can be instantiated independently of its enclosing type. This means that the instance members of the 

enclosing type are not accessible using the this pointer of the nested type. 

A nested type can access any members of its enclosing type, including private members, as long as those 

members are static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested 

types, a type can give access to its private members to another type. 

On the other hand, the enclosing type cannot access any private or family members of the nested type. Only 

members with assembly, famorassem, or public accessibility can be accessed by the enclosing type. 

end note] 

[Example: The following shows a class declared inside another class. Each class declares a field. The nested 

class can access both fields, while the enclosing class does not have access to the enclosed class‘s field b. 

.class public auto ansi X 

{ .field static private int32 a 

  .class auto ansi nested public Y  

  { .field static private int32 b 

    // ... 

  } 

} 

end example] 

10.7  Controll ing instance layout  

The CLI supports both sequential and explicit layout control, see § 10.1.2.  For explicit layout it is also 

necessary to specify the precise layout of an instance; see also §22.18 and §22.16. 

FieldDecl ::= 

  [ „[‟ Int32 „]‟ ] FieldAttr* Type Id  

 

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the 
beginning of the instance of the type. (For a given type t, this beginning refers to the start of the set of members 

explicitly defined in type t, excluding all members defined in any types from which type t directly or indirectly 

inherits.) This form of explicit layout control shall not be used with global fields specified using the at 

notation §16.3.2). 

Offset values shall be non-negative. It is possible to overlap fields in this way, though offsets occupied by an 

object reference shall not overlap with offsets occupied by a built-in value type or a part of another object 

reference. While one object reference can completely overlap another, this is unverifiable. 

Fields can be accessed using pointer arithmetic and ldind to load the field indirectly or stind to store the field 
indirectly (see Partition III). See §22.16 and §22.18 for encoding of this information. For explicit layout, every 

field shall be assigned an offset. 

The .pack  directive specifies that fields should be placed within the runtime object at byte addresses which 

are a multiple of the specified number, or at natural alignment for that field type, whichever is smaller.  For 

example, .pack 2 would allow 32-bit-wide fields to be started on even addresses, whereas without any 

.pack directive, they would be naturally aligned; that is, placed on addresses that are a multiple of 4.  The 

integer following .pack shall be one of the following: 0, 1, 2, 4, 8, 16, 32, 64, or 128.  (A value of zero 

indicates that the pack size used should match the default for the current platform.)  The .pack directive shall 

not be supplied for any type with explicit layout control. 

The .size directive indicates a minimum size, and is intended to allow for padding. Therefore, the amount of 

memory allocated is the maximum of the size calculated from the layout and the .size directive. Note that if 

this directive applies to a value type, then the size shall be less than 1 MByte. 

[Note: Metadata that controls instance layout is not a ―hint,‖ it is an integral part of the VES that shall be 

supported by all conforming implementations of the CLI. end note] 
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[Example: The following class uses sequential layout of its fields: 

.class sequential public SequentialClass 

{ .field public int32 a  // store at offset 0 bytes 

  .field public int32 b  // store at offset 4 bytes 

} 

The following class uses explicit layout of its fields: 

.class explicit public ExplicitClass 

{ .field [0] public int32 a // store at offset 0 bytes 

  .field [6] public int32 b // store at offset 6 bytes 

} 

The following value type uses .pack to pack its fields together: 

.class value sealed public MyClass extends [mscorlib]System.ValueType 

{ .pack 2 

  .field  public int8  a  // store at offset 0 bytes 

  .field  public int32 b // store at offset 2 bytes (not 4) 

} 

The following class specifies a contiguous block of 16 bytes: 

.class public BlobClass 

{ .size 16 

} 

end example] 

10.8  Global fie lds and methods  

In addition to types with static members, many languages have the notion of data and methods that are not part 

of a type at all. These are referred to as global fields and methods. 

The simplest way to understand global fields and methods in the CLI is to imagine that they are simply 

members of an invisible abstract public class. In fact, the CLI defines such a special class, named 

<Module>, that does not have a base type and does not implement any interfaces. (This class is a top-level class; 

i.e., it is not nested.)The only noticeable difference is in how definitions of this special class are treated when 
multiple modules are combined together, as is done by a class loader.  This process is known as metadata 

merging. 

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition 

on the assumption they are equivalent, and that any anomaly will be discovered when the type is used.  For the 

special class that holds global members, however, members are unioned across all modules at merge time. If 

the same name appears to be defined for cross-module use in multiple modules then there is an error.  In detail: 

 If no member of the same kind (field or method), name, and signature exists, then add this 

member to the output class. 

 If there are duplicates and no more than one has an accessibility other than 

compilercontrolled, then add them all to the output class. 

 If there are duplicates and two or more have an accessibility other than 

compilercontrolled, an error has occurred. 

[Note: Strictly speaking, the CLI does not support global statics, even though global fields and methods might 

be thought of as such. All global fields and methods in a module are owned by the manufactured class 

"<Module>".  However, each module has its own "<Module>" class. There's no way to even refer, early-bound, 

to such a global field or method in another module. (You can, however, "reach" them, late-bound, via 

Reflection.)  end note] 
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11 Semantics of classes  

Classes, as specified in Partition I, define types in an inheritance hierarchy.  A class (except for the built-in 

class System.Object and the special class <Module>) shall declare exactly one base class.  A class shall declare 

zero or more interfaces that it implements (§12).  A concrete class can be instantiated to create an object, but an 

abstract class (§10.1.4) shall not be instantiated.   A class can define fields (static or instance), methods 

(static, instance, or virtual), events, properties, and nested types (classes, value types, or interfaces). 

Instances of a class (i.e., objects) are created only by explicitly using the newobj instruction (see Partition III).  
When a variable or field that has a class as its type is created (for example, by calling a method that has a local 

variable of a class type), the value shall initially be null, a special value that := with all class types even though 
it is not an instance of any particular class. 

Partition%20I%20Architecture.doc#_ClassTypes
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12 Semantics of interfaces  

Interfaces, as specified in Partition I, each define a contract that other types can implement. Interfaces can have 

static fields and methods, but they shall not have instance fields or methods.  Interfaces can define virtual 

methods, but only if those methods are abstract (see Partition I and §15.4.2.4). 

[Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple 

inheritance of base types: in the presence of dynamic loading of data types there is no known implementation 

technique that is both efficient when used and has no cost when not used.  By contrast, providing static fields 
and methods need not affect the layout of instances and therefore does not raise these issues. end rationale] 

Interfaces can be nested inside any type (interface, class, or value type). 

12.1  Implementing interfaces  

Classes and value types shall implement zero or more interfaces.  Implementing an interface implies that all 

concrete instances of the class or value type shall provide an implementation for each abstract virtual 

method declared in the interface.   In order to implement an interface, a class or value type shall either 

explicitly declare that it does so (using the implements attribute in its type definition, see §10.1) or shall be 

derived from a base class that implements the interface. 

[Note: An abstract class (since it cannot be instantiated) need not provide implementations of the virtual 

methods of interfaces it implements, but any concrete class derived from it shall provide the implementation. 

Merely providing implementations for all of the abstract methods of an interface is not sufficient to have a 

type implement that interface.  Conceptually, this represents the fact that an interface represents a contract that 

can have more requirements than are captured in the set of abstract methods.  From an implementation 

point of view, this allows the layout of types to be constrained only by those interfaces that are explicitly 

declared. end note] 

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface, 

A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires 

the implementation of all interfaces required by B. If a class or value type declares that it implements A, then 

all concrete instances shall provide implementations of the virtual methods declared in A and all of the 

interfaces A requires. [Note:  The class need not explicitly declare that it implements the interfaces required 

by A. end note] 

[Example: The following class implements the interface IStartStopEventSource defined in the module 

Counter. 

.class private auto autochar StartStopButton  

       extends [System.Windows.Forms]System.Windows.Forms.Button 

       implements [.module Counter]IstartStopEventSource 

{ // body of class 

} 

end example] 

12.2  Implementing v irtual methods on interfaces  

Classes that implement an interface (§12.1) are required to provide implementations for the abstract virtual 

methods defined by that interface.  There are three mechanisms for providing this implementation: 

 Directly specifying an implementation, using the same name and signature as appears in the 

interface. 

 Inheritance of an existing implementation from the base type. 

 Use of an explicit MethodImpl (§15.1.4). 

The VES shall use the following algorithm to determine the appropriate implementation of an interface's virtual 

abstract methods: 
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 If the base class implements the interface, start with the same virtual methods that it provides; 

otherwise, create an interface that has empty slots for all virtual functions.  

 If this class explicitly specifies that it implements the interface  (i.e., the interfaces that appear in 

this class‘s InterfaceImpl table, §22.23) 

o If the class defines any public virtual newslot methods whose name and 

signature match a virtual method on the interface, then use these new virtual methods 

to implement the corresponding interface method.  

 If there are any virtual methods in the interface that still have empty slots, see if there are any 

public virtual methods, but not public virtual newslot methods, available on this 

class (directly or inherited) having the same name and signature, then use these to implement the 

corresponding methods on the interface.  

 Apply all MethodImpls that are specified for this class, thereby placing explicitly specified virtual 

methods into the interface in preference to those inherited or chosen by name matching.  

 If the current class is not abstract and there are any interface methods that still have empty 

slots, then the program is invalid. 

[Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be 

implemented by any class that implements the interface.  The class specifies a mapping from its own virtual 

methods to those of the interface.  Thus it is virtual methods, not specific implementations of those methods 

that are associated with interfaces.  Overriding a virtual method on a class with a specific implementation will 

thus affect not only the virtual method named in the class but also any interface virtual methods to which that 

same virtual method has been mapped. end rationale] 
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13 Semantics of value types 

In contrast to reference types, value types (see Partition I) are not accessed by using a reference, but are stored 

directly in the location of that type. 

[Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as 

opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since 

there is no additional indirection involved. As elements of arrays they do not require allocating memory for the 

pointers as well as for the data itself.  Typical value types are complex numbers, geometric points, and dates. 

end rationale] 

Like other types, value types can have fields (static or instance), methods (static, instance, or virtual), 

properties, events, and nested types.  A value of some value type can be converted into an instance of a 

corresponding reference type (its boxed form, a class automatically created for this purpose by the VES when a 

value type is defined) by a process called boxing. A boxed value type can be converted back into its value type 

representation, the unboxed form, by a process called unboxing.  Value types shall be sealed, and they shall 

have a base type of either System.ValueType or System.Enum (see Partition IV).  Value types shall implement 

zero or more interfaces, but this has meaning only in their boxed form (§13.3). 

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction 

(see Partition III) on unboxed value types. The isinst instruction can be used for boxed value types, however.  
Unboxed value types shall not be assigned the value null and they shall not be compared to null. 

Value types support layout control in the same way as do reference types (§10.7). This is especially important 

when values are imported from native code. 

Since ValueTypes represent direct layout of data, recursive struct definitions such as (in C#) struct S {S x; 

S y;} are not permitted. A struct shall have an acyclic finite flattening graph: 

For a value type S, define the flattening graph G of S to be the smallest directed graph such that: 

 S is in G. 

 Whenever T is in G and T has an instance field of value type X then X is in G and there is an edge from T 

to X. 

 Whenever T is in G and T has a static field of value type Y then Y is in G. 

[Example: 

class C<U> { } 

struct S1<V> { 

  S1<V> x; 

} 

struct S2<V> { 

  static S2<V> x; 

} 

struct S3<V> { 

  static S3<C<V>> x; 

} 

struct S4<V> { 

  S4<C<V>>[] x; 

} 

Struct type S1 has a finite but cyclic flattening graph and is invalid; S2 has a finite acyclic flattening graph and 

is valid; S3 has an infinite acyclic flattening graph and is invalid; S4 has a finite acyclic flattening graph and is 

valid because field S4<C<V>>.x has reference type, not value type.  

The C<U> type is not strictly necessary for the examples, but if it were not used, it might be unclear whether 

something like the following 
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   struct S3<V> { 

     static S3<S3<V>> x; 

   } 

is problematic due to the inner or the outer occurrence of S3<...> in the field type. end example] 

13.1  Referencing value types  

The unboxed form of a value type shall be referred to by using the valuetype keyword followed by a type 

reference.   The boxed form of a value type shall be referred to by using the boxed keyword followed by a 

type reference. 

ValueTypeReference ::=      

  boxed TypeReference 

| valuetype TypeReference 

13.2  Init ializing value types  

Like classes, value types can have both instance constructors (§10.5.1) and type initializers (§10.5.3).  Unlike 

classes, whose fields are automatically initialized to null, the following rules constitute the only guarantee 

about the initilization of (unboxed) value types: 

 Static variables shall be initialized to zero when a type is loaded (§10.5.3.3), hence statics whose 

type is a value type are zero-initialized when the type is loaded.  

 Local variables shall be initialized to zero if the localsinit  bit in the method header 

(§25.4.4) is set. 

 Arrays shall be zero-initialized. 

 Instances of classes (i.e., objects) shall be zero-initialized prior to calling their instance 

constructor. 

[Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive, 

especially on platforms that support thread-local storage and that allow threads to be created outside of the CLI 

and then passed to the CLI for management. end rationale] 

 

[Note: Boxed value types are classes and follow the rules for classes. end note] 

The instruction initobj (see Partition III) performs zero-initialization under program control.  If a value type has 

a constructor, an instance of its unboxed type can be created as is done with classes. The newobj instruction 
(see Partition III) is used along with the initializer and its parameters to allocate and initialize the instance. The 

instance of the value type will be allocated on the stack. The Base Class Library provides the method 

System.Array.Initialize (see Partition IV) to zero all instances in an array of unboxed value types. 

[Example: The following code declares and initializes three value type variables.  The first variable is zero-

initialized, the second is initialized by calling an instance constructor, and the third by creating the object on the 

stack and storing it into the local. 

.assembly Test { } 

.assembly extern System.Drawing { 

  .ver 1:0:3102:0 

  .publickeytoken = (b03f5f7f11d50a3a) 

} 

.method public static void Start() 

{ .maxstack 3 

  .entrypoint 

  .locals init (valuetype [System.Drawing]System.Drawing.Size Zero, 

          valuetype [System.Drawing]System.Drawing.Size Init, 

          valuetype [System.Drawing]System.Drawing.Size Store) 
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  // Zero initialize the local named Zero 

  ldloca Zero           // load address of local variable 

  initobj valuetype [System.Drawing]System.Drawing.Size 

  // Call the initializer on the local named Init 

  ldloca Init           // load address of local variable 

  ldc.i4 425            // load argument 1 (width) 

  ldc.i4 300            // load argument 2 (height) 

  call instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32) 

  // Create a new instance on the stack and store into Store.  Note that 

  // stobj is used here – but one could equally well  use stloc, stfld, etc. 

  ldloca Store 

  ldc.i4 425            // load argument 1 (width) 

  ldc.i4 300            // load argument 2 (height) 

  newobj instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32) 

  stobj valuetype [System.Drawing]System.Drawing.Size 

  ret 

} 

end example] 

13.3  Methods of value types  

Value types can have static, instance and virtual methods. Static methods of value types are defined and called 

the same way as static methods of class types.  As with classes, both instance and virtual methods of a boxed or 

unboxed value type can be called using the call instruction. The callvirt instruction shall not be used with 
unboxed value types (see Partition I), but it can be used on boxed value types. 

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the 

this pointer.  By contrast, instance and virtual methods of value types shall be coded to expect a managed 

pointer (see Partition I) to an unboxed instance of the value type.  The CLI shall convert a boxed value type 

into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a 

virtual method whose implementation is provided by the unboxed value type. 

[Note: This operation is the same as unboxing the instance, since the unbox instruction (see Partition III) is 
defined to return a managed pointer to the value type that shares memory with the original boxed instance. 

The following diagrams are intended to help the reader understand the relationship between the boxed and 

unboxed representations of a value type. 
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end note] 

[Rationale: An important use of instance methods on value types is to change internal state of the instance.  

This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be 

operating on a copy of the value, not the original value: unboxed value types are copied when they are passed 

as arguments. 

Virtual methods are used to allow multiple types to share implementation code, and this requires that all classes 

that implement the virtual method share a common representation defined by the class that first introduces the 

method.  Since value types can (and in the Base Class Library do) implement interfaces and virtual methods 

defined on System.Object,  it is important that the virtual method be callable using a boxed value type so  it 
can be manipulated as would any other type that implements the interface.  This leads to the requirement that 

the EE automatically unbox value types on virtual calls. end rationale] 

Table 1: Type of this given the CIL instruction and the declaring type of instance method. 

 Value Type (Boxed or Unboxed) Interface Object Type 

call managed pointer to value type invalid object reference 

callvirt managed pointer to value type object reference object reference 

 

[Example: The following converts an integer of the value type int32 into a string. Recall that int32 

corresponds to the unboxed value type System.Int32 defined in the Base Class Library.  Suppose the integer is 

declared as: 

.locals init (int32 x) 

Then the call is made as shown below: 

ldloca x  // load managed pointer to local variable 

call instance string valuetype [mscorlib]System.Int32::ToString() 

However, if System.Object (a class) is used as the type reference rather than System.Int32 (a value type), the 

value of x shall be boxed before the call is made and the code becomes: 

ldloc x 

box valuetype [mscorlib]System.Int32 

callvirt instance string [mscorlib]System.Object::ToString() 

end example] 
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14 Semantics of special types 

Special types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies 

the definitions automatically based on information available from the reference. 

14.1  Vectors  

Type ::= …  

     | Type „[‟ „]‟ 

 

Vectors are single-dimension arrays with a zero lower bound.  They have direct support in CIL instructions 

(newarr, ldelem, stelem, and ldelema, see Partition III).  The CIL Framework also provides methods that 
deal with multidimensional arrays and single-dimension arrays with a non-zero lower bound (§14.2).  Two 

vectors have the same type if their element types are the same, regardless of their actual upper bounds.  

Vectors have a fixed size and element type, determined when they are created.  All CIL instructions shall 
respect these values.  That is, they shall reliably detect attempts to do the following: index beyond the end of 

the vector, store the incorrect type of data into an element of a vector, and take the address of elements of a 

vector with an incorrect data type.  See Partition III. 

[Example: Declare a vector of Strings: 

.field string[] errorStrings 

Declare a vector of function pointers: 

.field method instance void*(int32) [] myVec 

Create a vector of 4 strings, and store it into the field errorStrings.  The 4 strings lie at errorStrings[0] 

through errorStrings[3]: 

ldc.i4.4 

newarr string 

stfld string[] CountDownForm::errorStrings 

Store the string "First" into errorStrings[0]: 

ldfld string[] CountDownForm::errorStrings 

ldc.i4.0 

ldstr "First" 

stelem  

end example] 

Vectors are subtypes of System.Array, an abstract class pre-defined by the CLI.  It provides several methods 

that can be applied to all vectors. See Partition IV. 

14.2  Arrays  

While vectors (§14.1) have direct support through CIL instructions, all other arrays are supported by the VES 

by creating subtypes of the abstract class System.Array (see Partition IV) 

Type ::= … 

   | Type „[‟ [ Bound [ „,‟ Bound ]*] „]‟ 

 

The rank of an array is the number of dimensions.  The CLI does not support arrays with rank 0.  The type of 

an array (other than a vector) shall be determined by the type of its elements and the number of dimensions. 

Bound ::= Description 

  „...‟ Lower and upper bounds unspecified.  In the case of 

multi-dimensional arrays, the ellipsis can be omitted 
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| Int32 Zero lower bound, Int32 upper bound 

| Int32 „...‟ Lower bound only specified 

| Int32 „...‟ Int32 Both bounds specified 

 

The class that the VES creates for arrays contains several methods whose implementation is supplied by the 

VES:   

 A constructor that takes a sequence of int32 arguments, one for each dimension of the array, that specify 
the number of elements in each dimension beginning with the first dimension.  A lower bound of zero is 

assumed.   

 A constructor that takes twice as many int32 arguments as there are dimensions of the array. These 
arguments occur in pairs—one pair per dimension—with the first argument of each pair specifying the 

lower bound for that dimension, and the second argument specifying the total number of elements in that 

dimension. Note that vectors are not created with this constructor, since a zero lower bound is assumed for 
vectors. 

  A Get method that takes a sequence of int32 arguments, one for each dimension of the array, and returns 
a value whose type is the element type of the array. This method is used to access a specific element of the 

array where the arguments specify the index into each dimension, beginning with the first, of the element 

to be returned.  

 A Set method that takes a sequence of int32 arguments, one for each dimension of the array, followed by 

a value whose type is the element type of the array. The return type of Set is void. This method is used to 

set a specific element of the array where the arguments specify the index into each dimension, beginning 

with the first, of the element to be set and the final argument specifies the value to be stored into the target 

element. 

 An Address method that takes a sequence of int32 arguments, one for each dimension of the array, and 
has a return type that is a managed pointer to the array‘s element type. This method is used to return a 

managed pointer to a specific element of the array where the arguments specify the index into each 

dimension, beginning with the first, of the element whose address is to be returned. 

[Example: The following creates an array, MyArray, of strings with two dimensions, with indexes 5…10 and 

3…7.  It then stores the string "One" into MyArray[5, 3], retrieves it and prints it out.  Then it computes the 

address of MyArray[5, 4], stores "Test" into it, retrieves it, and prints it out. 

.assembly Test { } 

.assembly extern mscorlib { } 

.method public static void Start() 

{ .maxstack 5 

  .entrypoint 

  .locals (class [mscorlib]System.String[,] myArray) 

  ldc.i4.5 // load lower bound for dim 1 

  ldc.i4.6 // load (upper bound - lower bound + 1) for dim 1 

  ldc.i4.3 // load lower bound for dim 2 

  ldc.i4.5 // load (upper bound - lower bound + 1) for dim 2 

  newobj instance void string[,]::.ctor(int32, int32, int32, int32) 

  stloc  myArray 

  ldloc myArray 

  ldc.i4.5 

  ldc.i4.3 

  ldstr "One" 

  call instance void string[,]::Set(int32, int32, string) 
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  ldloc myArray 

  ldc.i4.5 

  ldc.i4.3 

  call instance string string[,]::Get(int32, int32) 

  call void [mscorlib]System.Console::WriteLine(string) 

  ldloc myArray 

  ldc.i4.5 

  ldc.i4.4 

  call instance string & string[,]::Address(int32, int32) 

  ldstr "Test" 

  stind.ref 

  ldloc myArray 

  ldc.i4.5 

  ldc.i4.4 

  call instance string string[,]::Get(int32, int32) 

  call void [mscorlib]System.Console::WriteLine(string) 

  ret 

} 

end example] 

 

The following text is informative 

Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of 

arrays are different – each dimension (except the last) holds an array reference.  The following picture 

illustrates the difference: 

  

On the left is a [6, 10] rectangular array.  On the right is not one, but a total of five arrays.  The vertical array is 

an array of arrays, and references the four horizontal arrays.  Note how the first and second elements of the 

vertical array both reference the same horizontal array. 

Note that all dimensions of a multi-dimensional array shall have the same size.  But in an array of arrays, it is 

possible to reference arrays of different sizes.  For example, the figure on the right shows the vertical array 
referencing arrays of lengths 8, 8, 3, null (i.e., no array), 6 and 1, respectively. 

There is no special support for these so-called jagged arrays in either the CIL instruction set or the VES.  They 

are simply vectors whose elements reference other (recursively) jagged arrays. 

End of informative text 

14.3  Enums 

An enum (short for enumeration) defines a set of symbols that all have the same type.  A type shall be an enum 

if and only if it has an immediate base type of System.Enum.  Since System.Enum itself has an immediate base 

type of System.ValueType, (see Partition IV) enums are value types (§13) The symbols of an enum are 

represented by an underlying integer type:  one of { bool, char, int8, unsigned int8, int16, unsigned int16, 

int32, unsigned int32, int64, unsigned int64, native int, unsigned native int } 

[Note: Unlike Pascal, the CLI does not provide a guarantee that values of the enum type are integers 
corresponding to one of the symbols.  In fact, the CLS (see Partition I, CLS) defines a convention for using 

Partition%20IV%20Library.doc
Partition%20I%20Architecture.doc


 

 Partition II 69 

enums to represent bit flags which can be combined to form integral value that are not named by the enum type 

itself. end note] 

Enums obey additional restrictions beyond those on other value types.  Enums shall contain only fields as 

members (they shall not even define type initializers or instance constructors); they shall not implement any 

interfaces; they shall have auto field layout (§10.1.2); they shall have exactly one instance field and it shall be 

of the underlying type of the enum; all other fields shall be static and literal (§16.1); and they shall not be 

initialized with the initobj instruction. 

[Rationale: These restrictions allow a very efficient implementation of enums. end rationale]  

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an 

enum declare the mapping of the symbols of the enum to the underlying values.  All of these fields shall have 

the type of the enum and shall have field init metadata that assigns them a value (§16.2). 

For binding purposes (e.g., for locating a method definition from the method reference used to call it) enums 

shall be distinct from their underlying type.  For all other purposes, including verification and execution of 

code, an unboxed enum freely interconverts with its underlying type.  Enums can be boxed (§13) to a 

corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so 

boxing does not lose the original type of the enum. 

[Example: Declare an enum type and then create a local variable of that type.  Store a constant of the 

underlying type into the enum (showing automatic coersion from the underlying type to the enum type).  Load 

the enum back and print it as the underlying type (showing automatic coersion back).  Finally, load the address 

of the enum and extract the contents of the instance field and print that out as well. 

.assembly Test { } 

.assembly extern mscorlib { } 

.class sealed public ErrorCodes extends [mscorlib]System.Enum 

{ .field public unsigned int8 MyValue 

  .field public static literal valuetype ErrorCodes no_error = int8(0) 

  .field public static literal valuetype ErrorCodes format_error = int8(1) 

  .field public static literal valuetype ErrorCodes overflow_error = int8(2) 

  .field public static literal valuetype ErrorCodes nonpositive_error = int8(3) 

} 

.method public static void Start() 

{ .maxstack 5 

  .entrypoint 

  .locals init (valuetype ErrorCodes errorCode) 

  ldc.i4.1           // load 1 (= format_error) 

  stloc errorCode    // store in local, note conversion to enum 

  ldloc errorCode 

  call void [mscorlib]System.Console::WriteLine(int32) 

  ldloca errorCode   // address of enum 

  ldfld unsigned int8 valuetype ErrorCodes::MyValue 

  call void [mscorlib]System.Console::WriteLine(int32) 

  ret 

} 

end example] 

14.4  Pointer types  

Type ::= … Clause 

   | Type „&‟  14.4.2 

   | Type „*‟ 14.4.1 

 

A pointer type shall be defined by specifying a signature that includes the type of the location at which it 

points.  A pointer can be managed  (reported to the CLI garbage collector, denoted by &, see §14.4.2) or 

unmanaged (not reported, denoted by *, see §14.4.1) 
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Pointers can contain the address of a field (of an object or value type) or of an element of an array.  Pointers 

differ from object references in that they do not point to an entire type instance, but, rather, to the interior of an 

instance.  The CLI provides two type-safe operations on pointers:  

 Loading the value from the location referenced by the pointer. 

 Storing an assignment-compatible value into the location referenced  by the pointer . 

For pointers into the same array or object (see Partition I) the following arithmetic operations are supported: 

 Adding an integer value to a pointer (where that value is interpreted as a number of bytes), which 

results in a pointer of the same kind 

 Subtracting an integer value from a pointer (where that value is interpreted as a number of bytes), 

which results in a pointer of the same kind. Note that subtracting a pointer from an integer value 

is not permitted.   

 Two pointers, regardless of kind, can be subtracted from one another, producing an integer value 

that specifies the number of bytes between the addresses they reference.  

The following is informative text 

Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on 

64-bit architectures.  They are best considered as unsigned int, whose size varies depending upon the 

runtime machine architecture. 

The CIL instruction set (see Partition III) contains instructions to compute addresses of fields, local variables, 

arguments, and elements of vectors: 

Instruction Description 

ldarga Load address of argument 

ldelema Load address of vector element 

ldflda Load address of field 

ldloca Load address of local variable 

ldsflda Load address of static field 

 

Once a pointer is loaded onto the stack, the ldind class of instructions can be used to load the data item to 

which it points.   Similarly, the stind family of instructions can be used to store data into the location. 

Note that the CLI will throw an InvalidOperationException for an ldflda instruction if the address is not 
within the current application domain.  This situation arises typically only from the use of objects with a base 

type of System.MarshalByRefObject (see Partition IV). 

14.4.1 Unmanaged pointers 

Unmanaged pointers (*) are the traditional pointers used in languages like C and C++. There are no restrictions 

on their use, although, for the most part, they result in code that cannot be verified. While it is perfectly valid to 

mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how 

they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data. 

This is done by using *in a signature for a return value, local variable, or an argument, or by using a pointer 

type for a field or array element. 

 Unmanaged pointers are not reported to the garbage collector and can be used in any way that an 

integer can be used.  

 Verifiable code cannot dereference unmanaged pointers. 

 Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This 

is safe only if one of the following is true: 
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a. The unmanaged pointer refers to memory that is not in memory used by the CLI for 

storing instances of objects (―garbage-collected memory‖ or ―managed memory‖).  

b. The unmanaged pointer contains the address of a field within an object.  

c. The unmanaged pointer contains the address of an element within an array.  

d. The unmanaged pointer contains the address where the element following the last 

element in an array would be located. 

 

14.4.2 Managed pointers  

Managed pointers (&) can point to an instance of a value type, a field of an object, a field of a value type, an 

element of an array, or the address where an element just past the end of an array would be stored (for pointer 

indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage 

collector even if they do not point to managed memory.   

Managed pointers are specified by using & in a signature for a return value, local variable or an argument, or by 

using a byref type for a field or array element. 

 Managed pointers can be passed as arguments, stored in local variables, and returned as values. 

 If a parameter is passed by reference, the corresponding argument is a managed pointer.  

 Managed pointers cannot be stored in static variables, array elements, or fields of objects or value 
types.  

 Managed pointers are not interchangeable with object references.   

 A managed pointer cannot point to another managed pointer, but it can point to an object 

reference or a value type.  

 A managed pointer can point to a local variable, or a method argument 

 Managed pointers that do not point to managed memory can be converted (using conv.u or 

conv.ovf.u) into unmanaged pointers, but this is not verifiable.  

 Unverified code that erroneously converts a managed pointer into an unmanaged pointer can 

seriously compromise the integrity of the CLI. See Partition III (Managed Pointers) for more 

details. 

End informative text 

14.5  Method pointers  

Type ::= … 

   | method CallConv Type „*‟ „(‟ Parameters „)‟ 

 

Variables of type method pointer shall store the address of the entry point to a method with compatible 

signature.  A pointer to a static or instance method is obtained with the ldftn instruction, while a pointer to a 

virtual method is obtained with the ldvirtftn instruction.  A method can be called by using a method pointer 

with the calli instruction.  See Partition III for the specification of these instructions. 

[Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures, 

and with unsigned int32 and on 32-bit architectures.  The preferred usage, however, is unsigned 

native int, which works on both 32- and 64-bit architectures. end note] 

[Example: Call a method using a pointer.  The method MakeDecision::Decide returns a method pointer to 

either AddOne or Negate, alternating on each call.  The main program calls MakeDecision::Decide three times, 

and after each call uses a calli instruction to call the method specified.  The output printed is "-1 2 –1" 
indicating successful alternating calls. 

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc


 

72 Partition II 

.assembly Test { } 

.assembly extern mscorlib { } 

.method public static int32 AddOne(int32 Input) 

{ .maxstack 5 

  ldarg Input 

  ldc.i4.1 

  add 

  ret 

} 

.method public static int32 Negate(int32 Input) 

{ .maxstack 5 

  ldarg Input 

  neg 

  ret 

} 

.class value sealed public MakeDecision extends 

   [mscorlib]System.ValueType 

{ .field static bool Oscillate 

  .method public static method int32 *(int32) Decide() 

  { ldsfld bool valuetype MakeDecision::Oscillate 

    dup 

    not 

    stsfld bool valuetype MakeDecision::Oscillate 

    brfalse NegateIt 

    ldftn int32 AddOne(int32) 

    ret 

NegateIt: 

    ldftn int32 Negate(int32) 

    ret 

  } 

} 

.method public static void Start() 

{ .maxstack 2 

  .entrypoint 

  ldc.i4.1 

  call method int32 *(int32) valuetype MakeDecision::Decide() 

  calli int32(int32) 

  call  void [mscorlib]System.Console::WriteLine(int32) 

  ldc.i4.1 

  call method int32 *(int32) valuetype MakeDecision::Decide() 

  calli int32(int32) 

  call  void [mscorlib]System.Console::WriteLine(int32) 

  ldc.i4.1 

  call method int32 *(int32) valuetype MakeDecision::Decide() 

  calli int32(int32) 

  call  void [mscorlib]System.Console::WriteLine(int32) 

  ret 

} 

end example] 

14.6  Delegates  

Delegates (see Partition I) are the object-oriented equivalent of function pointers. Unlike function pointers, 

delegates are object-oriented, type-safe, and secure.  Delegates are reference types, and are declared in the form 

of classes.  Delegates shall have a base type of System.Delegate (see Partition IV). 

Delegates shall be declared sealed, and the only members a delegate shall have are either the first two or all 

four methods as specified here. These methods shall be declared runtime and managed (§15.4.3).  They 

shall not have a body, since that body shall be created automatically by the VES.  Other methods available on 
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delegates are inherited from the class System.Delegate in the Base Class Library (see Partition IV). The 

delegate methods are: 

 The instance constructor (named .ctor and marked specialname and rtspecialname, 

see §10.5.1) shall take exactly two parameters, the first having type System.Object, and the second having 

type System.IntPtr.  When actually called (via a newobj instruction, see Partition III), the first argument 
shall be an instance of the class (or one of its derived classes) that defines the target method, and the 

second argument shall be a method pointer to the method to be called. 

 The Invoke method shall be virtual and its signature constrains the target method to which it can be 

bound; see §14.6.1. The verifier treats calls to the Invoke method on a delegate just like it treats calls to 

any other method. 

 The BeginInvoke method (§14.6.3.1), if present, shall be virtual and have a signature related to, but 

not the same as, that of the Invoke method.  There are two differences in the signature.   First, the return 

type shall be System.IAsyncResult (see Partition IV).  Second, there shall be two additional parameters 

that follow those of Invoke: the first of type System.AsyncCallback and the second of type 

System.Object.  

 The EndInvoke method (§14.6.3) shall be virtual and have the same return type as the Invoke method. 

It shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order 

they occur in the signature for Invoke.  In addition, there shall be an additional parameter of type 

System.IAsyncResult. 

Unless stated otherwise, a standard delegate type shall provide the two optional asynchronous methods, 

BeginInvoke and EndInvoke. 

[Example: The following declares a Delegate used to call functions that take a single integer and return 

nothing.  It provides all four methods so it can be called either synchronously or asynchronously.  Because no 

parameters are passed by reference (i.e., as managed pointers) there are no additional arguments to EndInvoke. 

.assembly Test { } 

.assembly extern mscorlib { } 

.class private sealed StartStopEventHandler extends [mscorlib]System.Delegate 

 { .method public specialname rtspecialname instance void .ctor(object Instance, 

          native int Method) runtime managed {} 

   .method public virtual void Invoke(int32 action) runtime managed {} 

   .method public virtual class [mscorlib]System.IAsyncResult  

        BeginInvoke(int32 action, class [mscorlib]System.AsyncCallback callback, 

           object Instance) runtime managed {} 

   .method public virtual void EndInvoke(class  

        [mscorlib]System.IAsyncResult result) runtime managed {} 

} 

end example] 

As with any class, an instance is created using the newobj instruction in conjunction with the instance 
constructor.  The first argument to the constructor shall be the object on which the method is to be called, or it 

shall be null if the method is a static method.  The second argument shall be a method pointer to a method on 

the corresponding class and with a signature that matches that of the delegate class being instantiated. 

14.6.1 Delegate  signature compatibi l i ty  

Delegates can only be bound to target methods where the signatures of the delegate and the target method are 

compatible. Compatibility is determined by examining the parameter types, return type and calling convention. 

(Custom modifiers are not considered significant and do not impact compatibility.) 

For a delegate and target method to be compatible, the calling conventions shall match exactly. 

For a delegate and target method to be compatible, the parameter types shall be compatible per the following 

rules:  
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Use D and T to denote the types of parameters to a delegate and a target method (respectively), use D := T to 

indicate that the types of the parameters are compatible, use D != T to indicate the types of the parameters are 

incompatible, use D[] to indicate an array of type D, and for instantiation D of generic type G<V> use VD to 

indicate the type parameter used for V. 

1. [:= is reflexive] For all parameter types D, D := D. 

2. [:= is transitive] For all parameter types D, T and U, if D := U and U := T then D := T. 
3. D := T if T is the base class of D or an interface implemented by D and D is not a value type 

(includes primitives, pointers, function pointers) 

4. D := T if D and T are both interfaces and the implementation of D requires the implementation 

of T. 

5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a 

vector and both have the same rank. 

6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling 

convention, custom modifiers) are compatible per these rules.  

7. D := T if D and T are instantiations of the generic type G<+V> and VD is a subtype of VT. 

8. D := T if D and T are instantiations of the generic type G<-V> and V
T
 is a subtype of V

D
. 

9. D := T if D and T are instantiations of the generic type G<V> and VD == VT. 

10. Otherwise, D != T. 

For a delegate and target method to be compatible, the return type shall be compatible per the following rules: 

Use D and T to denote the return type of a delegate and a target method (respectively), use D := T to indicate 

that the return types are compatible, use D !:= T to indicate that the return types are incompatible, use D[] to 

indicate an array of type D, and for instantiation D of generic type G<V> use VD to indicate the type parameter 

used for V. 

1. [:= is reflexive] For all return types D, D := D. 

2. [:= is transitive] For all return types D, T and U, if D := U and U := T then D := U. 

3. D := T if D is the base class of T or an interface implemented by T and T is not a value type 

(includes primitives, pointers, function pointers) 

4. D := T if D and T are both interfaces and the implementation of T requires the implementation 

of D. 
5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a 

vector and both have the same rank. 

6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling 

convention, custom modifiers) are compatible per these rules. 

7. D := T if D and T are instantiations of the generic type G<+V> and VT is a subtype of VD. 

8. D := T if D and T are instantiations of the generic type G<-V> and VD is a subtype of VT. 

9. D := T if D and T are instantiations of the generic type G<V> and VD == VT. 

10. Otherwise D != T. 

14.6.2 Synchronous cal ls to delegates 

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the 

virtual method named Invoke on the delegate. The delegate itself is the first argument to this call (it serves as 

the this pointer), followed by the other arguments as specified in the signature.  When this call is made, the 
caller shall block until the called method returns. The called method shall be executed on the same thread as the 

caller. 

[Example: Continuing the previous example, define a class Test that declares a method, onStartStop, 

appropriate for use as the target for the delegate. 
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.class public Test 

{ .field public int32 MyData 

  .method public void onStartStop(int32 action) 

  { ret        // put your code here 

  } 

  .method public specialname rtspecialname  

          instance void .ctor(int32 Data) 

  { ret        // call base class constructor, store state, etc. 

  } 

} 

Then define a main program. This one constructs an instance of Test and then a delegate that targets the 

onStartStop method of that instance.  Finally, call the delegate. 

.method public static void Start() 

{ .maxstack 3 

  .entrypoint 

  .locals (class StartStopEventHandler DelegateOne, 

           class Test InstanceOne) 

  // Create instance of Test class 

  ldc.i4.1 

  newobj instance void Test::.ctor(int32) 

  stloc InstanceOne 

 

  // Create delegate to onStartStop method of that class 

  ldloc InstanceOne 

  ldftn instance void Test::onStartStop(int32) 

  newobj void StartStopEventHandler::.ctor(object, native int) 

  stloc DelegateOne 

  // Invoke the delegate, passing 100 as an argument 

  ldloc DelegateOne 

  ldc.i4 100 

  callvirt instance void StartStopEventHandler::Invoke(int32) 

  ret 

} 

Note that the example above creates a delegate to a non-virtual function.  If onStartStop had been a virtual 

function, use the following code sequence instead: 

ldloc InstanceOne 

dup 

ldvirtftn instance void Test::onStartStop(int32) 

newobj void StartStopEventHandler::.ctor(object, native int) 

stloc DelegateOne 

// Invoke the delegate, passing 100 as an argument 

ldloc DelegateOne 

end example] 

[Note: The code sequence above shall use dup – not ldloc InstanceOne twice.  The dup code sequence is 
easily recognized as type-safe, whereas alternatives would require more complex analysis.  Verifiability of 

code is discussed in Partition III end note] 

14.6.3 Asynchr onous cal ls to delegates 

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the 

method to return. The called method shall be executed on a separate thread.  

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used. 

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected.  The callee 

thread continues execution and terminates silently 

Note: the callee can throw exceptions.  Any unhandled exception propagates to the caller via the EndInvoke 

method. 
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14.6.3.1 The BeginInvoke  method  

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method.  

BeginInvoke is similar to the Invoke method (§14.6.1), but has two differences: 

 It has two additional parameters, appended to the list, of type System.AsyncCallback, and 

System.Object. 

 The return type of the method is System.IAsyncResult. 

Although the BeginInvoke method therefore includes parameters that represent return values, these values are 

not updated by this method.  The results instead are obtained from the EndInvoke method (see below). 

Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call 

has been completed.  The CLI provides two such mechanisms.  The first is through the result returned from the 

call.  This object, an instance of the interface System.IAsyncResult, can be used to wait for the result to be 

computed, it can be queried for the current status of the method call, and it contains the System.Object value 

that was passed to the call to BeginInvoke.  See Partition IV. 

The second mechanism is through the System.AsyncCallback delegate passed to BeginInvoke.  The VES 

shall call this delegate when the value is computed or an exception has been raised indicating that the result will 

not be available.  The value passed to this callback is the same value passed to the call to BeginInvoke.  A 

value of null can be passed for System.AsyncCallback to indicate that the VES need not provide the callback. 

[Rationale: This model supports both a polling approach (by checking the status of the returned 

System.IAsyncResult) and an event-driven approach (by supplying a System.AsyncCallback) to 

asynchronous calls. end rationale] 

A synchronous call returns information both through its return value and through output parameters.  Output 

parameters are represented in the CLI as parameters with managed pointer type.  Both the returned value and 

the values of the output parameters are not available until the VES signals that the asynchronous call has 

completed successfully.  They are retrieved by calling the EndInvoke method on the delegate that began the 

asynchronous call.  

14.6.3.2 The EndInvoke  method  

The EndInvoke method can be called at any time after BeginInvoke.   It shall suspend the thread that calls it 

until the asynchronous call completes.  If the call completes successfully, EndInvoke will return the value that 
would have been returned had the call been made synchronously, and its managed pointer arguments will point 

to values that would have been returned to the out parameters of the synchronous call. 

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different 

calls to the same delegate can be distinguished, since they can execute concurrently) as well as any managed 

pointers that were passed as arguments (so their return values can be provided). 
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15 Defining, referencing, and calling methods 

Methods can be defined at the global level (outside of any type): 

Decl ::= … 

   | .method MethodHeader „{‟ MethodBodyItem* „}‟ 

 

as well as inside a type: 

ClassMember ::= … 

   | .method MethodHeader „{‟ MethodBodyItem* „}‟ 

 

15.1  Method descriptors  

There are four constructs in ILAsm connected with methods.  These correspond with different metadata 

constructs, as described in §23. 

15.1.1 Method declarations  

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types), 

but not its body.  That is, a method declaration provides a MethodHeader but no MethodBodyItems.  These are 

used at call sites to specify the call target (call or callvirt instructions, see Partition III) or to declare an abstract 
method.  A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a 

MethodRef. 

15.1.2 Method definit ions  

A Method, or method definition, supplies the method name, attributes, signature, and body.  That is, a method 

definition provides a MethodHeader as well as one or more MethodBodyItems.  The body includes the method's 

CIL instructions, exception handlers, local variable information, and additional runtime or custom metadata 

about the method.  See §10. 

15.1.3 Method references 

A MethodRef, or method reference, is a reference to a method. It is used when a method is called and that 

method‘s definition lies in another module or assembly.  A MethodRef shall be resolved by the VES into a 

Method before the method is called at runtime.  If a matching Method cannot be found, the VES shall throw a 

System.MissingMethodException.  See §22.25. 

15.1.4 Method imple mentations  

A MethodImpl, or method implementation, supplies the executable body for an existing virtual method.  It 

associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method).  A 

MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an 

interface when the default mechanism (matching by name and signature) would not provide the correct result.  

See §22.27. 

15.2  Static,  instance,  and v irtual methods  

Static methods are methods that are associated with a type, not with its instances. 

Instance methods are associated with an instance of a type: within the body of an instance method it is possible 

to reference the particular instance on which the method is operating (via the this pointer).  It follows that 

instance methods shall only be defined in classes or value types, but not in interfaces or outside of a type (i.e., 

globally).  However, notice 

1. Instance methods on classes (including boxed value types), have a this pointer that is by default 

an object reference to the class on which the method is defined. 
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2. Instance methods on (unboxed) value types, have a this pointer that is by default a managed 

pointer to an instance of the type on which the method is defined. 

3. There is a special encoding (denoted by the syntactic item explicit in the calling convention, 

see §15.3) to specify the type of the this pointer, overriding the default values specified here. 

4. The this pointer can be null. 

Virtual methods are associated with an instance of a type in much the same way as for instance methods. 

However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation 

of the method shall be chosen at runtime by the VES depending upon the type of object used for the this 

pointer.  The particular Method that implements a virtual method is determined dynamically at runtime (a 

virtual call) when invoked via the callvirt instruction; whilst the binding is decided at compile time when 

invoked via the call instruction (see Partition III). 

With virtual calls (only), the notion of inheritance becomes important.  A derived class can override a virtual 

method inherited from its base classes, providing a new implementation of the method.  The method attribute 

newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat 
the new definition as an independent virtual method definition.   

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with 

a callvirt instruction.  Similarly, the address of an abstract virtual method shall be computed with the ldvirtftn 

instruction, and the ldftn instruction shall not be used. 

[Rationale: With a concrete virtual method there is always an implementation available from the class that 

contains the definition, thus there is no need at runtime to have an instance of a class available.  Abstract virtual 

methods, however, receive their implementation only from a subtype or a class that implements the appropriate 

interface, hence an instance of a class that actually implements the method is required. end rationale] 

15.3  Calling convention 

CallConv ::= [ instance [ explicit ]] [ CallKind ] 

 

A calling convention specifies how a method expects its arguments to be passed from the caller to the called 

method.   It consists of two parts: the first deals with the existence and type of the this pointer, while the second 

relates to the mechanism for transporting the arguments. 

If the attribute instance is present, it indicates that a this pointer shall be passed to the method.  This 

attribute shall be used for both instance and virtual methods.  

Normally, a parameter list (which always follows the calling convention) does not provide information about 

the type of the this pointer, since this can be deduced from other information.  When the combination 

instance explicit is specified, however, the first type in the subsequent parameter list specifies the type 

of the this pointer and subsequent entries specify the types of the parameters themselves. 

CallKind ::= 

  default 

| unmanaged cdecl 

| unmanaged fastcall 

| unmanaged stdcall 

| unmanaged thiscall 

| vararg 

 

Managed code shall have only the default or vararg calling kind.  default shall be used in all cases 

except when a method accepts an arbitrary number of arguments, in which case vararg shall be used.  

Partition%20III%20CIL.doc


 

 Partition II 79 

When dealing with methods implemented outside the CLI it is important to be able to specify the calling 

convention required.  For this reason there are 16 possible encodings of the calling kind.  Two are used for the 

managed calling kinds.  Four are reserved with defined meaning across many platforms, as follows:  

 unmanaged cdecl is the calling convention used by Standard C 

 unmanaged stdcall specifies a standard C++ call 

 unmanaged fastcall is a special optimized C++ calling convention 

 unmanaged thiscall is a C++ call that passes a this pointer to the method 

Four more are reserved for existing calling conventions, but their use is not maximally portable.  Four more are 

reserved for future standardization, and two are available for non-standard experimental use. 

(In this context, "portable" means a feature that is available on all conforming implementations of the CLI.) 

15.4  Defining methods  

MethodHeader ::= 

  MethAttr* [ CallConv ] Type  

              [ marshal „(‟ [ NativeType ] „)‟ ]  

              MethodName [ „<‟ GenPars„>‟ ] „(‟ Parameters „)‟ ImplAttr* 

 

The method head (see also §10) consists of 

 the calling convention (CallConv, see §15.3) 

 any number of predefined method attributes (MethAttr, see §15.4.1.5) 

 a return type with optional attributes  

 optional marshalling information (§7.4) 

 a method name 

 optional generic parameters (when defining generic methods, see §10.1.7) 

 a signature  

 and any number of implementation attributes (ImplAttr, see §15.4.3) 

Methods that do not have a return value shall use void as the return type. 

MethodName ::= 

  .cctor 

| .ctor 

| DottedName 

 

Method names are either simple names or the special names used for instance constructors and type initializers. 

Parameters ::= [ Param [ „,‟ Param ]* ] 

Param ::= 

  ... 

| [ ParamAttr* ] Type [ marshal „(‟ [ NativeType ] „)‟ ] [ Id ] 
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The Id, if present, is the name of the parameter. A parameter can be referenced either by using its name or the 

zero-based index of the parameter.  In CIL instructions it is always encoded using the zero-based index (the 

name is for ease of use in ILAsm). 

Note that, in contrast to calling a vararg method, the definition of a vararg method does not include any 

ellipsis (―…‖) 

ParamAttr ::= 

  „[‟ in „]‟ 

| „[‟ opt „]‟ 

| „[‟ out „]‟ 

 

The parameter attributes shall be attached to the parameters (§22.33) and hence are not part of a method 

signature. 

[Note: Unlike parameter attributes, custom modifiers (modopt and modreq) are part of the signature.  Thus, 

modifiers form part of the method‘s contract while parameter attributes do not. end note] 

in and out shall only be attached to parameters of pointer (managed or unmanaged) type.  They specify 

whether the parameter is intended to supply input to the method, return a value from the method, or both.  If 

neither is specified in is assumed.  The CLI itself does not enforce the semantics of these bits, although they 

can be used to optimize performance, especially in scenarios where the call site and the method are in different 

application domains, processes, or computers. 

opt specifies that this parameter is intended to be optional from an end-user point of view.  The value to be 

supplied is stored using the .param syntax (§15.4.1.4). 

15.4.1 Method body  

The method body shall contain the instructions of a program. However, it can also contain labels, additional 

syntactic forms and many directives that provide additional information to ilasm and are helpful in the 

compilation of methods of some languages. 

MethodBodyItem ::= Description Clause 

  .custom CustomDecl Definition of custom attributes. 21 

| .data DataDecl Emits data to the data section  16.3 

| .emitbyte Int32 Emits an unsigned byte to the code section 

of the method. 

15.4.1.1 

| .entrypoint Specifies that this method is the entry point 

to the application (only one such method is 

allowed). 

15.4.1.2 

| .locals [ init ]  

  „(‟ LocalsSignature „)‟ 

Defines a set of local variables for this 

method. 

15.4.1.3 

| .maxstack Int32 The int32 specifies the maximum number 

of elements on the evaluation stack during 

the execution of the method. 

15.4.1 

| .override TypeSpec „::‟ MethodName Use current method as the implementation 

for the method specified. 

10.3.2 

| .override method CallConv Type 

TypeSpec „::‟ MethodName GenArity „(‟ 

Parameters „)‟ 

Use current method as the implementation 

for the method specified. 

10.3.2 
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MethodBodyItem ::= Description Clause 

| .param „[‟ Int32 „]‟ [ „=‟ FieldInit ] Store a constant FieldInit value for 

parameter Int32 

15.4.1.4 

| .param type „[‟ Int32 „]‟ Specifies a type parameter for a generic 

method 

15.4.1.5 

| ExternSourceDecl .line or #line 5.7 

| Instr An instruction Partition VI  

| Id „:‟  A label 5.4 

| ScopeBlock Lexical scope of local variables 15.4.4 

| SecurityDecl .permission or .permissionset 20 

| SEHBlock An exception block 19 

 

15.4.1.1 The .emitbyte  directive  

MethodBodyItem ::= …  

   | .emitbyte Int32 

 

This directive causes an unsigned 8-bit value to be emitted directly into the CIL stream of the method, at the 

point at which the directive appears. 

[Note: The .emitbyte directive is used for generating tests.  It is not required in generating regular 

programs. end note] 

15.4.1.2 The .entrypoint  directive 

MethodBodyItem ::= …  

   | .entrypoint 

 

The .entrypoint directive marks the current method, which shall be static, as the entry point to an 

application. The VES shall call this method to start the application. An executable shall have exactly one entry 

point method. This entry point method can be a global method or it can appear inside a type.  (The effect of the 

directive is to place the metadata token for this method into the CLI header of the PE file) 

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings, 

the strings shall represent the arguments to the executable, with index 0 containing the first argument.  The 
mechanism for specifying these arguments is platform-specific and is not specified here. 

The return type of the entry point method shall be void, int32, or unsigned int32. If an int32 or 

unsigned int32 is returned, the executable can return an exit code to the host environment. A value of 0 

shall indicate that the application terminated ordinarily.  

The accessibility of the entry point method shall not prevent its use in starting execution.  Once started the VES 

shall treat the entry point as it would any other method. 

The entry point method cannot be defined in a generic class. 

 [Example: The following prints the first argument and returns successfully to the operating system: 
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.method public static int32 MyEntry(string[] s) cil managed 

{ .entrypoint 

  .maxstack 2 

  ldarg.0   // load and print the first argument 

  ldc.i4.0 

  ldelem.ref 

  call void [mscorlib]System.Console::WriteLine(string) 

  ldc.i4.0   // return success 

  ret 

} 

end example] 

15.4.1.3 The . locals  directive  

The .locals statement declares one or more local variables (see Partition I) for the current method.  

MethodBodyItem ::= …  

   | .locals  [ init ] „(‟ LocalsSignature „)‟ 

LocalsSignature ::= Local [ „,‟ Local ]* 

Local ::= Type [ Id ] 

 

If present, the Id is the name of the corresponding local variable. 

If init is specified, the variables are initialized to their default values according to their type: reference types 

are initialized to null and value types are zeroed out.  

[Note: Verifiable methods shall include the init keyword.   See Partition III. end note] 

[Example: The following declares 4 local variables, each of which is to be initialized to its default value: 

.locals init ( int32 i, int32 j, float32 f, int64[] vect) 

end example] 

15.4.1.4 The .param directive  

MethodBodyItem ::= …  

   | .param „[‟ Int32 „]‟ [ „=‟ FieldInit ] 

 

This directive stores in the metadata a constant value associated with method parameter number Int32, 

see §22.9.  While the CLI requires that a value be supplied for the parameter, some tools can use the presence 

of this attribute to indicate that the tool rather than the user is intended to supply the value of the parameter.   

Unlike CIL instructions, .param uses index 0 to specify the return value of the method, index 1 to specify the 

first parameter of the method, index 2 to specify the second parameter of the method, and so on. 

[Note: The CLI attaches no semantic whatsoever to these values—it is entirely up to compilers to implement 

any semantic they wish (e.g., so-called default argument values). end note] 

15.4.1.5 The .param type directive  

MethodBodyItem ::= …  

   | .param type „[‟ Int32 „]‟ 

 

This directive allows type parameters for a generic type or method to be specified. Int32 is the 1-based ordinal 

of the type or method parameter to which the directive applies. [Note: This directive is used in conjunction with 

a .custom directive to associate a custom attribute with a type parameter. end note] 
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When a .param type directive is used within class scope, it refers to a type parameter of that class. When the 

directive is used within method scope inside a class definition, it refers to a type parameter of that method. 

Otherwise, the program is ill-formed. 

[Example: 

.class public G<T,U> { 

  .param type [1]  // refers to T 

  .custom instance void TypeParamAttribute::.ctor() = (01 00 ... ) 

  .method public void Foo<M>(!!0 m) { 

     .param type [1] // refers to M 

     .custom instance void AnotherTypeParamAttribute::.ctor() = (01 00 ... ) 

      … 

  } 

  … 

} 

end example] 

15.4.2 Predefined attr ibutes on methods  

MethAttr ::= Description Clause 

  abstract The method is abstract (shall also be 

virtual). 

15.4.2.4 

| assembly Assembly accessibility 15.4.2.1 

| compilercontrolled Compiler-controlled accessibility. 15.4.2.1 

| famandassem Family and Assembly accessibility 15.4.2.1 

| family Family accessibility 15.4.2.1 

| famorassem Family or Assembly accessibility 15.4.2.1 

| final This virtual method cannot be overridden by 

derived classes. 

15.4.2.2 

| hidebysig Hide by signature. Ignored by the runtime. 15.4.2.2 

| newslot Specifies that this method shall get a new slot 

in the virtual method table. 

15.4.2.3 

| pinvokeimpl „(‟ 

    QSTRING [ as QSTRING ] 

    PinvAttr* „)‟ 

Method is actually implemented in native 

code on the underlying platform 

15.4.2.5 

| private Private accessibility 15.4.2.1 

| public Public accessibility. 15.4.2.1 

| rtspecialname The method name needs to be treated in a 

special way by the runtime. 

15.4.2.6 

| specialname The method name needs to be treated in a 

special way by some tool. 

15.4.2.6 

| static Method is static. 15.4.2.2 

| virtual Method is virtual. 15.4.2.2 

| strict Check accessibility on override 15.4.2.2 

 

The following combinations of predefined attributes are invalid: 

 static combined with any of final, newslot, or virtual 
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 abstract combined with any of final or pinvokeimpl 

 compilercontrolled combined with any of final, rtspecialname, specialname, or 

virtual 

15.4.2.1 Accessibi l i ty information  

MethAttr ::= …  

| assembly 

| compilercontrolled 

| famandassem 

| family 

| famorassem 

| private 

| public 

 

Only one of these attributes shall be applied to a given method.  See Partition I.  

15.4.2.2 Method contract attr ibutes  

MethAttr ::= …  

| final 

| hidebysig 

| static 

| virtual 

| strict 

 

These attributes can be combined, except a method shall not be both static and virtual; only virtual 

methods shall be final or strict; and abstract methods shall not be final.  

final methods shall not be overridden by derived classes of this type.  

hidebysig is supplied for the use of tools and is ignored by the VES.  It specifies that the declared method 

hides all methods of the base class types that have a matching method signature; when omitted, the method 

should hide all methods of the same name, regardless of the signature. 

[Rationale: Some languages (such as C++) use a hide-by-name semantics while others (such as C#, Java™) use 

a hide-by-name-and-signature semantics. end rationale] 

static and virtual are described in §15.2. 

strict virtual methods can only be overridden if they are also accessible. See §23.1.10. 

15.4.2.3 Overriding behavior  

MethAttr ::= …  

   | newslot 

 

newslot shall only be used with virtual methods. See 10.3. 
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15.4.2.4 Method attr ibutes  

MethAttr ::= …  

   | abstract 

 

abstract shall only be used with virtual methods that are not final. It specifies that an implementation 

of the method is not provided but shall be provided by a derived class.  abstract methods shall only appear 

in abstract types (§10.1.4). 

15.4.2.5 Interoperation attr ibutes  

MethAttr ::= …  

   | pinvokeimpl „(‟ QSTRING [ as QSTRING ] PinvAttr* „)‟ 

 

See §15.5.2and §22.20. 

15.4.2.6 Special  handling attr ibutes  

MethAttr ::= …  

   | rtspecialname 

   | specialname 

 

The attribute rtspecialname specifies that the method name shall be treated in a special way by the 

runtime. Examples of special names are .ctor (object constructor) and .cctor (type initializer).  

specialname indicates that the name of this method has special meaning to some tools. 

15.4.3 Implementati on attr ibutes of  methods  

ImplAttr ::= Description Clause 

  cil The method contains standard CIL code. 15.4.3.1 

| forwardref The body of this method is not specified 

with this declaration. 

15.4.3.3 

| internalcall Denotes the method body is provided by 

the CLI itself 

15.4.3.3 

| managed The method is a managed method. 15.4.3.2 

| native The method contains native code. 15.4.3.1 

| noinlining The runtime shall not expand the method 

inline. 

15.4.3.3 

| nooptimization The runtime shall not optimize the 

method when generating native code. 

15.4.3.3 

| runtime The body of the method is not defined, 

but is produced by the runtime. 

15.4.3.1 

| synchronized The method shall be executed in a single 

threaded fashion. 

15.4.3.3 

| unmanaged Specifies that the method is unmanaged. 15.4.3.2 

15.4.3.1 Code implementati on attr ibutes  

ImplAttr ::= …  



 

86 Partition II 

   | cil 

   | native 

   | runtime 

 

These attributes are mutually exclusive; they specify the type of code the method contains. 

cil specifies that the method body consists of cil code. Unless the method is declared abstract, the body of 

the method shall be provided if cil is used. 

native specifies that a method was implemented using native code, tied to a specific processor for which it 

was generated. native methods shall not have a body but instead refer to a native method that declares the 

body. Typically, the PInvoke functionality (§15.5.2) of the CLI is used to refer to a native method.  

runtime specifies that the implementation of the method is automatically provided by the runtime and is 

primarily used for the methods of delegates (§14.6). 

15.4.3.2 Managed or unmanaged  

ImplAttr ::= …  

   | managed 

   | unmanaged 

 

These shall not be combined.  Methods implemented using CIL are managed.  unmanaged is used primarily 

with PInvoke (§15.5.2). 

15.4.3.3 Implementati on informati on  

ImplAttr ::= …  

   | forwardref 

   | internalcall 

   | noinlining  

   | nooptimization 

   | synchronized 

 

These attributes can be combined. 

forwardref specifies that the body of the method is provided elsewhere.  This attribute shall not be present 

when an assembly is loaded by the VES.  It is used for tools (like a static linker) that will combine separately 

compiled modules and resolve the forward reference. 

internalcall specifies that the method body is provided by this CLI (and is typically used by low-level 

methods in a system library).  It shall not be applied to methods that are intended for use across 

implementations of the CLI.   

noinlining specifies that the body of this method should not be included into the code of any caller 

methods, by a  CIL-to-native-code compiler; it shall be kept as a separate routine.  

nooptimization specifies that a  CIL-to-native-code compiler should not perform code optimizations.  

[Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (e.g., 

displaying stack traces) and profiling.  It also provides a mechanism for the programmer to override the default 

heuristics a CIL-to-native-code compiler uses for inlining. end rationale] 

synchronized specifies that the whole body of the method shall be single-threaded. If this method is an 

instance or virtual method, a lock on the object shall be obtained before the method is entered. If this method is 

a static method, a lock on the closed type shall be obtained before the method is entered. If a lock cannot be 
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obtained, the requesting thread shall not proceed until it is granted the lock. This can cause deadlocks. The lock 

is released when the method exits, either through a normal return or an exception.  Exiting a synchronized 

method using a tail. call shall be implemented as though the tail. had not been specified.  noinlining 

specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call 
instruction with the body of the called method. This can be done by the runtime for optimization purposes. 

15.4.4 Scope bl ocks 

    ScopeBlock ::= „{‟ MethodBodyItem* „}‟ 

A ScopeBlock is used to group elements of a method body together.  For example, it is used to designate the 

code sequence that constitutes the body of an exception handler. 

15.4.5 vararg methods  

vararg methods accept a variable number of arguments.  They shall use the vararg calling convention 

(§15.3). 

At each call site, a method reference shall be used to describe the types of the fixed and variable arguments that 

are passed.  The fixed part of the argument list shall be separated from the additional arguments with an ellipsis 

(see Partition I). [Note: The method reference is represented by either a MethodRef  (§22.25) or MethodDef 

(§22.26). A MethodRef might be needed even if the method is defined in the same assembly, because the 

MethodDef only describes the fixed part of the argument list. If the call site does not pass any additional 

arguments, then it can use the MethodDef for vararg methods defined in the same assembly. end note] 

The vararg arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction 

arglist (see Partition III). The handle can be used to create an instance of the value type System.ArgIterator 
which provides a type-safe mechanism for accessing the arguments (see Partition IV). 

[Example: The following example shows how a vararg method is declared and how the first vararg 

argument is accessed, assuming that at least one additional argument was passed to the method: 

.method public static vararg void MyMethod(int32 required) { 

  .maxstack 3 

  .locals init (valuetype [mscorlib]System.ArgIterator it, int32 x) 

  ldloca it    // initialize the iterator 

  initobj  valuetype [mscorlib]System.ArgIterator 

  ldloca it 

  arglist     // obtain the argument handle 

  call instance void [mscorlib]System.ArgIterator::.ctor(valuetype  

     [mscorlib]System.RuntimeArgumentHandle) // call constructor of iterator 

  /* argument value will be stored in x when retrieved, so load 

   address of x */ 

  ldloca x 

  ldloca it 

  // retrieve the argument, the argument for required does not matter 

  call instance typedref [mscorlib]System.ArgIterator::GetNextArg() 

  call object [mscorlib]System.TypedReference::ToObject(typedref) /* retrieve 

the 

     object */ 

  castclass [mscorlib]System.Int32  // cast and unbox 

  unbox int32 

  cpobj int32    // copy the value into x 

  // first vararg argument is stored in x 

  ret 

} 

end example] 
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15.5  Unmanaged methods  

In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-

existing native code from the underlying platform, known as unmanaged code.  These facilities are, by 

necessity, platform-specific and hence are only partially specified here.   

This Standard specifies: 

 A mechanism in the file format for providing function pointers to managed code that can be called 

from unmanaged code (§15.5.1).  

 A mechanism for marking certain method definitions as being implemented in unmanaged code 

(called platform invoke, see §15.5.2).  

 A mechanism for marking call sites used with method pointers to indicate that the call is to an 

unmanaged method (§15.5.3).  

 A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on 

all implementations of the CLI (§15.5.4).  The set of types is extensible through the use of custom 

attributes and modifiers, but these extensions are platform-specific. 

15.5.1 Method transit ion thunks  

[Note: As this mechanism is not part of the Kernel Profile, it might not be present in all conforming 

implementations of the CLI.  See Partition IV. end note] 

In order to call managed code from unmanaged code, some platforms require a specific transition sequence to 

be performed.  In addition, some platforms require that the representation of data types be converted (data 

marshaling).  Both of these problems are solved by the .vtfixup directive. This directive can appear several 

times, but only at the top level of a CIL assembly file, as shown by the following grammar: 

Decl ::= Clause 

  .vtfixup VTFixupDecl   

| … 5.10 

 

The .vtfixup directive declares that at a certain memory location there is a table that contains metadata 

tokens referring to methods that shall be converted into method pointers. The CLI will do this conversion 

automatically when the file containing the .vtfixup directive is loaded into memory for execution.  The 

declaration specifies the number of entries in the table, the kind of method pointer that is required, the width of 

an entry in the table, and the location of the table: 

VTFixupDecl ::= 

  [ Int32 ] VTFixupAttr* at DataLabel 

 

VTFixupAttr ::= 

 fromunmanaged 

| int32 

| int64 

 

The attributes int32 and int64 are mutually exclusive, with int32 being the default. These attributes 

specify the width of each slot in the table.  Each slot contains a 32-bit metadata token (zero-padded if the table 

has 64-bit slots), and the CLI converts it into a method pointer of the same width as the slot.  

If fromunmanaged is specified, the CLI will generate a thunk that will convert the unmanaged method call 

to a managed call, call the method, and return the result to the unmanaged environment.  The thunk will also 

perform data marshalling in the platform-specific manner described for platform invoke. 
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The ILAsm syntax does not specify a mechanism for creating the table of tokens, but a compiler can simply 

emit the tokens as byte literals into a block specified using the .data directive. 

15.5.2 Platfor m invoke 

Methods defined in native code can be invoked using the platform invoke (also know as PInvoke or p/invoke) 

functionality of the CLI.  Platform invoke will switch from managed to unmanaged state and back, and also 

handle necessary data marshalling. Methods that need to be called using PInvoke are marked as 

pinvokeimpl. In addition, the methods shall have the implementation attributes native and unmanaged 

(§15.4.2.4).   

MethAttr ::= Description Clause 

  pinvokeimpl „(‟ QSTRING [ as QSTRING ] 

PinvAttr* „)‟ 

Implemented in native code  

| …  15.4.1.5 

 

The first quoted string is a platform-specific description indicating where the implementation of the method is 

located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the 

method).  The second (optional) string is the name of the method as it exists on that platform, since the 

platform can use name-mangling rules that force the name as it appears to a managed program to differ from 

the name as seen in the native implementation (this is common, for example, when the native code is generated 

by a C++ compiler). 

Only static methods, defined at global scope (i.e., outside of any type), can be marked pinvokeimpl. A 

method declared with pinvokeimpl shall not have a body specified as part of the definition. 

PinvAttr ::= Description (platform-specific, suggestion only) 

  ansi ANSI character set. 

| autochar Determine character set automatically. 

| cdecl Standard C style call 

| fastcall C style fastcall. 

| stdcall Standard C++ style call. 

| thiscall The method accepts an implicit this pointer. 

| unicode Unicode character set. 

| platformapi Use call convention appropriate to target platform. 

 

The attributes ansi, autochar, and unicode are mutually exclusive.  They govern how strings will be 

marshaled for calls to this method: ansi indicates that the native code will receive (and possibly return) a 

platform-specific representation that corresponds to a string encoded in the ANSI character set (typically this 

would match the representation of a C or C++ string constant); autochar indicates a platform-specific 

representation that is ―natural‖ for the underlying platform; and unicode indicates a platform-specific 

representation that corresponds to a string encoded for use with Unicode methods on that platform.  

The attributes cdecl, fastcall, stdcall, thiscall, and platformapi are mutually exclusive.  

They are platform-specific and specify the calling conventions for native code. 

 [Example: The following shows the declaration of the method MessageBeep located in the Microsoft 

Windows™ DLL user32.dll: 

.method public static pinvokeimpl("user32.dll" stdcall) int8 

      MessageBeep(unsigned int32) native unmanaged {} 

end example] 
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15.5.3 Method cal ls via function pointers  

Unmanaged methods can also be called via function pointers. There is no difference between calling managed 

or unmanaged methods with pointers. However, the unmanaged method needs to be declared with 

pinvokeimpl as described in §15.5.2. Calling managed methods with function pointers is described 

in §14.5. 

15.5.4 Data type marshal ing  

While data type marshaling is necessarily platform-specific, this Standard specifies a minimum set of data 

types that shall be supported by all conforming implementations of the CLI.  Additional data types can be 

supported in a platform-specific manner, using custom attributes and/or custom modifiers to specify any special 

handling required on the particular implementation. 

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type 

to which they conform is implementation-specific: 

 All integer data types (int8, int16, unsigned int8, bool, char, etc.) including the 

native integer types. 

 Enumerations, as their underlying data type.  

 All floating-point data types (float32 and float64), if they are supported by the CLI 

implementation for managed code. 

 The type string. 

 Unmanaged pointers to any of the above types.  

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but 

need not be supported in the reverse direction (i.e., as return types when calling unmanaged methods or as 

parameters when calling from unmanaged methods into managed methods): 

 One-dimensional zero-based arrays of any of the above 

 Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it 

should not be assumed that marshaling a delegate will produce a function pointer that can be used 

directly from unmanaged code). 

Finally, the type System.Runtime.InteropServices.GCHandle can be used to marshal an object to unmanaged 

code.  The unmanaged code receives a platform-specific data type that can be used as an ―opaque handle‖ to a 

specific object.   See Partition IV. 
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16 Defining and referencing fields 

Fields are typed memory locations that store the data of a program.  The CLI allows the declaration of both 

instance and static fields. While static fields are associated with a type, and are shared across all instances of 

that type, instance fields are associated with a particular instance of that type.  Once instantiated, an instance 

has its own copy of each instance field.  

The CLI also supports global fields, which are fields declared outside of any type definition.  Global fields shall 

be static.  

A field is defined by the .field directive:  (§22.15) 

Field ::= .field FieldDecl 

 

FieldDecl ::= 

  [ „[‟ Int32 „]‟ ] FieldAttr* Type Id [ „=‟ FieldInit | at DataLabel ] 

 

The FieldDecl has the following parts: 

 An optional integer specifying the byte offset of the field within an instance (§10.7). If present, 

the type containing this field shall have the explicit layout attribute. An offset shall not be 

supplied for global or static fields. 

 Any number of field attributes (§16.2). 

 Type. 

 Name. 

 Optionally, either a FieldInit clause (§16.2) or a DataLabel (§5.4) clause. 

Global fields shall have a data label associated with them.  This specifies where, in the PE file, the data for that 

field is located.  Static fields of a type can, but need not, be assigned a data label. 

[Example:  

.field private class [.module Counter.dll]Counter counter 

.field public static initonly int32 pointCount 

.field private int32 xOrigin 

.field public static int32 count at D_0001B040 

end example] 

16.1  Attributes of fie lds  

Attributes of a field specify information about accessibility, contract information, interoperation attributes, as 

well as information on special handling. 

The following subclauses contain additional information on each group of predefined attributes of a field. 

FieldAttr ::= Description Clause 

  assembly Assembly accessibility. 16.1.1 

| famandassem Family and Assembly accessibility. 16.1.1 

| family Family accessibility. 16.1.1 

| famorassem Family or Assembly accessibility. 16.1.1 

| initonly Marks a constant field. 16.1.2 

| literal Specifies metadata field.  No memory is allocated 

at runtime for this field. 

16.1.2 
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FieldAttr ::= Description Clause 

| marshal „(‟ NativeType „)‟ Marshaling information. 16.1.3 

| notserialized Reserved (indicates this field is not to be 

serialized). 

16.1.2 

| private Private accessibility. 16.1.1 

| compilercontrolled Compiler controlled accessibility. 16.1.1 

| public Public accessibility. 16.1.1 

| rtspecialname Special treatment by runtime. 16.1.4 

| specialname Special name for other tools. 16.1.4 

| static Static field. 16.1.2 

 

16.1.1 Accessibi l i ty information  

The accessibility attributes are assembly, famandassem, family, famorassem, private, 

compilercontrolled, and public.  These attributes are mutually exclusive.   

Accessibility attributes are described in §8.2. 

16.1.2 Field contract attr ibutes  

Field contract attributes are initonly, literal, static and notserialized.  These attributes can be 

combined; however, only static fields shall be literal.  The default is an instance field that can be 

serialized. 

static specifies that the field is associated with the type itself rather than with an instance of the type.  Static 

fields can be accessed without having an instance of a type, e.g., by static methods.  As a consequence, within 
an application domain, a static field is shared between all instances of a type, and any modification of this field 

will affect all instances. If static is not specified, an instance field is created. 

initonly marks fields which are constant after they are initialized. These fields shall only be mutated inside 

a constructor. If the field is a static field, then it shall be mutated only inside the type initializer of the type in 

which it was declared. If it is an instance field, then it shall be mutated only in one of the instance constructors 

of the type in which it was defined. It shall not be mutated in any other method or in any other constructor, 

including constructors of derived classes. 

[Note: The use of ldflda or ldsflda on an initonly field makes code unverifiable.  In unverifiable code, the 

VES need not check whether initonly fields are mutated outside the constructors. The VES need not report 

any errors if a method changes the value of a constant. However, such code is not valid. end note] 

literal specifies that this field represents a constant value; such fields shall be assigned a value. In contrast 

to initonly fields, literal fields do not exist at runtime. There is no memory allocated for them. 

literal fields become part of the metadata, but cannot be accessed by the code. literal fields are 

assigned a value by using the FieldInit syntax (§16.2).   

[Note: It is the responsibility of tools generating CIL to replace source code references to the literal with its 

actual value.  Hence changing the value of a literal requires recompilation of any code that references the 

literal.  Literal values are, thus, not version-resilient. end note] 

16.1.3 Interoperation attr ibutes  

There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall 

not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal and 

specifies that the field‘s contents should be converted to and from a specified native data type when passed to 

unmanaged code.  Every conforming implementation of the CLI will have default marshaling rules as well as 

restrictions on what automatic conversions can be specified using the marshal attribute.  See also §15.5.4. 
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[Note: Marshaling of user-defined types is not required of all implementations of the CLI.  It is specified in this 

standard so that implementations which choose to provide it will allow control over its behavior in a consistent 

manner.  While this is not sufficient to guarantee portability of code that uses this feature, it does increase the 

likelihood that such code will be portable. end note] 

16.1.4 Other attributes  

The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.   

[Rationale: There are currently no field names that are required to be marked with rtspecialname.  It is 

provided for extensions, future standardization, and to increase consistency between the declaration of fields 

and methods (instance and type initializer methods shall be marked with this attribute). By convention, the 

single instance field of an enumeration is named ―value__‖ and marked with rtspecialname. end 

rationale] 

The attribute specialname indicates that the field name has special meaning to tools other than the runtime, 

typically because it marks a name that has meaning for the CLS (see Partition I). 

16.2  Field init metadata 

The FieldInit metadata can optionally be added to a field declaration. The use of this feature shall not be 
combined with a data label. 

The FieldInit information is stored in metadata and this information can be queried from metadata.  But the CLI 

does not use this information to automatically initialize the corresponding fields.  The field initializer is 

typically used with literal fields (§16.1.2) or parameters with default values.  See §22.9. 

The following table lists the options for a field initializer. Note that while both the type and the field initializer 

are stored in metadata there is no requirement that they match.  (Any importing compiler is responsible for 
coercing the stored value to the target field type).  The description column in the table below provides 

additional information. 

FieldInit ::= Description 

  bool „(‟ true | false „)‟ Boolean value, encoded as true or false 

| bytearray „(‟ Bytes „)‟ String of bytes, stored without conversion.  Can be 

padded with one zero byte to make the total byte-count 

an even number 

| char „(‟ Int32 „)‟ 16-bit unsigned integer (Unicode character) 

| float32 „(‟ Float64 „)‟ 32-bit floating-point number, with the floating-point 

number specified in parentheses.  

| float32 „(‟ Int32 „)‟ Int32 is binary representation of float 

| float64 „(‟ Float64 „)‟ 64-bit floating-point number, with the floating-point 

number specified in parentheses. 

| float64 „(‟ Int64 „)‟ Int64 is binary representation of double 

| [ unsigned ] int8 „(‟ Int32 „)‟ 8-bit integer with the value specified in parentheses. 

| [ unsigned ] int16 „(‟ Int32 „)‟ 16-bit integer with the value specified in parentheses. 

| [ unsigned ] int32 „(‟ Int32 „)‟ 32-bit integer with the value specified in parentheses. 

| [ unsigned ] int64 „(‟ Int64 „)‟ 64-bit integer with the value specified in parentheses. 

| QSTRING String. QSTRING is stored as Unicode 

| nullref Null object reference 
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[Example: The following shows a typical use of this: 

.field public static literal valuetype ErrorCodes no_error = int8(0) 

The field named no_error is a literal of type ErrorCodes (a value type) for which no memory is 

allocated. Tools and compilers can look up the value and detect that it is intended to be an 8-bit signed integer 

whose value is 0. end example] 

16.3  Embedding data in a PE fi le  

There are several ways to declare a data field that is stored in a PE file. In all cases, the .data directive is 

used. 

Data can be embedded in a PE file by using the .data directive at the top-level. 

Decl ::= Clause 

  .data DataDecl  

| … 6.6 

 

Data can also be declared as part of a type: 

ClassMember ::= Clause 

  .data DataDecl  

| … 10.2 

 

Yet another alternative is to declare data inside a method: 

MethodBodyItem ::= Clause 

  .data DataDecl  

| … 15.4.1 

 

16.3.1 Data declaration 

A .data directive contains an optional data label and the body which defines the actual data. A data label 

shall be used if the data is to be accessed by the code. 

DataDecl ::= [ DataLabel „=‟ ] DdBody 

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an 

array. 

DdBody ::= 

  DdItem 

| „{‟ DdItemList „}‟ 

 

A list of items consists of any number of items: 

DdItemList ::= DdItem [ „,‟ DdItemList ] 

 

The list can be used to declare multiple data items associated with one label. The items will be laid out in the 

order declared. The first data item is accessible directly through the label. To access the other items, pointer 

arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer 

arithmetic will make the application non-verifiable.  (Each data item shall have a DataLabel if it is to be 

referenced afterwards; missing a DataLabel is useful in order to insert alignment padding between data items) 



 

 Partition II 95 

A data item declares the type of the data and provides the data in parentheses. If a list of data items contains 

items of the same type and initial value, the grammar below can be used as a short cut for some of the types: 

the number of times the item shall be replicated is put in brackets after the declaration.  

DdItem ::= Description 

  „&‟ „(‟ Id „)‟ Address of label 

| bytearray „(‟ Bytes „)‟ Array of bytes 

| char „*‟ „(‟ QSTRING „)‟ Array of (Unicode) characters 

| float32 [ „(‟ Float64 „)‟ ] [ „[‟ Int32 „]‟ ] 32-bit floating-point number, can be 

replicated 

| float64 [ „(‟ Float64 „)‟ ] [ „[‟ Int32 „]‟ ] 64-bit floating-point number, can be 

replicated 

| int8 [ „(‟ Int32 „)‟ ] [„[‟ Int32 „]‟ ] 8-bit integer, can be replicated 

| int16 [ „(‟ Int32 „)‟ ] [ „[‟ Int32 „]‟ ] 16-bit integer, can be replicated 

| int32 [ „(‟ Int32 „)‟ ] [„[‟ Int32 „]‟ ] 32-bit integer, can be replicated 

| int64 [ „(‟ Int64 „)‟ ] [ „[‟ Int32 „]‟ ] 64-bit integer, can be replicated 

 

[Example:  

The following declares a 32-bit signed integer with value 123: 

.data theInt = int32(123) 

The following declares 10 replications of an 8-bit unsigned integer with value 3: 

.data theBytes = int8 (3) [10] 

end example] 

16.3.2 Accessing data from the PE fi le  

The data stored in a PE File using the .data directive can be accessed through a static variable, either 

global or a member of a type, declared at a particular position of the data: 

FieldDecl ::= FieldAttr* Type Id at DataLabel 

 

The data is then accessed by a program as it would access any other static variable, using instructions such as 

ldsfld, ldsflda, and so on (see Partition III). 

The ability to access data from within the PE File can be subject to platform-specific rules, typically related to 

section access permissions within the PE File format itself. 

[Example: The following accesses the data declared in the example of §16.3.1. First a static variable needs to 

be declared for the data, e.g., a global static variable: 

.field public static int32 myInt at theInt 

Then the static variable can be used to load the data: 

ldsfld int32 myInt 

// data on stack 

end example] 

16.4  Init ializat ion of non-literal stat ic data 

This subclause and its subclauses contain only informative text. 
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Many languages that support static data provide for a means to initialize that data before the program begins 

execution. There are three common mechanisms for doing this, and each is supported in the CLI. 

16.4.1 Data known at l ink t ime 

When the correct value to be stored into the static data is known at the time the program is linked (or compiled 

for those languages with no linker step), the actual value can be stored directly into the PE file, typically into 

the data area (§16.3). References to the variable are made directly to the location where this data has been 
placed in memory, using the OS-supplied fix-up mechanism to adjust any references to this area if the file loads 

at an address other than the one assumed by the linker. 

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is 

a value type with explicit type layout and no embedded references to managed objects. In this case the data is 

laid out in the data area as usual and the static variable is assigned a particular RVA (i.e., offset from the start 

of the PE file) by using a data label with the field declaration (using the at syntax).   

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I). 

An application domain is intended to isolate two applications running in the same OS process from one another 

by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data 

accessed via this mechanism is visible to all application domains in the process, thus violating the application 

domain isolation boundary. 

16.5  Data known at load t ime 

When the correct value is not known until the PE file is loaded (for example, if it contains values computed 

based on the load addresses of several PE files) it can be possible to supply arbitrary code to run as the PE file 

is loaded, but this mechanism is platform-specific and might not be available in all conforming 
implementations of the CLI. 

16.5.1 Data known at run t ime  

When the correct value cannot be determined until type layout is computed, the user shall supply code as part 

of a type initializer to initialize the static data. The guarantees about type initialization are covered in §10.5.3.1. 

As will be explained below, global statics are modeled in the CLI as though they belonged to a type, so the 

same guarantees apply to both global and type statics. 

Because the layout of managed types need not occur until a type is first referenced, it is not possible to 

statically initialize managed types by simply laying out the data in the PE file. Instead, there is a type 

initialization process that proceeds in the following steps: 

1. All static variables are zeroed. 

2. The user-supplied type initialization procedure, if any, is invoked as described in  §10.5.3. 

Within a type initialization procedure there are several techniques: 

 Generate explicit code that stores constants into the appropriate fields of the static variables. For 

small data structures this can be efficient, but it requires that the initializer be converted to native 

code, which can prove to be both a code space and an execution time problem. 

 Box value types. When the static variable is simply a boxed version of a primitive numeric type or 

a value type with explicit layout, introduce an additional static variable with known RVA that 

holds the unboxed instance and then simply use the box instruction to create the boxed copy. 

 Create a managed array from a static native array of data.  This can be done by marshaling the 

native array to a managed array. The specific marshaler to be used depends on the native array. 

e.g., it can be a safearray. 

 Default initialize a managed array of a value type.  The Base Class Library provides a method that 

zeroes the storage for every element of an array of unboxed value types 

(System.Runtime.CompilerServices.InitializeArray ) 
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End informative text 
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17 Defining properties  

A Property is declared by the using the .property directive.  Properties shall only be declared inside of 

types (i.e., global properties are not supported). 

ClassMember ::= 

  .property PropHeader „{‟ PropMember* „}‟ 

 

See §22.34 and §22.35 for how property information is stored in metadata. 

PropHeader ::= 

 [ specialname ][ rtspecialname ] CallConv Type Id „(‟ Parameters „)‟ 

 

The .property directive specifies a calling convention (§15.3), type, name, and parameters in parentheses. 

specialname marks the property as special to other tools, while rtspecialname marks the property as 

special to the CLI.  The signature for the property (i.e., the PropHeader production) shall match the signature 

of the property's .get method (see below) 

[Rationale: There are currently no property names that are required to be marked with rtspecialname.  It is 

provided for extensions, future standardization, and to increase consistency between the declaration of 

properties and methods (instance and type initializer methods shall be marked with this attribute). end 

rationale] 

While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I) specifies 

a set of consistency constraints. 

A property can contain any number of methods in its body.  The following table shows how these methods are 

identified, and provides short descriptions of each kind of item: 

PropMember ::= Description Clause 

| .custom CustomDecl Custom attribute. 21 

| .get CallConv Type [ TypeSpec „::‟ ] MethodName 

„(‟ Parameters „)‟ 

Specifies the getter for the 

property. 

 

| .other CallConv Type [ TypeSpec „::‟ ] 

MethodName „(‟ Parameters „)‟ 

Specifies a method for the 

property other than the getter or 

setter. 

 

| .set CallConv Type [ TypeSpec „::‟ ] MethodName 

„(‟ Parameters „)‟ 

Specifies the setter for the 
property. 

 

| ExternSourceDecl .line or #line 5.7 

 

.get specifies the getter for this property.  The TypeSpec defaults to the current type.  Only one getter can be 

specified for a property.  To be CLS-compliant, the definition of getter shall be marked specialname. 

.set specifies the setter for this property.  The TypeSpec defaults to the current type.  Only one setter can be 

specified for a property.  To be CLS-compliant, the definition of setter shall be marked specialname. 

.other is used to specify any other methods that this property comprises.  

In addition, custom attributes (§21) or source line declarations can be specified. 

[Example: This shows the declaration of the property called count. 

.class public auto autochar MyCount extends [mscorlib]System.Object { 

  .method virtual hidebysig public specialname instance int32 get_Count() { 

  // body of getter 

  } 
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  .method virtual hidebysig public specialname instance void set_Count( 

      int32 newCount) { 

  // body of setter 

  } 

  .method virtual hidebysig public instance void reset_Count() { 

  // body of refresh method 

  } 

  // the declaration of the property 

  .property int32 Count() { 

    .get instance int32 MyCount::get_Count() 

    .set instance void MyCount::set_Count(int32) 

    .other instance void MyCount::reset_Count() 

  } 

} 

end example] 
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18 Defining events 

Events are declared inside types, using the .event directive; there are no global events. 

ClassMember ::= Clause 

  .event EventHeader „{‟ EventMember* „}‟  

| … 9 

 

See §22.13 and §22.11 

EventHeader ::= 

  [ specialname ] [ rtspecialname ] [ TypeSpec ] Id 

 

In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed 

to the event‘s fire method. 

The event head can contain the keywords specialname or rtspecialname. specialname marks the 

name of the property for other tools, while rtspecialname marks the name of the event as special for the 

runtime. 

[Rationale: There are currently no event names that are required to be marked with rtspecialname.  It is 

provided for extensions, future standardization, and to increase consistency between the declaration of events 

and methods (instance and type initializer methods shall be marked with this attribute). end rationale] 

EventMember ::= Description Clause 

  .addon CallConv Type [ TypeSpec „::‟ ] MethodName 

„(‟ Parameters „)‟ 

Add method for event.  

| .custom CustomDecl Custom attribute. 21 

| .fire CallConv Type [ TypeSpec „::‟ ] MethodName „(‟ 

Parameters „)‟ 

Fire method for event.  

| .other CallConv Type [ TypeSpec „::‟ ] MethodName 

„(‟ Parameters „)‟ 

Other method.  

| .removeon CallConv Type [ TypeSpec „::‟ ] MethodName 

„(‟ Parameters „)‟ 

Remove method for event.  

| ExternSourceDecl .line or #line 5.7 

 

The .addon directive specifies the add method, and the TypeSpec defaults to the same type as the event.  The 

CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the 

add method be marked with specialname. 

The .removeon directive specifies the remove method, and the TypeSpec defaults to the same type as the 

event.  The CLS specifies naming conventions and consistency constraints for events, and requires that the 

definition of the remove method be marked with specialname. 

The .fire directive specifies the fire method, and the TypeSpec defaults to the same type as the event.  The 

CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the 

fire method be marked with specialname. 

An event can contain any number of other methods specified with the .other directive. From the point of 

view of the CLI, these methods are only associated with each other through the event. If they have special 

semantics, this needs to be documented by the implementer. 

Events can also have custom attributes (§21) associated with them and they can declare source line information. 
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[Example: This shows the declaration of an event, its corresponding delegate, and typical implementations of 

the add, remove, and fire method of the event. The event and the methods are declared in a class called 

Counter. 

// the delegate 

.class private sealed auto autochar TimeUpEventHandler extends 

     [mscorlib]System.Delegate { 

  .method public hidebysig specialname rtspecialname instance void .ctor(object 

      'object', native int 'method') runtime managed {} 

  .method public hidebysig virtual instance void Invoke() runtime managed {} 

  .method public hidebysig newslot virtual instance class 

    [mscorlib]System.IAsyncResult BeginInvoke(class  

    mscorlib]System.AsyncCallback callback, object 'object') runtime managed {} 

  .method public hidebysig newslot virtual instance void EndInvoke(class 

     [mscorlib]System.IAsyncResult result) runtime managed {} 

} 

 

// the class that declares the event 

.class public auto autochar Counter extends [mscorlib]System.Object { 

  // field to store the handlers, initialized to null 

  .field private class TimeUpEventHandler timeUpEventHandler 

  // the event declaration 

  .event TimeUpEventHandler startStopEvent { 

    .addon instance void Counter::add_TimeUp(class TimeUpEventHandler 'handler') 

    .removeon instance void Counter::remove_TimeUp(class TimeUpEventHandler 

'handler') 

    .fire instance void Counter::fire_TimeUpEvent() 

  } 

  // the add method, combines the handler with existing delegates 

  .method public hidebysig virtual specialname instance void add_TimeUp(class  

      TimeUpEventHandler 'handler') { 

    .maxstack 4 

    ldarg.0 

    dup 

    ldfld class TimeUpEventHandler Counter::TimeUpEventHandler 

    ldarg 'handler' 

    call class[mscorlib]System.Delegate  

      [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class  

      [mscorlib]System.Delegate) 

    castclass TimeUpEventHandler 

    stfld class TimeUpEventHandler Counter::timeUpEventHandler 

    ret 

  } 

  // the remove method, removes the handler from the delegate 

  .method virtual public specialname void remove_TimeUp(class TimeUpEventHandler  

        'handler') { 

    .maxstack 4 

    ldarg.0 

    dup 

    ldfld class TimeUpEventHandler Counter::timeUpEventHandler 

    ldarg 'handler' 

    call class[mscorlib]System.Delegate 

       [mscorlib]System.Delegate::Remove(class  

       [mscorlib]System.Delegate, class [mscorlib]System.Delegate) 

    castclass TimeUpEventHandler 

    stfld class TimeUpEventHandler Counter::timeUpEventHandler 

    ret 

  } 
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  // the fire method 

  .method virtual family specialname void fire_TimeUpEvent() { 

    .maxstack 3 

    ldarg.0 

    ldfld class TimeUpEventHandler Counter::timeUpEventHandler 

    callvirt instance void TimeUpEventHandler::Invoke() 

    ret 

  } 

} // end of class Counter 

end example] 
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19 Exception handling 

In the CLI, a method can define a range of CIL instructions that are said to be protected.  This is called a try 

block.  It can then associate one or more handlers with that try block.  If an exception occurs during execution 

anywhere within the try block, an exception object is created that describes the problem.  The CLI then takes 

over, transferring control from the point at which the exception was thrown, to the block of code that is willing 

to handle that exception.  See Partition I. 

No two handlers (fault, filter, catch, or finally) can have the same starting address.  When an exception occurs it 

is necessary to convert the execution address to the correct most lexically nested try block in which the 

exception occurred. 

SEHBlock ::= 

  TryBlock SEHClause [ SEHClause* ] 

 

The next few subclauses expand upon this simple description, by describing the five kinds of code block that 

take part in exception processing: try, catch, filter, finally, and fault.   (Note that there are 

restrictions upon how many, and what kinds of SEHClause a given TryBlock can have; see Partition I for 

details.) 

The remaining syntax items are described in detail below; they are collected here for reference. 

TryBlock ::= Description 

.try Label to Label Protect region from first label to prior to second  

| .try ScopeBlock ScopeBlock is protected 

 

SEHClause ::= Description 

  catch TypeReference HandlerBlock Catch all objects of the specified type 

| fault HandlerBlock Handle all exceptions but not normal exit 

| filter Label HandlerBlock Enter handler only if filter succeeds 

| finally HandlerBlock Handle all exceptions and normal exit 

 

HandlerBlock::= Description 

handler Label to Label Handler range is from first label to prior to second 

| ScopeBlock  ScopeBlock is the handler block 

 

19.1  Protected blocks  

A try, or protected, or guarded, block is declared with the .try directive.   

TryBlock ::= Descriptions 

.try Label to Label Protect region from first label to prior to second. 

| .try ScopeBlock ScopeBlock is protected 

 

In the first case, the protected block is delimited by two labels.  The first label is the first instruction to be 

protected, while the second label is the instruction just beyond the last one to be protected.  Both labels shall be 

defined prior to this point.  

The second case uses a scope block (§15.4.4) after the .try directive—the instructions within that scope are 

the ones to be protected.  
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19.2  Handler blocks  

HandlerBlock ::= Description 

| handler Label to Label Handler range is from first label to prior to second 

| ScopeBlock ScopeBlock is the handler block 

 

In the first case, the labels enclose the instructions of the handler block, the first label being the first instruction 

of the handler while the second is the instruction immediately after the handler. In the second case, the handler 

block is just a scope block. 

19.3  Catch blocks  

A catch block is declared using the catch keyword.  This specifies the type of exception object the clause is 

designed to handle, and the handler code itself. 

SEHClause ::= 

  catch TypeReference HandlerBlock 

 

[Example:  

.try { 

 …    // protected instructions 

 leave exitSEH  // normal exit 

} catch [mscorlib]System.FormatException { 

 …    // handle the exception 

 pop    // pop the exception object 

 leave exitSEH  // leave catch handler 

} 

exitSEH:    // continue here 

end example] 

19.4  Filter blocks  

A filter block is declared using the filter keyword. 

SEHClause ::= … 

| filter Label HandlerBlock 

| filter Scope HandlerBlock 

 

The filter code begins at the specified label and ends at the first instruction of the handler block.  (Note that the 

CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler 

block.) 

[Example:  

.method public static void m () { 

    .try { 

      …   // protected instructions 

      leave exitSEH // normal exit 

    } 

    filter { 

      …   // decide whether to handle 

      pop   // pop exception object 

      ldc.i4.1  // EXCEPTION_EXECUTE_HANDLER 

      endfilter  // return answer to CLI 

    } 
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    { 

      …   // handle the exception 

      pop   // pop the exception object 

      leave exitSEH // leave filter handler 

    } 

exitSEH: 

    … 

} 

end example] 

19.5  Finally blocks  

A finally block is declared using the finally keyword.  This specifies the handler code, with this grammar: 

SEHClause ::= … 

| finally HandlerBlock 

 

The last possible CIL instruction that can be executed in a finally handler shall be endfinally. 

[Example:  

.try { 

 …   // protected instructions 

 leave exitTry  // shall use leave 

} finally { 

 …   // finally handler 

 endfinally 

} 

exitTry:   // back to normal 

19.6  Fault handlers  

end example] 

A fault block is declared using the fault keyword.  This specifies the handler code, with this grammar: 

SEHClause ::= … 

| fault HandlerBlock 

 

The last possible CIL instruction that can be executed in a fault handler shall be endfault. 

[Example:  

.method public static void m() { 

  startTry: 

 …   // protected instructions 

 leave exitSEH // shall use leave 

  endTry: 

startFault: 

 …   // fault handler instructions 

 endfault 

endFault: 

 .try startTry to endTry fault handler startFault to endFault 

exitSEH:   // back to normal 

} 

end example] 
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20 Declarative security  

Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the 

metadata. This information is actually converted by the compiler into an XML-based representation that is 

stored in the metadata, see §22.11.  By contrast, ilasm requires the conversion information to be represented in 

its input. 

SecurityDecl ::= 

  .permissionset SecAction = „(‟ Bytes „)‟ 

| .permission SecAction TypeReference „(‟ NameValPairs „)‟ 

 

NameValPairs ::= NameValPair [ „,‟ NameValPair ]* 

 

NameValPair ::= SQSTRING „=‟ SQSTRING 

In .permission, TypeReference specifies the permission class and NameValPairs specifies the settings.   

See §22.11 

In .permissionset the bytes specify the encoded version of the security settings: 

SecAction ::= Description 

  assert Assert permission so that callers do not need it. 

| demand Demand permission of all callers. 

| deny Deny permission so checks will fail. 

| inheritcheck Demand permission of a derived class. 

| linkcheck Demand permission of caller. 

| permitonly Reduce permissions so check will fail. 

| reqopt Request optional additional permissions. 

| reqrefuse Refuse to be granted these permissions. 

| request Hint that permission might be required. 
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21 Custom attributes  

Custom attributes add user-defined annotations to the metadata.  Custom attributes allow an instance of a type 

to be stored with any element of the metadata. This mechanism can be used to store application-specific 

information at compile time, and to access it either at runtime or when another tool reads the metadata. While 

any user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of 

types whose base class is System.Attribute. The CLI predefines some attribute types and uses them to control 

runtime behavior. Some languages predefine attribute types to represent language features not directly 

represented in the CTS. Users or other tools are welcome to define and use additional attribute types. 

Custom attributes are declared using the directive .custom, followed by the method declaration for a type 

constructor, optionally followed by a Bytes in parentheses: 

CustomDecl ::= 

  Ctor [ „=‟ „(‟ Bytes „)‟ ]  

 

The Ctor item represents a method declaration (§15.4), specific for the case where the method's name is 

.ctor. [Example: 

.custom instance void myAttribute::.ctor(bool, bool) = ( 01 00 00 01 00 

00 ) 

end example] 

Custom attributes can be attached to any item in metadata, except a custom attribute itself.  Commonly, custom 
attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties, 

generic parameters, and events (the custom attribute is attached to the immediately preceding declaration) 

The Bytes item is not required if the constructor takes no arguments.  In such cases, all that matters is the 

presence of the custom attribute. 

If the constructor takes parameters, their values shall be specified in the Bytes item.  The format for this ‗blob‘ 

is defined in §23.3. 

[Example: The following shows a class that is marked with the attribute called 

System.CLSCompliantAttribute and a method that is marked with the attribute called 

System.ObsoleteAttribute. 

.class public MyClass extends [mscorlib]System.Object 

{ .custom instance void [mscorlib]System.CLSCompliantAttribute::.ctor(bool) = 

    ( 01 00 01 00 00 ) 

  .method public static void CalculateTotals() cil managed 

{ .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor() =  

    ( 01 00 00 00 ) 
  ret 

} 

end example] 

21.1  CLS conventions: custom attribute usage  

CLS imposes certain conventions upon the use of custom attributes in order to improve cross-language 
operation.  See Partition I for details. 

21.2  Attributes used by the CLI 

There are two kinds of custom attributes, called genuine custom attributes, and pseudo custom attributes. 

Custom attributes and pseudo custom attributes are treated differently, at the time they are defined, as follows: 

 A custom attribute is stored directly into the metadata; the‗blob‘ which holds its defining data is 

stored as-is. That ‗blob‘ can be retrieved later. 
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 A pseudo custom attribute is recognized because its name is one of a short list.  Rather than store 

its ‗blob‘ directly in metadata, that ‗blob‘ is parsed, and the information it contains is used to set 

bits and/or fields within metadata tables.  The ‗blob‘ is then discarded; it cannot be retrieved 

later. 

Pseudo custom attributes therefore serve to capture user directives, using the same familiar syntax the compiler 

provides for genuine custom attributes, but these user directives are then stored into the more space-efficient 
form of metadata tables. Tables are also faster to check at runtime than are genuine custom attributes. 

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI, 

without its knowing or caring what they ‗mean‘.  But all pseudo custom attributes, plus a collection of genuine 

custom attributes, are of special interest to compilers and to the CLI.  An example of such custom attributes is 

System.Reflection.DefaultMemberAttribute.  This is stored in metadata as a genuine custom attribute 

‗blob‘, but reflection uses this custom attribute when called to invoke the default member (property) for a type. 

The following subclauses list all of the pseudo custom attributes and distinguished custom attributes, where 

distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in 

some way. 

In order to prevent name collisions into the future, all custom attributes in the System namespace are reserved 

for standardization. 

21.2.1 Pse udo c ustom attr ibutes  

The following table lists the CLI pseudo custom attributes. (Not all of these attributes are specified in this 

Standard, but all of their names are reserved and shall not be used for other purposes.  For details on these 

attributes, see the documentation for the corresponding class in Partition IV.) They are defined in the 

namespaces System.Reflection, System.Runtime.CompilerServices, and 

System.Runtime.InteropServices namespaces.   

Attribute Description 

AssemblyAlgorithmIDAttribute Records the ID of the hash algorithm used (reserved only) 

AssemblyFlagsAttribute Records the flags for this assembly (reserved only) 

DllImportAttribute Provides information about code implemented within an unmanaged 

library 

FieldOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type 

InAttribute Indicates that a method parameter is an [in] argument 

MarshalAsAttribute Specifies how a data item should be marshalled between managed and 

unmanaged code (see §23.4). 

MethodImplAttribute Specifies details of how a method is implemented 

OutAttribute Indicates that a method parameter is an [out] argument 

StructLayoutAttribute Allows the caller to control how the fields of a class or value type are laid 

out in managed memory 

 

These attributes affect bits and fields in metadata, as follows: 

AssemblyAlgorithmIDAttribute: sets the Assembly.HashAlgId field. 

AssemblyFlagsAttribute: sets the Assembly.Flags field. 

DllImportAttribute: sets the Method.Flags.PinvokeImpl bit for the attributed method; also, adds a new row 

into the ImplMap table (setting MappingFlags, MemberForwarded, ImportName and ImportScope columns). 

FieldOffsetAttribute: sets the FieldLayout.OffSet value for the attributed field. 

InAttribute: sets the Param.Flags.In bit for the attributed parameter. 
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MarshalAsAttribute: sets the Field.Flags.HasFieldMarshal bit for the attributed field (or the 

Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal 

table for both Parent and NativeType columns.  

MethodImplAttribute: sets the Method.ImplFlags field of the attributed method. 

OutAttribute: sets the Param.Flags.Out bit for the attributed parameter. 

StructLayoutAttribute: sets the TypeDef.Flags.LayoutMask sub-field for the attributed type, and, optionally, 
the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSize,and ClassLayout.ClassSize fields 

for that type. 

21.2.2 Custom attr ibutes defined by the CLS 

 The CLS specifies certain Custom Attributes and requires that conformant languages support them. These 

attributes are located under System. 

Attribute Description 

AttributeUsageAttribute Used to specify how an attribute is intended to be used. 

ObsoleteAttribute Indicates that an element is not to be used. 

CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant 

through an instance field on the attribute object. 

 
 

 

21.2.3 Custom attr ibutes for  sec urity  

The following custom attributes are defined in the System.Net and System.Security.Permissions 

namespaces.   Note that these are all base classes; the actual instances of security attributes found in assemblies 

will be sub-classes of these. 

Attribute Description 

CodeAccessSecurityAttribute This is the base attribute class for declarative security using 

custom attributes. 

DnsPermissionAttribute Custom attribute class for declarative security with 

DnsPermission 

EnvironmentPermissionAttribute Custom attribute class for declarative security with 

EnvironmentPermission. 

FileIOPermissionAttribute  Custom attribute class for declarative security with 

FileIOPermission. 

ReflectionPermissionAttribute Custom attribute class for declarative security with 

ReflectionPermission. 

SecurityAttribute This is the base attribute class for declarative security from 

which CodeAccessSecurityAttribute is derived. 

SecurityPermissionAttribute Indicates whether the attributed method can affect security 

settings 

SocketPermissionAttribute Custom attribute class for declarative security with 

SocketPermission. 

WebPermissionAttribute Custom attribute class for declarative security with 

WebPermission. 

 

Note that any other security-related custom attributes (i.e., any custom attributes that derive from 

System.Security.Permissions.SecurityAttribute) included into an assembly, can cause a conforming 
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implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any 

attempt is made to access those security-related custom attributes.  (This statement holds true for any custom 

attributes that cannot be resolved; security-related custom attributes are just one particular case) 

21.2.4 Custom attr ibutes for  TLS  

A custom attribute that denotes a TLS (thread-local storage, see §Error! Reference source not found.) field is 

defined in the System namespace. 

Attribute Description 

ThreadStaticAttribute Provides for type member fields that are relative for the thread. 

 
 

21.2.5 Custom attr ibutes,  various  

The following custom attributes control various aspects of the CLI: 

Attribute Namespace Description 

ConditionalAttribute System.Diagnostics Used to mark methods as callable, 

based on some compile-time condition.  
If the condition is false, the method will 

not be called 

DecimalConstantAttribute System.Runtime.CompilerServices Stores the value of a decimal constant 

in metadata 

DefaultMemberAttribute System.Reflection Defines the member of a type that is the 

default member used by reflection‘s 

InvokeMember. 

FaultModeAttribute System.Runtime.CompilerServices Indicates whether exceptions from 

instruction checks are precise or 

imprecise. 

FlagsAttribute System Custom attribute indicating an 

enumeration should be treated as a 

bitfield; that is, a set of flags 

IndexerNameAttribute System.Runtime.CompilerServices Indicates the name by which a property 

having one or more parameters will be 

known in programming languages that 

do not support such a facility directly 

ParamArrayAttribute System Indicates that the method will allow a 

variable number of arguments in its 

invocation 
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22 Metadata logical format: tables 

This clause defines the structures that describe metadata, and how they are cross-indexed.  This corresponds to 

how metadata is laid out, after being read into memory from a PE file.  (For a description of metadata layout 

inside the PE file itself, see §24) 

Metadata is stored in two kinds of structure: tables (arrays of records) and heaps.  There are four heaps in any 

module: String, Blob, Userstring, and Guid.  The first three are byte arrays (so valid indexes into these heaps 

might be 0, 23, 25, 39, etc).  The Guid heap is an array of GUIDs, each 16 bytes wide.  Its first element is 

numbered 1, its second 2, and so on. 

Each entry in each column of each table is either a constant or an index.  

Constants are either literal values (e.g.,  ALG_SID_SHA1 = 4, stored in the HashAlgId column of the Assembly 

table), or, more commonly, bitmasks.  Most bitmasks (they are almost all called Flags) are 2 bytes wide (e.g., 

the Flags column in the Field table), but there are a few that are 4 bytes (e.g., the Flags column in the TypeDef 

table). 

Each index is either 2 or 4 bytes wide.  The index points into the same or another table, or into one of the four 

heaps.  The size of each index column in a table is only made 4 bytes if it needs to be for that particular 

module.   So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-byte value, 

the indexer column need only be 2 bytes wide.  Conversely, for tables containing 64K or more rows, an indexer 

of that table will be 4 bytes wide. 

Indexes to tables begin at 1, so index 1 means the first row in any given metadata table.  (An index value of 

zero denotes that it does not index a row at all; that is, it behaves like a null reference.) 

There are two kinds of columns that index a metadata table. (For details of the physical representation of these 

tables, see §24.2.6): 

 Simple – such a column indexes one, and only one, table.  For example, the FieldList column in 

the TypeDef table always indexes the Field table.  So all values in that column are simple 
integers, giving the row number in the target table 

 Coded – such a column indexes any of several tables. For example, the Extends column in the 

TypeDef table can index into the TypeDef or TypeRef table.   A few bits of that index value are 

reserved to define which table it targets.  For the most part, this specification talks of index 

values after being decoded into row numbers within the target table.  However, the specification 

includes a description of these coded indexes in the section that describes the physical layout of 

Metadata (§24). 

Metadata preserves name strings, as created by a compiler or code generator, unchanged.  Essentially, it treats 

each string as an opaque blob.  In particular, it preserves case.  The CLI imposes no limit on the length of 

names stored in metadata and subsequently processed by the CLI. 

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed 

case-blind (see Partition I).  However, all other name matches (type, field, method, property, event) shall be 
exact – so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not. 

Tables are given both a name (e.g., "Assembly") and a number (e.g., 0x20).  The number for each table is listed 

immediately with its title in the following subclauses. The table numbers indicate the order in which their 

corresponding table shall appear in the PE file, and there is a set of bits (§24.2.6) saying whether a given table 

exists or not.  The number of a table is the position within that set of bits. 

A few of the tables represent extensions to regular CLI files.  Specifically, ENCLog and ENCMap, which occur 

in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios, whilst 

debugging.  Both table types are reserved for future use. 

References to the methods or fields of a type are stored together in a metadata table called the MemberRef 

table.  However, sometimes, for clearer explanation, this standard distinguishes between these two kinds of 
reference, calling them ―MethodRef‖ and ―FieldRef‖. 

Certain tables are required to be sorted by a primary key, as follows: 
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Table Primary Key Column 

ClassLayout Parent 

Constant Parent 

CustomAttribute Parent 

DeclSecurity Parent 

FieldLayout Field 

FieldMarshal Parent 

FieldRVA Field 

GenericParam Owner 

GenericParamConstraint Owner 

ImplMap MemberForwarded 

InterfaceImpl Class 

MethodImpl Class 

MethodSemantics Association 

NestedClass NestedClass 

 

Furthermore, the InterfaceImpl table is sorted using the Interface column as a secondary key, and the 

GenericParam table is sorted using the Number column as a secondary key. 

Finally, the TypeDef table has a special ordering constraint: the definition of an enclosing class shall precede 

the definition of all classes it encloses. 

Metadata items (records in the metadata tables) are addressed by metadata tokens.  Uncoded metadata tokens 

are 4-byte unsigned integers, which contain the metadata table index in the most significant byte and a 1-based 

record index in the three least-significant bytes.  Metadata tables and their respective indexes are described in 

§22.2 and later subclauses. 

Coded metadata tokens also contain table and record indexes, but in a different format. For details on the 

encoding, see §24.2.6. 

22.1  Metadata validation rules  

This contains informative text only 

The subclauses that follow describe the schema for each kind of metadata table, and explain the detailed rules 

that guarantee metadata emitted into any PE file is valid.  Checking that metadata is valid ensures that later 

processing (such as checking the CIL instruction stream for type safety, building method tables, CIL-to-native-

code compilation, and data marshalling) will not cause the CLI to crash or behave in an insecure fashion.  

In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I) even 

though these are not related to valid Metadata.  These are marked with a trailing [CLS] tag. 

The rules for valid metadata refer to an individual module.  A module is any collection of metadata that could 

typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script 

compilers (where the metadata is often held only in memory, but never actually saved to a file on disk). 

The rules address intra-module validation only.  As such, software that checks conformance with this standard 
need not resolve references or walk type hierarchies defined in other modules. However, even if two modules, 

A and B, analyzed separately, contain only valid metadata, they can still be in error when viewed together (e.g., 
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a call from Module A, to a method defined in module B, might specify a call site signature that does not match 

the signatures defined for that method in B). 

All checks are categorized as ERROR, WARNING, or CLS.  

 An ERROR check reports something that might cause a CLI to crash or hang, it might run but 

produce wrong answers; or it might be entirely benign.   Conforming implementations of the CLI 

can exist that will not accept metadata that violates an ERROR rule, and therefore such metadata 
is invalid and is not portable. 

 A WARNING check reports something, not actually wrong, but possibly a slip on the part of the 

compiler.  Normally, it indicates a case where a compiler could have encoded the same 

information in a more compact fashion or where the metadata represents a construct that can have 

no actual use at runtime.  All conforming implementations shall support metadata that violate 

only WARNING rules; hence such metadata is both valid and portable. 

 A CLS check reports lack of compliance with the Common Language Specification (see 

Partition I).  Such metadata is both valid and portable, but programming languages might exist 

that cannot process it, even though all conforming implementations of the CLI support the 

constructs. 

Validation rules fall into the following broad categories: 

 Number of Rows:  A few tables are allowed only one row (e.g., Module table).  Most have no 

such restriction. 

 Unique Rows: No table shall contain duplicate rows, where ―duplicate‖ is defined in terms of its 

key column, or combination of columns. 

 Valid Indexes: Columns which are indexes shall point somewhere sensible, as follows:  

o Every index into the String, Blob, or Userstring heaps shall point into that heap, 

neither before its start (offset 0), nor after its end. 

o Every index into the Guid heap shall lie between 1 and the maximum element number 

in this module, inclusive. 

o Every index (row number) into another metadata table shall lie between 0 and that 

table‘s row count + 1  (for some tables, the index can point just past the end of any 
target table, meaning it indexes nothing). 

 Valid Bitmasks: Columns which are bitmasks shall have only valid permutations of bits set. 

 Valid RVAs: There are restrictions upon fields and methods that are assigned RVAs (Relative 

Virtual Addresses, which are byte offsets, expressed from the address at which the corresponding 

PE file is loaded into memory). 

Note that some of the rules listed below really don‘t say anything—for example, some rules state that a 

particular table is allowed zero or more rows—in which case, there is no way that the check can fail.  This is 

done simply for completeness, to record that such details have indeed been addressed, rather than overlooked. 

End informative text 

The CLI imposes no limit on the length of names stored in metadata, and subsequently processed by a CLI 

implementation. 

22.2  Assembly : 0x20  

The Assembly table has the following columns: 

 HashAlgId (a 4-byte constant of type AssemblyHashAlgorithm, §23.1.1) 

 MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants) 

 Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2) 
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 PublicKey (an index into the Blob heap) 

 Name (an index into the String heap) 

 Culture (an index into the String heap)  

The Assembly table is defined using the .assembly directive (§6.2); its columns are obtained from the 

respective .hash algorithm, .ver, .publickey, and .culture (§6.2.1). (For an example, see §6.2.) 

This contains informative text only 

1. The Assembly table shall contain zero or one row  [ERROR] 

2. HashAlgId shall be one of the specified values  [ERROR] 

3. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value 

4. Flags shall have only those values set that are specified [ERROR] 

5. PublicKey can be null or non-null 

6. Name shall index a non-empty string in the String heap [ERROR] 

7. The string indexed by Name can be of unlimited length 

8. Culture can be null or non-null 

9. If Culture is non-null, it shall index a single string from the list specified (§23.1.3) [ERROR] 

[Note: Name is a simple name (e.g., ―Foo‖, with no drive letter, no path, and no file extension); on POSIX-

compliant systems, Name contains no colon, no forward-slash, no backslash, and no period. end note] 

End informative text 

22.3  AssemblyOS : 0x22  

The AssemblyOS table has the following columns: 

 OSPlatformID (a 4-byte constant) 

 OSMajorVersion (a 4-byte constant) 

 OSMinorVersion (a 4-byte constant) 

This record should not be emitted into any PE file.  However, if present in a PE file, it shall be treated as if all 

its fields were zero.  It shall be ignored by the CLI. 

22.4  AssemblyProcessor : 0x21  

The AssemblyProcessor table has the following column: 

 Processor (a 4-byte constant) 

This record should not be emitted into any PE file.  However, if present in a PE file, it should be treated as if its 

field were zero.  It should be ignored by the CLI. 

22.5  AssemblyRef : 0x23 

The AssemblyRef table has the following columns: 

 MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants) 

 Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2) 

 PublicKeyOrToken (an index into the Blob heap, indicating the public key or token that identifies 

the author of this Assembly) 

 Name (an index into the String heap) 
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 Culture (an index into the String heap) 

 HashValue (an index into the Blob heap) 

The table is defined by the .assembly extern directive (§6.3).  Its columns are filled using directives 

similar to those of the Assembly table except for the PublicKeyOrToken column, which is defined using the 

.publickeytoken directive.  (For an example, see §6.3.) 

This contains informative text only 

1. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value 

2. Flags shall have only one bit set, the PublicKey bit (§23.1.2).   All other bits shall be zero. 

[ERROR] 

3. PublicKeyOrToken can be null, or non-null (note that the Flags.PublicKey bit specifies 

whether the 'blob' is a full public key, or the short hashed token)  

4. If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR] 

5. Name shall index a non-empty string, in the String heap (there is no limit to its length) [ERROR] 

6. Culture can be null or non-null. 

7. If non-null, it shall index a single string from the list specified (§23.1.3) [ERROR] 

8. HashValue can be null or non-null 

9. If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR] 

10. The AssemblyRef table shall contain no duplicates (where duplicate rows are deemd to be those 

having the same MajorVersion, MinorVersion, BuildNumber, RevisionNumber, 

PublicKeyOrToken, Name, and Culture) [WARNING] 

[Note: Name is a simple name (e.g., ―Foo‖, with no drive letter, no path, and no file extension); on POSIX-

compliant systems Name contains no colon, no forward-slash, no backslash, and no period. end note] 

End informative text 

22.6  AssemblyRefOS : 0x25  

The AssemblyRefOS table has the following columns: 

 OSPlatformId (a 4-byte constant) 

 OSMajorVersion (a 4-byte constant) 

 OSMinorVersion (a 4-byte constant) 

 AssemblyRef  (an index into the AssemblyRef table) 

These records should not be emitted into any PE file.  However, if present in a PE file, they should be treated 

as-if their fields were zero.  They should be ignored by the CLI. 

22.7  AssemblyRefProcessor : 0x24  

The AssemblyRefProcessor table has the following columns: 

 Processor (a 4-byte constant) 

 AssemblyRef  (an index into the AssemblyRef table) 

These records should not be emitted into any PE file.  However, if present in a PE file, they should be treated 

as-if their fields were zero.  They should be ignored by the CLI. 
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22.8  ClassLayout : 0x0F 

The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI. 

(Normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type.) 

[Rationale: This feature is used to lay out a managed value type in exactly the same way as an unmanaged 
C struct, allowing a managed value type to be handed to unmanaged code, which then accesses the fields 

exactly as if that block of memory had been laid out by unmanaged code. end rationale] 

The information held in the ClassLayout table depends upon the Flags value for {AutoLayout, 

SequentialLayout, ExplicitLayout} in the owner class or value type.  

A type has layout if it is marked SequentialLayout or ExplicitLayout.  If any type within an inheritance chain 

has layout, then so shall all its base classes, up to the one that descends immediately from System.ValueType 

(if it exists in the type‘s hierarchy); otherwise, from System.Object. 

This contains informative text only 

Layout cannot begin part way down the chain.  But it is valid to stop ―having layout‖ at any point down the 

chain. 

For example, in the diagrams below, Class A derives from System.Object; class B derives from A; class C 

derives from B.  System.Object has no layout.  But A, B and C are all defined with layout, and that is valid. 

 
 

The situation with classes E, F, and G is similar.  G has no layout, and this too is valid.   The following picture 

shows two invalid setups: 

 
 

On the left, the ―chain with layout‖ does not start at the ‗highest‘ class.  And on the right, there is a ‗hole‘ in the 

―chain with layout‖ 
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Layout information for a class or value type is held in two tables (ClassLayout and FieldLayout), as shown in 

the following diagram: 

 

In this example, row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for a Class, 

called ―MyClass‖).  Rows 4–6 of the FieldLayout table point to corresponding rows in the Field table.  This 

illustrates how the CLI stores the explicit offsets for the three fields that are defined in ―MyClass‖ (there is 

always one row in the FieldLayout table for each field in the owning class or value type)   So, the ClassLayout 

table acts as an extension to those rows of the TypeDef table that have layout info; since many classes do not 

have layout info, overall, this design saves space. 

End informative text 

The ClassLayout table has the following columns: 

 PackingSize (a 2-byte constant) 

 ClassSize (a 4-byte constant) 

 Parent (an index into the TypeDef table) 

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of the type 

declaration in which this type is declared (§10.2). When either of these directives is omitted, its corresponding 

value is zero.  (See §10.7.) 

ClassSize of zero does not mean the class has zero size.  It means that no .size directive was specified at 

definition time, in which case, the actual size is calculated from the field types, taking account of packing size 

(default or specified) and natural alignment on the target, runtime platform. 

This contains informative text only 

1. A ClassLayout table can contain zero or more rows 

2. Parent shall index a valid row in the TypeDef table, corresponding to a Class or ValueType (but 

not to an Interface)  [ERROR] 

3. The Class or ValueType indexed by Parent shall be SequentialLayout or ExplicitLayout 

(§23.1.15). (That is, AutoLayout types shall not own any rows in the ClassLayout table.) 

[ERROR] 

4. If Parent indexes a SequentialLayout type, then: 

o PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128}.  (0 means use the default 

pack size for the platform on which the application is running.)  [ERROR] 

o If Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 

bytes).  [ERROR] 

5. If Parent indexes an ExplicitLayout type, then 

o if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 

bytes)  [ERROR] 

o PackingSize shall be 0. (It makes no sense to provide explicit offsets for each field, as 

well as a packing size.)  [ERROR] 
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6. Note that an ExplicitLayout type might result in a verifiable type, provided the layout does not 

create a type whose fields overlap. 

7. Layout along the length of an inheritance chain shall follow the rules specified above (start ing at 

‗highest‘ Type, with no ‗holes‘, etc.)   [ERROR] 

End informative text 

22.9  Constant : 0x0B  

The Constant table is used to store compile-time, constant values for fields, parameters, and properties. 

The Constant table has the following columns: 

 Type (a 1-byte constant, followed by a 1-byte padding zero); see §23.1.16 .  The encoding of Type 

for the nullref value for FieldInit in ilasm (§16.2) is ELEMENT_TYPE_CLASS with a Value of a 4-

byte zero.  Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed by a type 

token. 

 Parent (an index into the Param, Field, or Property table; more precisely, a HasConstant 

(§24.2.6) coded index) 

 Value (an index into the Blob heap) 

Note that Constant information does not directly influence runtime behavior, although it is visible via 

Reflection (and hence can be used to implement functionality such as that provided by 

System.Enum.ToString).  Compilers inspect this information, at compile time, when importing metadata, but 
the value of the constant itself, if used, becomes embedded into the CIL stream the compiler emits.  There are 

no CIL instructions to access the Constant table at runtime. 

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent. 

(For an example, see §16.2. ) 

This contains informative text only 

1. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, 

ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, 

ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, or 

ELEMENT_TYPE_STRING; or ELEMENT_TYPE_CLASS with a Value of zero  (§23.1.16) [ERROR] 

2. Type shall not be any of: ELEMENT_TYPE_I1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4, or 

ELEMENT_TYPE_U8 (§23.1.16)  [CLS] 

3. Parent shall index a valid row in the Field, Property, or Param table.  [ERROR] 

4. There shall be no duplicate rows, based upon Parent  [ERROR] 

5. Type shall match exactly the declared type of the Param, Field, or Property identified by Parent 
(in the case where the parent is an enum, it shall match exactly the underlying type of that enum).  

[CLS] 

End informative text 

22.10  Custo mAttribute : 0x0C  

The CustomAttribute table has the following columns: 

 Parent (an index into any metadata table, except the CustomAttribute table itself; more precisely, 

a HasCustomAttribute  (§24.2.6) coded index) 

 Type (an index into the MethodDef or MemberRef table; more precisely, a CustomAttributeType  

(§24.2.6) coded index) 

 Value (an index into the Blob heap) 
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The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an 

object of the specified Custom Attribute class) at runtime.  The column called Type is slightly misleading—it 

actually indexes a constructor method—the owner of that constructor method is the Type of the Custom 

Attribute. 

A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of 

the Type column and optionally that of the Value column (§21). 

This contains informative text only 

All binary values are stored in little-endian format (except for PackedLen items, which are used only as a count 

for the number of bytes to follow in a UTF8 string). 

1. No CustomAttribute is required; that is, Value is permitted to be null. 

2. Parent can be an index into any metadata table, except the CustomAttribute table itself  [ERROR] 

3. Type shall index a valid row in the Method or MemberRef table.  That row shall be a constructor 

method (for the class of which this information forms an instance)  [ERROR]  

4. Value can be null or non-null. 

5. If Value is non-null, it shall index a 'blob' in the Blob heap  [ERROR] 

6. The following rules apply to the overall structure of the Value 'blob' (§23.3): 

o Prolog shall be 0x0001  [ERROR] 

o There shall be as many occurrences of FixedArg as are declared in the Constructor 

method  [ERROR] 

o NumNamed can be zero or more 

o There shall be exactly NumNamed occurrences of NamedArg  [ERROR] 

o Each NamedArg shall be accessible by the caller  [ERROR] 

o If NumNamed = 0 then there shall be no further items in the CustomAttrib  [ERROR] 

7. The following rules apply to the structure of FixedArg (§23.3): 

o If this item is not for a vector (a single-dimension array with lower bound of 0), then 

there shall be exactly one Elem  [ERROR] 

o If this item is for a vector, then: 

o NumElem shall be 1 or more  [ERROR] 

o This shall be followed by NumElem occurrences of Elem  [ERROR] 

8. The following rules apply to the structure of Elem (§23.3): 

o If this is a simple type or an enum (see §23.3 for how this is defined), then Elem 

consists simply of its value  [ERROR] 

o If this is a string or a Type, then Elem consists of a SerString – PackedLen count of 

bytes, followed by the UTF8 characters   [ERROR]  

o If this is a boxed simple value type (bool, char, float32, float64, int8, int16, 

int32, int64, unsigned int8, unsigned int16, unsigned int32, or unsigned 

int64), then Elem consists of the corresponding type denoter (ELEMENT_TYPE_BOOLEAN, 

ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, 

ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, 

ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, or ELEMENT_TYPE_R8), followed by its value.  

[ERROR] 

9. The following rules apply to the structure of NamedArg (§23.3): 

o The single byte FIELD (0x53) or PROPERTY (0x54)  [ERROR] 
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o The type of the Field or Property is one of ELEMENT_TYPE_BOOLEAN, 

ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, 

ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, 

ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING, or the 

constant 0x50 (for an argument of type System.Type) [ERROR] 

o The name of the Field or Property, respectively with the previous item, as a SerString 
– PackedLen count of bytes, followed by the UTF8 characters of the name  [ERROR] 

o A FixedArg  (see above)  [ERROR] 

End informative text 

22.11  DeclSecurity : 0x0E  

Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition IV), 

can be attached to a TypeDef, a Method, or an Assembly.  All constructors of this class shall take a 

System.Security.Permissions.SecurityAction value as their first parameter, describing what should be 

done with the permission on the type, method or assembly to which it is attached.  Code access security 

attributes, which derive from System.Security.Permissions. CodeAccessSecurityAttribute, can have any 

of the security actions. 

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below).  All 

security custom attributes for a given security action on a method, type, or assembly shall be gathered together, 

and one System.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced 

from the DeclSecurity table. 

[Note: The general flow from a compiler‘s point of view is as follows.  The user specifies a custom attribute 

through some language-specific syntax that encodes a call to the attribute‘s constructor. If the attribute‘s type is 

derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security 

custom attribute and requires special treatment, as follows (other custom attributes are handled by simply 

recording the constructor in the metadata as described in §22.10). The attribute object is constructed, and 

provides a method (CreatePermission) to convert it into a security permission object (an object derived from 

System.Security.Permission). All the permission objects attached to a given metadata item with the same 

security action are combined together into a System.Security.PermissionSet.  This permission set is 

converted into a form that is ready to be stored in XML using its ToXML method to create a 

System.Security.SecurityElement.  Finally, the XML that is required for the metadata is created using the 

ToString method on the security element. end note] 

The DeclSecurity table has the following columns: 

 Action (a 2-byte value) 

 Parent (an index into the TypeDef, MethodDef, or Assembly table; more precisely, a 

HasDeclSecurity  (§24.2.6) coded index) 

 PermissionSet (an index into the Blob heap)  

Action is a 2-byte representation of Security Actions (see System.Security.SecurityAction in Partition IV).  

The values 0–0xFF are reserved for future standards use.  Values 0x20–0x7F and 0x100–0x07FF are for uses 

where the action can be ignored if it is not understood or supported.  Values 0x80–0xFF and 0x0800–0xFFFF 

are for uses where the action shall be implemented for secure operation; in implementations where the action is 
not available, no access to the assembly, type, or method shall be permitted. 

Security Action Note Explanation of behavior Valid Scope 

Assert 1 Without further checks, satisfy Demand for the 

specified permission. 

Method, Type  

Demand 1 Check that all callers in the call chain have been 

granted specified permission, throw 

SecurityException (see Partition IV) on failure. 

Method, Type  
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Deny 1 Without further checks refuse Demand for the 

specified permission. 

Method, Type  

InheritanceDemand 1 The specified permission shall be granted in order 

to inherit from class or override virtual method.  

Method, Type  

LinkDemand 1 Check that the immediate caller has been granted 

the specified permission; throw 

SecurityException (see Partition IV) on failure. 

Method, Type  

NonCasDemand 2 Check that the current assembly has been granted 

the specified permission; throw 

SecurityException (see Partition IV) otherwise. 

Method, Type  

NonCasLinkDemand 2 Check that the immediate caller has been granted 
the specified permission; throw 

SecurityException (see Partition IV) otherwise. 

Method, Type 

PrejitGrant  Reserved for implementation-specific use. Assembly 

PermitOnly 1 Without further checks, refuse Demand for all 

permissions other than those specified. 

Method, Type  

RequestMinimum  Specify the minimum permissions required to run. Assembly 

RequestOptional  Specify the optional permissions to grant. Assembly 

RequestRefuse  Specify the permissions not to be granted. Assembly 

 

Note 1: The specified attribute shall derive from System.Security.Permissions.CodeAccess-
SecurityAttribute 

Note 2: The attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not 

derive from System.Security.Permissions.CodeAccessSecurityAttribute 

Parent is a metadata token that identifies the Method, Type, or Assembly on which security custom attributes 

encoded in PermissionSet was defined. 

PermissionSet is a 'blob' having the following format: 

 A byte containing a period (.). 

 A compressed int32 containing the number of attributes encoded in the blob. 

 An array of attributes each containing the following: 

o A String, which is the fully-qualified type name of the attribute. (Strings are encoded 

as a compressed int to indicate the size followed by an array of UTF8 characters.)  

o A set of properties, encoded as the named arguments to a custom attribute would be (as 

in §23.3, beginning with NumNamed). 

The permission set contains the permissions that were requested with an Action on a specific Method, Type, or 

Assembly (see Parent). In other words, the blob will contain an encoding of all the attributes on the Parent with 

that particular Action. 

[Note: The first edition of this standard specified an XML encoding of a permission set. Implementations 
should continue supporting this encoding for backward compatibility. end note] 

The rows of the DeclSecurity table are filled by attaching a .permission or .permissionset directive 

that specifies the Action and PermissionSet on a parent assembly (§6.6) or parent type or method (§10.2). 

This contains informative text only 

1. Action shall have only those values set that are specified  [ERROR] 
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2. Parent shall be one of TypeDef, MethodDef, or Assembly.   That is, it shall index a valid row in 

the TypeDef table, the MethodDef table, or the Assembly table.  [ERROR] 

3. If Parent indexes a row in the TypeDef table, that row should not define an Interface.  The 

security system ignores any such parent; compilers should not emit such permissions sets.  

[WARNING] 

4. If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit shall be set  [ERROR] 

5. If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit shall be set  [ERROR] 

6. PermissionSet shall index a 'blob' in the Blob heap  [ERROR] 

7. The format of the 'blob' indexed by PermissionSet shall represent a valid, encoded CLI object 

graph.  (The encoded form of all standardized permissions is specified in Partition IV.) [ERROR] 

End informative text 

22.12  EventMap : 0x12  

The EventMap table has the following columns: 

 Parent (an index into the TypeDef table) 

 EventList (an index into the Event table).  It marks the first of a contiguous run of Events owned 

by this Type.  That run continues to the smaller of: 

o the last row of the Event table 

o the next run of Events, found by inspecting the EventList of the next row in the 
EventMap  table 

Note that EventMap info does not directly influence runtime behavior; what counts is the information stored for 

each method that the event comprises.  

The EventMap and Event tables result from putting the .event directive on a class (§18). 

This contains informative text only 

1. EventMap table can contain zero or more rows 

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‗pointer‘ to the 

start of its event list)  [ERROR] 

3. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the 
Event table)  [ERROR] 

End informative text 

22.13  Event : 0x14  

Events are treated within metadata much like Properties; that is, as a way to associate a collection of methods 

defined on a given class.  There are two required methods (add_ and remove_) plus an optional one (raise_); 

others are permitted.  All of the methods gathered together as an Event shall be defined on the class. 

The association between a row in the TypeDef table and the collection of methods that make up a given Event 

is held in three separate tables (exactly analogous to the approach used for Properties), as follows: 

Partition%20IV%20Library.doc
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Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4 

of the Event table on the right (the row for an Event called DocChanged).  This setup establishes that MyClass 
has an Event called DocChanged.  But what methods in the MethodDef table are gathered together as 

‗belonging‘ to event DocChanged?  That association is contained in the MethodSemantics table – its row 2 

indexes event DocChanged to the right, and row 2 in the MethodDef table to the left (a method called 

add_DocChanged).  Also, row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in 

the MethodDef table to the left (a method called remove_DocChanged).  As the shading suggests, MyClass has 

another event, called TimedOut, with two methods, add_TimedOut and remove_TimedOut. 

Event tables do a little more than group together existing rows from other tables.  The Event table has columns 

for EventFlags, Name (e.g., DocChanged and TimedOut in  the example here), and EventType.  In addition, the 

MethodSemantics table has a column to record whether the method it indexes is an add_, a remove_, a raise_, 

or other function. 

The Event table has the following columns: 

 EventFlags (a 2-byte bitmask of type EventAttributes, §23.1.4) 

 Name (an index into the String heap) 

 EventType (an index into a TypeDef, a TypeRef, or TypeSpec table; more precisely, a 

TypeDefOrRef  (§24.2.6) coded index) (This corresponds to the Type of the Event; it is not the 

Type that owns this event.) 

Note that Event information does not directly influence runtime behavior; what counts is the information stored 

for each method that the event comprises. 

The EventMap and Event tables result from putting the .event directive on a class (§18). 

This contains informative text only 

1. The Event table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the EventMap table  [ERROR] 

3. EventFlags shall have only those values set that are specified (all combinations valid)  [ERROR] 

4. Name shall index a non-empty string in the String heap  [ERROR] 

5. The Name string shall be a valid CLS identifier  [CLS] 

6. EventType can be null or non-null 

7. If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table  

[ERROR] 
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8. If EventType is non-null, then the row in the TypeDef, TypeRef, or TypeSpec table that it indexes 

shall be a Class (not an Interface or a ValueType)  [ERROR] 

9. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table  

[ERROR] 

10. For each row, there can be zero or one raise_ row, as well as zero or more other rows in the 

MethodSemantics table  [ERROR] 

11. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based 

upon Name  [ERROR] 

12. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS 

conflicting-identifier-rules  [CLS] 

End informative text 

22.14  ExportedType : 0x27  

The ExportedType table holds a row for each type: 

a. Defined within other modules of this Assembly; that is exported out of this Assembly.  In essence, it 

stores TypeDef row numbers of all types that are marked public in other modules that this Assembly 

comprises.   

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row 

number) and Implementation (in effect, the module that holds the target TypeDef table).  Note that this 
is the only occurrence in metadata of foreign tokens; that is, token values that have a meaning in 

another module.  (A regular token value is an index into a table in the current module); OR 

b. Originally defined in this Assembly but now moved to another Assembly. Flags must have 

IsTypeForwarder set and Implementation is an AssemblyRef indicating the Assembly the type may 

now be found in. 

 

The full name of the type need not be stored directly.  Instead, it can be split into two parts at any included ―.‖ 

(although typically this is done at the last ―.‖ in the full name).  The part preceding the ―.‖ is stored as the 

TypeNamespace and that following the ―.‖ is stored as the TypeName.  If there is no ―.‖ in the full name, then 

the TypeNamespace shall be the index of the empty string. 

The ExportedType table has the following columns: 

 Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15) 

 TypeDefId (a 4-byte index into a TypeDef table of another module in this Assembly).  This 

column is used as a hint only.  If the entry in the target TypeDef table matches the TypeName and 

TypeNamespace entries in this table, resolution has succeeded.  But if there is a mismatch, the 

CLI shall fall back to a search of the target TypeDef table. Ignored and should be zero if Flags 

has IsTypeForwarder set. 

 TypeName (an index into the String heap) 

 TypeNamespace (an index into the String heap) 

 Implementation.  This is an index (more precisely, an Implementation (§24.2.6) coded index) into 

either of the following tables: 

o File table, where that entry says which module in the current assembly holds the 

TypeDef 

o ExportedType table, where that entry is the enclosing Type of the current nested Type 

o AssemblyRef table, where that entry says in which assembly the type may now be 

found (Flags must have the IsTypeForwarder flag set). 
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The rows in the ExportedType table are the result of the .class extern directive (§6.7). 

This contains informative text only 

 The term ―FullName‖ refers to the string created as follows: if the TypeNamespace is null, then use the 

TypeName, otherwise use the concatenation of Typenamespace, ―.‖, and TypeName. 

1. The ExportedType table can contain zero or more rows 

2. There shall be no entries in the ExportedType table for Types that are defined in the current 

module—just for Types defined in other modules within the Assembly  [ERROR] 

3. Flags shall have only those values set that are specified   [ERROR] 

4. If Implementation indexes the File table, then Flags.VisibilityMask shall be public (§23.1.15) 

[ERROR] 

5. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be 

NestedPublic (§23.1.15)  [ERROR] 

6. If non-null, TypeDefId should index a valid row in a TypeDef table in a module somewhere within 

this Assembly (but not this module), and the row so indexed should have its Flags.Public = 1  

(§23.1.15)  [WARNING] 

7. TypeName shall index a non-empty string in the String heap  [ERROR] 

8. TypeNamespace can be null, or non-null 

9. If TypeNamespace is non-null, then it shall index a non-empty string in the String heap  [ERROR]  

10. FullName shall be a valid CLS identifier  [CLS] 

11. If this is a nested Type, then TypeNamespace should be null, and TypeName should represent the 

unmangled, simple name of the nested Type  [ERROR] 

12. Implementation shall be a valid index into either of the following:  [ERROR] 

o the File table; that file shall hold a definition of the target Type in its TypeDef table 

o a different row in the current ExportedType table—this identifies the enclosing Type of 

the current, nested Type 

13. FullName shall match exactly the corresponding FullName for the row in the TypeDef table 
indexed by TypeDefId  [ERROR] 

14. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR] 

15. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type  

[ERROR] 

16. The complete list of Types exported from the current Assembly is given as the catenation of the 

ExportedType table with all public Types in the current TypeDef table, where ―public‖ means a 

Flags.VisibilityMask of either Public or NestedPublic.  There shall be no duplicate rows, in this 

concatenated table, based upon FullName (add Enclosing Type into the duplicates check if this is 

a nested Type)  [ERROR] 

End informative text 

22.15  Field : 0x04  

The Field table has the following columns: 

 Flags (a 2-byte bitmask of type FieldAttributes, §23.1.5) 

 Name (an index into the String heap) 

 Signature (an index into the Blob heap) 
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Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However, 

the owner of any row in the Field table is not stored anywhere in the Field table itself.   There is merely a 

‗forward-pointer‘ from each row in the TypeDef table (the FieldList column), as shown in the following 

illustration.   

 

The TypeDef table has rows 1–4.  The first row in the TypeDef table corresponds to a pseudo type, inserted 

automatically by the CLI.  It is used to denote those rows in the Field table corresponding to global variables.  

The Field table has rows 1–6.  Type 1 (pseudo type for ‗module‘) owns rows 1 and 2 in the Field table.  Type 2 

owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table.  Type 3 owns 
rows 3–5 in the Field table.  Type 4 owns row 6 in the Field table.  So, in the Field table, rows 1 and 2 belong 

to Type 1 (global variables); rows 3–5 belong to Type 3; row 6 belongs to Type 4. 

Each row in the Field table results from a top-level .field directive (§5.10), or a .field directive inside a 

Type (§10.2).  (For an example, see §14.5.) 

This contains informative text only 

1. The Field table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR] 

3. The owner row in the TypeDef table shall not be an Interface  [CLS] 

4. Flags shall have only those values set that are specified  [ERROR] 

5. The FieldAccessMask subfield of Flags shall contain precisely one of CompilerControlled, 

Private, FamANDAssem, Assembly, Family, FamORAssem, or Public (§23.1.5)  [ERROR] 

6. Flags can set either or neither of Literal or InitOnly, but not both (§23.1.5)   [ERROR] 

7. If Flags.Literal = 1 then Flags.Static shall also be 1  (§23.1.5)  [ERROR] 

8. If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1  (§23.1.5)  [ERROR] 

9. If Flags.HasFieldMarshal = 1, then this row shall ‗own‘ exactly one row in the FieldMarshal 

table  (§23.1.5)   [ERROR] 

10. If Flags.HasDefault = 1, then this row shall ‗own‘ exactly one row in the Constant table  

(§23.1.5)  [ERROR] 

11. If Flags.HasFieldRVA = 1, then this row shall ‗own‘ exactly one row in the Field’s RVA table  

(§23.1.5)   [ERROR] 

12. Name shall index a non-empty string in the String heap  [ERROR] 

13. The Name string shall be a valid CLS identifier  [CLS] 

14. Signature shall index a valid field signature in the Blob heap   [ERROR] 

15. If Flags.CompilerControlled = 1 (§23.1.5), then this row is ignored completely in duplicate 

checking.  

16. If the owner of this field is the internally-generated type called <Module>, it denotes that this field 

is defined at module scope (commonly called a global variable). In this case:  

o Flags.Static shall be 1  [ERROR] 
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o Flags.MemberAccessMask subfield shall be one of Public, CompilerControlled, or 

Private (§23.1.5)  [ERROR] 

o module-scope fields are not allowed  [CLS] 

17. There shall be no duplicate rows in the Field table, based upon owner+Name+Signature (where 

owner is the owning row in the TypeDef table, as described above)  (Note however that if 

Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking)  
[ERROR] 

18. There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields 

are compared using CLS conflicting-identifier-rules.  So, for example,"int i" and "float i" 

would be considered CLS duplicates.  (Note however that if Flags.CompilerControlled = 1, then 

this row is completely excluded from duplicate checking, as noted above)  [CLS]  

19. If this is a field of an Enum then: 

 

a. owner row in TypeDef table shall derive directly from System.Enum  [ERROR] 

b. the owner row in TypeDef table shall have no other instance fields  [CLS] 

c. its Signature shall be one of ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_I4, or 

ELEMENT_TYPE_I8 (§23.1.16 ): [CLS] 

20. its Signature shall be an integral type. [ERROR] 

End informative text 

22.16  FieldLayout : 0x10  

The FieldLayout table has the following columns: 

 Offset (a 4-byte constant) 

 Field (an index into the Field table) 

Note that each Field in any Type is defined by its Signature.  When a Type instance (i.e., an object) is laid out 

by the CLI, each Field is one of four kinds: 

 Scalar: for any member of built-in type, such as int32.  The size of the field is given by the size 

of that intrinsic, which varies between 1 and 8 bytes 

 ObjectRef: for ELEMENT_TYPE_CLASS, ELEMENT_TYPE_STRING, ELEMENT_TYPE_OBJECT, 

ELEMENT_TYPE_ARRAY, ELEMENT_TYPE_SZARRAY 

 Pointer: for ELEMENT_TYPE_PTR, ELEMENT_TYPE_FNPTR 

 ValueType: for ELEMENT_TYPE_VALUETYPE.  The instance of that ValueType is actually laid out in 

this object, so the size of the field is the size of that ValueType  

Note that metadata specifying explicit structure layout can be valid for use on one platform but not on another, 

since some of the rules specified here are dependent on platform-specific alignment rules. 

A row in the FieldLayout table is created if the .field directive for the parent field has specified a field 

offset (§16). 

This contains informative text only 

1. A FieldLayout table can contain zero or more or rows 

2. The Type whose Fields are described by each row of the FieldLayout table shall have 

Flags.ExplicitLayout (§23.1.15) set  [ERROR] 

3. Offset shall be zero or more  [ERROR] 
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4. Field shall index a valid row in the Field table  [ERROR] 

5. Flags.Static for the row in the Field table indexed by Field shall be non-static (i.e., zero 0)  

[ERROR] 

6. Among the rows owned by a given Type there shall be no duplicates, based upon Field.  That is, a 

given Field of a Type cannot be given two offsets.    [ERROR] 

7. Each Field of kind ObjectRef shall be naturally aligned within the Type  [ERROR] 

8. Among the rows owned by a given Type it is perfectly valid for several rows to have the same 

value of Offset.  ObjectRef and a valuetype cannot have the same offset  [ERROR] 

9. Every Field of an ExplicitLayout Type shall be given an offset; that is, it shall have a row in the 

FieldLayout table  [ERROR] 

End informative text 

22.17  FieldMarshal : 0x0D 

The FieldMarshal table has two columns.  It ‗links‘ an existing row in the Field or Param table, to information 

in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as 

parameter number 0) shall be marshalled when calling to or from unmanaged code via PInvoke dispatch. 

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.  

In order to execute such paths, the caller, on most platforms, would be installed with elevated security 

permission.  Once it invokes unmanaged code, it lies outside the regime that the CLI can check—it is simply 
trusted not to violate the type system. 

The FieldMarshal table has the following columns: 

 Parent (an index into Field or Param table; more precisely, a HasFieldMarshal (§24.2.6) coded 

index) 

 NativeType (an index into the Blob heap) 

For the detailed format of the 'blob', see §23.4 

A row in the FieldMarshal table is created if the .field directive for the parent field has specified a 

marshal attribute (§16.1). 

This contains informative text only 

1. A FieldMarshal table can contain zero or more rows 

2. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say 

which of these two tables each refers to)  [ERROR] 

3. NativeType shall index a non-null 'blob' in the Blob heap  [ERROR]  

4. No two rows shall point to the same parent.  In other words, after the Parent values have been 

decoded to determine whether they refer to the Field or the Param table, no two rows can point to 
the same row in the Field table or in the Param table [ERROR] 

5. The following checks apply to the MarshalSpec 'blob' (§23.4): 

a. NativeIntrinsic shall be exactly one of the constant values in its production (§23.4)  

[ERROR] 

b. If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production  

[ERROR] 

c. If ARRAY, then ParamNum can be zero 

d. If ARRAY, then ParamNum cannot be < 0  [ERROR] 
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e. If ARRAY, and ParamNum > 0, then Parent shall point to a row in the Param table, not in the 

Field table  [ERROR] 

f. If ARRAY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters 

supplied to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a 

member  [ERROR] 

g. If ARRAY, then ElemMult shall be >= 1  [ERROR] 

h. If ARRAY and ElemMult != 1 issue a warning, because it is probably a mistake  [WARNING] 

i. If ARRAY and ParamNum = 0, then NumElem shall be >= 1  [ERROR] 

j. If ARRAY and ParamNum != 0 and NumElem != 0 then issue a warning, because  it is 

probably a mistake  [WARNING] 

End informative text 

22.18  FieldRVA : 0x1D 

The FieldRVA table has the following columns: 

 RVA (a 4-byte constant) 

 Field (an index into Field table) 

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records 

the RVA (Relative Virtual Address) within the image file at which this field‘s initial value is stored. 

A row in the FieldRVA table is created for each static parent field that has specified the optional data 

label §16).  The RVA column is the relative virtual address of the data in the PE file (§16.3). 

This contains informative text only 

1. RVA shall be non-zero  [ERROR] 

2. RVA shall point into the current module‘s data area (not its metadata area)  [ERROR]  

3. Field shall index a valid row in the Field table  [ERROR] 

4. Any field with an RVA shall be a ValueType (not a Class or an Interface).  Moreover, it shall not 

have any private fields (and likewise for any of its fields that are themselves ValueTypes).  (If 

any of these conditions were breached, code could overlay that global static and access its private 

fields.)  Moreover, no fields of that ValueType can be Object References (into the GC heap)  
[ERROR] 

5. So long as two RVA-based fields comply with the previous conditions, the ranges of memory 

spanned by the two ValueTypes can overlap, with no further constraints.  This is not actually an 

additional rule; it simply clarifies the position with regard to overlapped RVA-based fields 

End informative text 

22.19  File : 0x26  

The File table has the following columns: 

 Flags (a 4-byte bitmask of type FileAttributes, §23.1.6) 

 Name (an index into the String heap) 

 HashValue (an index into the Blob heap) 

The rows of the File table result from .file directives in an Assembly (§6.2.3) 

This contains informative text only 
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1. Flags shall have only those values set that are specified (all combinations valid)  [ERROR] 

2. Name shall index a non-empty string in the String heap.  It shall be in the format 

<filename>.<extension>  (e.g., ―foo.dll‖, but not ―c:\utils\foo.dll‖)  [ERROR] 

3. HashValue shall index a non-empty 'blob' in the Blob heap  [ERROR] 

4. There shall be no duplicate rows; that is, rows with the same Name value  [ERROR] 

5. If this module contains a row in the Assembly table (that is, if this module ―holds the manifest‖) 
then there shall not be any row in the File table for this module; i.e., no self-reference  [ERROR] 

6. If the File table is empty, then this, by definition, is a single-file assembly.  In this case, the 

ExportedType table should be empty  [WARNING] 

End informative text 

22.20  GenericParam : 0x2A  

The GenericParam table has the following columns: 

 Number (the 2-byte index of the generic parameter, numbered left-to-right, from zero) 

 Flags (a 2-byte bitmask of type GenericParamAttributes, §23.1.7) 

 Owner (an index into the TypeDef or MethodDef table, specifying the Type or Method to which 

this generic parameter applies; more precisely, a TypeOrMethodDef  (§24.2.6) coded index) 

 Name (a non-null index into the String heap, giving the name for the generic parameter.  This is 

purely descriptive and is used only by source language compilers and by Reflection) 

The GenericParam table stores the generic parameters used in generic type definitions and generic method 

definitions.  These generic parameters can be constrained (i.e., generic arguments shall extend some class 

and/or implement certain interfaces) or unconstrained.  (Such constraints are stored in the 

GenericParamConstraint table.) 

Conceptually, each row in the GenericParam table is owned by one, and only one, row in either the TypeDef or 

MethodDef tables.  

[Example: 

.class Dict`2<([mscorlib]System.IComparable) K, V> 

  

The generic parameter K of class Dict is constrained to implement System.IComparable. 

.method static void ReverseArray<T>(!!0[] 'array') 

There is no constraint on the generic parameter T of the generic method ReverseArray. 

end example] 

 

This contains informative text only 

1. GenericParam table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the TypeDef or MethodDef table  (i.e., no 

row sharing) [ERROR] 

3. Every generic type shall own one row in the GenericParam table for each of its generic 

parameters  [ERROR] 

4. Every generic method shall own one row in the GenericParam table for each of its generic 

parameters  [ERROR] 

Flags: 
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 Can hold the value Covariant or Contravariant, but only if the owner row corresponds to a 

generic interface, or a generic delegate class.  [ERROR] 

 Otherwise, shall hold the value None indicating nonvariant (i.e., where the parameter is 

nonvariant or the owner is a non delegate class, a value-type, or a generic method)  [ERROR] 

If Flags == Covariant then the corresponding generic parameter can appear in a type definition only as 

[ERROR]: 

 The result type of a method 

 A generic parameter to an inherited interface 

If Flags == Contravariant then the corresponding generic parameter can appear in a type definition only 

as the argument to a method  [ERROR] 

Number shall have a value >= 0 and < the number of generic parameters in owner type or method.  

[ERROR] 

Successive rows of the GenericParam table that are owned by the same method shall be ordered by 

increasing Number value; there shall be no gaps in the Number sequence  [ERROR] 

Name shall be non-null and index a string in the String heap  [ERROR]  

[Rationale: Otherwise, Reflection output is not fully usable. end rationale] 

There shall be no duplicate rows based upon Owner+Name  [ERROR]  [Rationale: Otherwise, code 

using Reflection cannot disambiguate the different generic parameters. end rationale] 

There shall be no duplicate rows based upon Owner+Number [ERROR] 

End informative text 

22.21  GenericParamConstraint : 0x2C  

The GenericParamConstraint table has the following columns: 

 Owner (an index into the GenericParam table, specifying to which generic parameter this row 
refers) 

 Constraint (an index into the TypeDef, TypeRef, or TypeSpec tables, specifying from which class 

this generic parameter is constrained to derive; or which interface this generic parameter is 

constrained to implement;  more precisely, a TypeDefOrRef  (§24.2.6) coded index) 

The GenericParamConstraint table records the constraints for each generic parameter.  Each generic parameter 

can be constrained to derive from zero or one class.  Each generic parameter can be constrained to implement 

zero or more interfaces. 

Conceptually, each row in the GenericParamConstraint table is ‗owned‘ by a row in the GenericParam table. 

All rows in the GenericParamConstraint table for a given Owner shall refer to distinct constraints. 

Note that if Constraint is a TypeRef to System.ValueType, then it means the constraint type shall be 

System.ValueType, or one of its sub types.  However, since System.ValueType itself is a reference type, this 
particular mechanism does not guarantee that the type is a non-reference type. 

This contains informative text only 

1. The GenericParamConstraint table can contain zero or more rows  

2. Each row shall have one, and only one, owner row in the GenericParam table (i.e., no row sharing)  

[ERROR] 

3. Each row in the GenericParam table shall ‗own‘ a separate row in the GenericParamConstraint 

table for each constraint that generic parameter has  [ERROR] 
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4. All of the rows in the GenericParamConstraint table that are owned by a given row in the 

GenericParam table shall form a contiguous range (of rows)  [ERROR] 

5. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or one 

row in the GenericParamConstraint table corresponding to a class constraint.  [ERROR] 

6. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or more 

rows in the GenericParamConstraint table corresponding to an interface constraint.  [ERROR] 

7. There shall be no duplicate rows based upon Owner+Constraint  [ERROR] 

8. Constraint shall not reference System.Void. [ERROR] 

End informative text 

22.22  ImplMap : 0x1C 

The ImplMap table holds information about unmanaged methods that can be reached from managed code, 

using PInvoke dispatch.  

Each row of the ImplMap table associates a row in the MethodDef table (MemberForwarded) with the name of 

a routine (ImportName) in some unmanaged DLL (ImportScope).   

[Note: A typical example would be: associate the managed Method stored in row N of the Method table (so 
MemberForwarded would have the value N) with the routine called ―GetEnvironmentVariable‖ (the string 

indexed by ImportName) in the DLL called ―kernel32‖ (the string in the ModuleRef table indexed by 

ImportScope).  The CLI intercepts calls to managed Method number N, and instead forwards them as calls to 

the unmanaged routine called ―GetEnvironmentVariable‖ in ―kernel32.dll‖ (including marshalling any 

arguments, as required) 

The CLI does not support this mechanism to access fields that are exported from a DLL, only methods. end 

note] 

The ImplMap table has the following columns: 

 MappingFlags (a 2-byte bitmask of type PInvokeAttributes, §23.1.7) 

 MemberForwarded (an index into the Field or MethodDef table; more precisely, a 

MemberForwarded  (§24.2.6) coded index).  However, it only ever indexes the MethodDef table, 
since Field export is not supported. 

 ImportName (an index into the String heap) 

 ImportScope (an index into the ModuleRef table) 

A row is entered in the ImplMap table for each parent Method (§15.5) that is defined with a .pinvokeimpl 

interoperation attribute specifying the MappingFlags, ImportName, and ImportScope. 

This contains informative text only 

1. ImplMap can contain zero or more rows 

2. MappingFlags shall have only those values set that are specified  [ERROR] 

3. MemberForwarded shall index a valid row in the MethodDef table  [ERROR] 

4. The MappingFlags.CharSetMask (§23.1.7) in the row of the MethodDef table indexed by 

MemberForwarded shall have at most one of the following bits set: CharSetAnsi, 

CharSetUnicode, or CharSetAuto (if none is set, the default is CharSetNotSpec)  [ERROR] 

5. ImportName shall index a non-empty string in the String heap  [ERROR] 

6. ImportScope shall index a valid row in the ModuleRef table  [ERROR] 
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7. The row indexed in the MethodDef table by MemberForwarded shall have its Flags.PinvokeImpl 

= 1, and Flags.Static = 1  [ERROR] 

End informative text 

22.23  InterfaceImpl : 0x09  

The InterfaceImpl table has the following columns: 

 Class (an index into the TypeDef table) 

 Interface (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef  
(§24.2.6) coded index) 

The InterfaceImpl table records the interfaces a type implements explicitly.  Conceptually, each row in the 

InterfaceImpl table indicates that Class implements Interface. 

This contains informative text only 

1. The InterfaceImpl table can contain zero or more rows 

2. Class shall be non-null [ERROR] 

3. If Class is non-null, then: 

a. Class shall index a valid row in the TypeDef table  [ERROR] 

b. Interface shall index a valid row in the TypeDef or TypeRef table  [ERROR] 

c. The row in the TypeDef, TypeRef, or TypeSpec table indexed by Interface shall be an 

interface (Flags.Interface = 1), not a Class or ValueType  [ERROR] 

4. There should be no duplicates in the InterfaceImpl table, based upon non-null Class and Interface 

values  [WARNING] 

5. There can be many rows with the same value for Class (since a class can implement many 
interfaces) 

6. There can be many rows with the same value for Interface (since many classes can implement the 

same interface) 

End informative text 

22.24  ManifestResource : 0x28  

The ManifestResource table has the following columns: 

 Offset  (a 4-byte constant) 

 Flags (a 4-byte bitmask of type ManifestResourceAttributes, §23.1.9)  

 Name (an index into the String heap) 

 Implementation (an index into a File table, a AssemblyRef table, or  null; more precisely, an 

Implementation  (§24.2.6) coded index) 

The Offset specifies the byte offset within the referenced file at which this resource record begins.  The 

Implementation specifies which file holds this resource.  The rows in the table result from .mresource 

directives on the Assembly (§6.2.2). 

This contains informative text only 

1. The ManifestResource table can contain zero or more rows 
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2. Offset shall be a valid offset into the target file, starting from the Resource entry in the CLI 

header  [ERROR] 

3. Flags shall have only those values set that are specified  [ERROR] 

4. The VisibilityMask (§23.1.9) subfield of Flags shall be one of Public or Private  [ERROR] 

5. Name shall index a non-empty string in the String heap  [ERROR] 

6. Implementation can be null or non-null (if null, it means the resource is stored in the current file)  

7. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the 

Resource entry in the CLI header  [ERROR] 

8. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table  

[ERROR] 

9. There shall be no duplicate rows, based upon Name  [ERROR] 

10. If the resource is an index into the File table, Offset shall be zero  [ERROR] 

End informative text 

22.25  MemberRef : 0x0A 

The MemberRef table combines two sorts of references, to Methods and to Fields of a class, known as 

‗MethodRef‘ and ‗FieldRef‘, respectively.    The MemberRef table has the following columns: 

 Class (an index into the MethodDef, ModuleRef,TypeDef, TypeRef, or TypeSpec tables; more 

precisely, a MemberRefParent  (§24.2.6) coded index) 

 Name (an index into the String heap) 

 Signature (an index into the Blob heap) 

An entry is made into the MemberRef table whenever a reference is made in the CIL code to a method or field 

which is defined in another module or assembly.  (Also, an entry is made for a call to a method with a VARARG 

signature, even when it is defined in the same module as the call site.)  

This contains informative text only 

1. Class shall be one of the following:  [ERROR] 

a. a TypeRef token, if the class that defines the member is defined in another module.  (Note 

that it is unusual, but valid, to use a TypeRef token when the member is defined in this same 

module, in which case, its TypeDef token can be used instead.) 

b. a ModuleRef token, if the member is defined, in another module of the same assembly, as a 

global function or variable. 

c. a MethodDef token, when used to supply a call-site signature for a vararg method that is 

defined in this module.  The Name shall match the Name in the corresponding MethodDef 
row.  The Signature shall match the Signature in the target method definition  [ERROR] 

d. a TypeSpec token, if the member is a member of a generic type 

2. Class shall not be null (as this would indicate an unresolved reference to a global function or 

variable)  [ERROR] 

3. Name shall index a non-empty string in the String heap  [ERROR] 

4. The Name string shall be a valid CLS identifier  [CLS] 

5. Signature shall index a valid field or method signature in the Blob heap.  In particular, it shall 

embed exactly one of the following ‗calling conventions‘:  [ERROR]  

a. DEFAULT (0x0) 
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b. VARARG (0x5) 

c. FIELD (0x6) 

d. GENERIC (0x10) 

6. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class, 

Name, and Signature  [WARNING] 

7. Signature shall not have the VARARG (0x5) calling convention  [CLS] 

8. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-

identifier-rules.  (In particular, note that the return type and whether parameters are marked 

ELEMENT_TYPE_BYREF (§23.1.16) are ignored in the CLS.  For example, .method int32 M()and 

.method float64 M() result in duplicate rows by CLS rules.  Similarly, .method void 

N(int32 i)and .method void N(int32& i)also result in duplicate rows by CLS rules.)  [CLS] 

9. If Class and Name resolve to a field, then that field shall not have a value of CompilerControlled 

(§23.1.5) in its Flags.FieldAccessMask subfield  [ERROR]  

10. If Class and Name resolve to a method, then that method shall not have a value of 

CompilerControlled in its Flags.MemberAccessMask (§23.1.10) subfield  [ERROR] 

11. The type containing the definition of a MemberRef shall be a TypeSpec representing an 

instantiated type. 

End informative text 

22.26  MethodDef : 0x06  

The MethodDef table has the following columns: 

 RVA (a 4-byte constant) 

 ImplFlags (a 2-byte bitmask of type MethodImplAttributes, §23.1.10) 

 Flags (a 2-byte bitmask of type MethodAttributes, §23.1.10) 

 Name (an index into the String heap) 

 Signature (an index into the Blob heap) 

 ParamList (an index into the Param table).  It marks the first of a contiguous run of Parameters 

owned by this method.  The run continues to the smaller of:  

o the last row of the Param table 

o the next run of Parameters, found by inspecting the ParamList of the next row in the 
MethodDef  table 

Conceptually, every row in the MethodDef table is owned by one, and only one, row in the TypeDef table. 

The rows in the MethodDef table result from .method directives (§15). The RVA column is computed when 

the image for the PE file is emitted and points to the COR_ILMETHOD structure for the body of the method 

(§25.4)  

[Note: If Signature is GENERIC (0x10), the generic arguments are described in the GenericParam table (§22.20). 

end note] 

This contains informative text only 

1. The MethodDef table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR] 

3. ImplFlags shall have only those values set that are specified   [ERROR] 
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4. Flags shall have only those values set that are specified  [ERROR] 

5. If Name is .ctor and the method is marked SpecialName, there shall not be a row in the 

GenericParam table which has this MethodDef as its owner. [ERROR] 

6. The MemberAccessMask (§23.1.10) subfield of Flags shall contain precisely one of 

CompilerControlled, Private, FamANDAssem, Assem, Family, FamORAssem, or Public [ERROR] 

7. The following combined bit settings in Flags are invalid  [ERROR] 

a. Static | Final 

b. Static | Virtual 

c. Static | NewSlot 

d. Final  | Abstract 

e. Abstract | PinvokeImpl 

f. CompilerControlled | SpecialName 

g. CompilerControlled | RTSpecialName 

8. An abstract method shall be virtual.  So, if Flags.Abstract = 1 then Flags.Virtual shall also be 1  

[ERROR] 

9. If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1  [ERROR] 

10. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:  [ERROR]  

o this Method owns at least row in the DeclSecurity table  

o this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute 

11. If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall 

be 1  [ERROR] 

12. If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then 

Flags.HasSecurity shall be 1  [ERROR] 

13. A Method can have a custom attribute called DynamicSecurityMethodAttribute, but this has no 

effect whatsoever upon the value of its Flags.HasSecurity 

14. Name shall index a non-empty string in the String heap  [ERROR] 

15. Interfaces cannot have instance constructors.  So, if this Method is owned by an Interface, then its 

Name cannot be .ctor  [ERROR] 

16. The Name string shall be a valid CLS identifier  (unless Flags.RTSpecialName is set - for 

example, .cctor is valid)   [CLS] 

17. Signature shall index a valid method signature in the Blob heap  [ERROR] 

18. If Flags.CompilerControlled = 1, then this row is ignored completely in duplicate checking 

19. If the owner of this method is the internally-generated type called <Module>, it denotes that this 

method is defined at module scope. [Note: In C++, the method is called global and can be 

referenced only within its compiland, from its point of declaration forwards.  end note]  In this 
case: 

a. Flags.Static shall be 1  [ERROR] 

b. Flags.Abstract shall be 0  [ERROR] 

c. Flags.Virtual shall be 0  [ERROR] 

d. Flags.MemberAccessMask subfield shall be one of CompilerControlled, Public, or 

Private  [ERROR] 
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e. module-scope methods are not allowed  [CLS] 

20. It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless 

they are boxed).  So, if the owner of this method is a ValueType then the method cannot be 

synchronized.  That is, ImplFlags.Synchronized shall be 0  [ERROR] 

21. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature 

(where owner is the owning row in the TypeDef table). (Note that the Signature encodes whether 
or not the method is generic, and for generic methods, it encodes the number of generic 

parameters.)  (Note, however, that if Flags.CompilerControlled = 1, then this row is excluded 

from duplicate checking)  [ERROR] 

22. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature, 

where Name fields are compared using CLS conflicting-identifier-rules; also, the Type defined in 

the signatures shall be different.  So, for example, "int i" and "float i" would be considered 

CLS duplicates; also, the return type of the method is ignored  (Note, however, that if 

Flags.CompilerControlled = 1, this row is excluded from duplicate checking as explained above.)  

[CLS] 

23. If Final, NewSlot, or Strict are set in Flags, then Flags.Virtual shall also be set  [ERROR] 

24. If Flags.PInvokeImpl is set, then Flags.Virtual shall be 0  [ERROR] 

25. If Flags.Abstract != 1 then exactly one of the following shall also be true:  [ERROR] 

o RVA != 0 

o Flags.PInvokeImpl = 1 

o ImplFlags.Runtime = 1 

26. If the method is CompilerControlled, then the RVA shall be non-zero or marked with 

PinvokeImpl = 1  [ERROR] 

27. Signature shall have exactly one of the following managed calling conventions  [ERROR]  

a. DEFAULT (0x0) 

b. VARARG (0x5) 

c. GENERIC (0x10) 

28. Signature shall have the calling convention DEFAULT (0x0) or GENERIC (0x10). [CLS] 

29. Signature: If and only if the method is not Static then the calling convention byte in Signature 

has its HASTHIS (0x20) bit set  [ERROR] 

30. Signature: If the method is static, then the HASTHIS (0x20) bit in the calling convention shall 

be 0  [ERROR]  

31. If EXPLICITTHIS (0x40) in the signature is set, then HASTHIS (0x20) shall also be set  (note that if 

EXPLICITTHIS is set, then the code is not verifiable)  [ERROR] 

32. The EXPLICITTHIS (0x40) bit can be set only in signatures for function pointers: signatures whose 

MethodDefSig is preceded by FNPTR (0x1B)  [ERROR] 

33. If RVA = 0, then either: [ERROR] 

o Flags.Abstract = 1, or 

o ImplFlags.Runtime = 1, or 

o Flags.PinvokeImpl = 1, or 

34. If RVA != 0, then: [ERROR] 

a. Flags.Abstract shall be 0, and 
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b. ImplFlags.CodeTypeMask shall have exactly one of the following values: Native,  CIL, or 

Runtime, and 

c. RVA shall point into the CIL code stream in this file 

35. If Flags.PinvokeImpl = 1 then  [ERROR] 

o RVA = 0 and the method owns a row in the ImplMap table 

36. If Flags.RTSpecialName = 1 then Name shall be one of:  [ERROR] 

a. .ctor (an object constructor method) 

b. .cctor (a class constructor method) 

37. Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set  

[ERROR] 

38. If Name = .ctor (an object constructor method) then: 

a. return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16)  [ERROR]  

b. Flags.Static shall be 0  [ERROR] 

c. Flags.Abstract shall be 0  [ERROR]  

d. Flags.Virtual shall be 0  [ERROR] 

e. ‗Owner‘ type shall be a valid Class or ValueType (not <Module> and not an Interface) in the 

TypeDef table  [ERROR] 

f. there can be zero or more .ctors for any given ‗owner‘  

39. If Name = .cctor (a class constructor method) then: 

a. the return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16)   [ERROR]  

b. Signature shall have DEFAULT (0x0) for its calling convention [ERROR] 

c. there shall be no parameters supplied in Signature  [ERROR] 

d. Flags.Static shall be set  [ERROR] 

e. Flags.Virtual shall be clear  [ERROR] 

f. Flags.Abstract shall be clear  [ERROR] 

40. Among the set of methods owned by any given row in the TypeDef table there can only be 0 or 1 

methods named .cctor  [ERROR] 

End informative text 

22.27  MethodImpl : 0x19  

MethodImpl tables let a compiler override the default inheritance rules provided by the CLI. Their original use 

was to allow a class C, that inherited method M from both interfaces I and J, to provide implementations for 

both methods (rather than have only one slot for M in its vtable). However, MethodImpls can be used for other 

reasons too, limited only by the compiler writer‘s ingenuity within the constraints defined in the Validation 

rules below. 

In the example above, Class specifies C, MethodDeclaration specifies I::M, MethodBody specifies the method 

which provides the implementation for I::M (either a method body within C, or a method body implemented by 

a base class of C). 

The MethodImpl table has the following columns: 

 Class (an index into the TypeDef table) 
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 MethodBody (an index into the MethodDef or MemberRef table; more precisely, a 

MethodDefOrRef  (§24.2.6) coded index) 

 MethodDeclaration (an index into the MethodDef or MemberRef table; more precisely, a 

MethodDefOrRef  (§24.2.6) coded index) 

ILAsm uses the .override directive to specify the rows of the MethodImpl table (§10.3.2 and §15.4.1). 

This contains informative text only 

1. The MethodImpl table can contain zero or more rows 

2. Class shall index a valid row in the TypeDef table  [ERROR] 

3. MethodBody shall index a valid row in the MethodDef or MemberRef table  [ERROR] 

4. The method indexed by MethodDeclaration shall have Flags.Virtual set  [ERROR] 

5. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0  

[ERROR] 

6. The method indexed by MethodBody shall be a member of Class or some base class of Class 

(MethodImpls do not allow compilers to ‗hook‘ arbitrary method bodies)  [ERROR] 

7. The method indexed by MethodBody shall be virtual  [ERROR] 

8. The method indexed by MethodBody shall have its Method.RVA != 0  (cannot be an unmanaged 

method reached via PInvoke, for example)  [ERROR] 

9. MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends 

chain) or in the interface tree of Class (reached via its InterfaceImpl entries)  [ERROR] 

10. The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)  

[ERROR] 

11. If MethodDeclaration has the Strict flag set, the method indexed by MethodDeclaration shall be 

accessible to Class.  [ERROR] 

12. The method signature defined by MethodBody shall match those defined by MethodDeclaration  

[ERROR] 

13. There shall be no duplicate rows, based upon Class+MethodDeclaration  [ERROR] 

End informative text 

22.28  MethodSemantics : 0x18  

The MethodSemantics table has the following columns: 

 Semantics (a 2-byte bitmask of type MethodSemanticsAttributes, §23.1.12) 

 Method (an index into the MethodDef table) 

 Association (an index into the Event or Property table; more precisely, a HasSemantics (§24.2.6) 

coded index)  

The rows of the MethodSemantics table are filled by .property (§17) and .event directives (§18).   

(See §22.13 for more information.) 

This contains informative text only 

1. MethodSemantics table can contain zero or more rows 

2. Semantics shall have only those values set that are specified  [ERROR] 

3. Method shall index a valid row in the MethodDef table, and that row shall be for a method defined 

on the same class as the Property or Event this row describes  [ERROR]  
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4. All methods for a given Property or Event shall have the same accessibility (ie the 

MemberAccessMask subfield of their Flags row) and cannot be CompilerControlled  [CLS] 

5. Semantics: constrained as follows: 

o If this row is for a Property, then exactly one of Setter, Getter, or Other shall be set  

[ERROR] 

o If this row is for an Event, then exactly one of AddOn, RemoveOn, Fire, or Other shall 
be set  [ERROR] 

6. If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the MethodDef 

table indexed by Method shall take a Delegate as a parameter, and return void  [ERROR] 

7. If this row is for an Event, and its Semantics is Fire, then the row indexed in the MethodDef table 

by Method can return any type 

8. For each property, there shall be a setter, or a getter, or both [CLS]  

9. Any getter method for a property whose Name is xxx shall be called get_xxx  [CLS] 

10. Any setter method for a property whose Name is xxx shall be called set_xxx  [CLS] 

11. If a property provides both getter and setter methods, then these methods shall have the same 

value in the Flags.MemberAccessMask subfield  [CLS] 

12. If a property provides both getter and setter methods, then these methods shall have the same 
value for their Method.Flags.Virtual  [CLS] 

13. Any getter and setter methods shall have Method.Flags.SpecialName = 1  [CLS] 

14. Any getter method shall have a return type which matches the signature indexed by the 

Property.Type field  [CLS] 

15. The last parameter for any setter method shall have a type which matches the signature indexed 

by the Property.Type field  [CLS] 

16. Any setter method shall have return type ELEMENT_TYPE_VOID (§23.1.16) in Method.Signature  

[CLS] 

17. If the property is indexed, the indexes for getter and setter shall agree in number and type  [CLS]  

18. Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx 

(<DelegateType> handler)  [CLS] 

19. Any RemoveOn method for an event whose Name is xxx shall have the signature: void 

remove_xxx(<DelegateType> handler)  [CLS] 

20. Any Fire method for an event whose Name is xxx shall have the signature: void 

raise_xxx(Event e)  [CLS] 

End informative text 

22.29  MethodSpec : 0x2B  

The MethodSpec table has the following columns: 

 Method (an index into the MethodDef or MemberRef table, specifying to which generic method 

this row refers; that is, which generic method this row is an instantiation of; more precisely, a 

MethodDefOrRef  (§24.2.6) coded index) 

 Instantiation  (an index into the Blob heap (§23.2.15), holding the signature of this instantiation) 

The MethodSpec table records the signature of an instantiated generic method.  

Each unique instantiation of a generic method (i.e., a combination of Method and Instantiation) shall be 
represented by a single row in the table. 
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This contains informative text only 

1. The MethodSpec table can contain zero or more rows 

2. One or more rows can refer to the same row in the MethodDef or MemberRef table.  (There can be 

multiple instantiations of the same generic method.) 

3. The signature stored at Instantiation shall be a valid instantiation of the signature of the generic 

method stored at Method  [ERROR] 

4. There shall be no duplicate rows based upon Method+Instantiation  [ERROR] 

End informative text 

22.30  Module : 0x00  

The Module table has the following columns: 

 Generation (a 2-byte value, reserved, shall be zero)  

 Name (an index into the String heap) 

 Mvid  (an index into the Guid heap; simply a Guid used to distinguish between two versions of the 

same module) 

 EncId (an index into the Guid heap; reserved, shall be zero) 

 EncBaseId (an index into the Guid heap; reserved, shall be zero) 

The Mvid column shall index a unique GUID in the GUID heap (§24.2.5) that identifies this instance of the 

module.  The Mvid can be ignored on read by conforming implementations of the CLI. The Mvid should be 
newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or another 

compatible algorithm. 

[Note: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using 

its hexadecimal encoding.  A GUID can be generated by several well-known algorithms including those used 

for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in 

COM. end note] 

 

[Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside 

the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another. end 

rationale] 

The Generation, EncId, and EncBaseId columns can be written as zero, and can be ignored by conforming 

implementations of the CLI.  The rows in the Module table result from .module directives in the Assembly 

(§6.4). 

This contains informative text only 

1. The Module table shall contain one and only one row  [ERROR] 

2. Name shall index a non-empty string.  This string should match exactly any corresponding 

ModuleRef.Name string that resolves to this module.  [ERROR] 

3. Mvid shall index a non-null GUID in the Guid heap  [ERROR] 

End informative text 

22.31  ModuleRef : 0x1A 

The ModuleRef table has the following column: 

 Name (an index into the String heap) 
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The rows in the ModuleRef table result from .module extern directives in the Assembly (§6.5). 

This contains informative text only 

1. Name shall index a non-empty string in the String heap.  This string shall enable the CLI to locate 

the target module (typically, it might name the file used to hold the module)   [ERROR]  

2. There should be no duplicate rows  [WARNING] 

3. Name should match an entry in the Name column of the File table.  Moreover, that entry shall 

enable the CLI to locate the target module (typically it might name the file used to hold the 

module)  [ERROR] 

End informative text 

22.32  NestedClass : 0x29  

The NestedClass table has the following columns: 

 NestedClass (an index into the TypeDef table) 

 EnclosingClass (an index into the TypeDef table) 

NestedClass is defined as lexically ‗inside‘ the text of its enclosing Type. 

This contains informative text only 

The NestedClass table records which Type definitions are nested within which other Type definition. In a 

typical high-level language, the nested class is defined as lexically ‗inside‘ the text of its enclosing Type 

1. The NestedClass table can contain zero or more rows 

2. NestedClass shall index a valid row in the TypeDef table  [ERROR] 

3. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to 

index the TypeRef table)  [ERROR] 

4. There should be no duplicate rows (ie same values for NestedClass and EnclosingClass)  

[WARNING] 

5. A given Type can only be nested by one encloser.  So, there cannot be two rows with the same 

value for NestedClass, but different value for EnclosingClass  [ERROR] 

6. A given Type can ‗own‘ several different nested Types, so it is perfectly valid to have two or 

more rows with the same value for EnclosingClass but different values for NestedClass 

End informative text 

22.33  Param : 0x08  

The Param table has the following columns: 

 Flags (a 2-byte bitmask of type ParamAttributes, §23.1.13) 

 Sequence (a 2-byte constant) 

 Name (an index into the String heap) 

Conceptually, every row in the Param table is owned by one, and only one, row in the MethodDef table  

The rows in the Param table result from the parameters in a method declaration (§15.4), or from a .param 

attribute attached to a method (§15.4.1). 

This contains informative text only 
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1. Param table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the MethodDef table  [ERROR] 

3. Flags shall have only those values set that are specified (all combinations valid)  [ERROR]  

4. Sequence shall have a value >= 0 and <= number of parameters in owner method.  A Sequence 

value of 0 refers to the owner method‘s return type; its parameters are then numbered from 1 

onwards  [ERROR] 

5. Successive rows of the Param table that are owned by the same method shall be ordered by 

increasing Sequence value - although gaps in the sequence are allowed  [WARNING] 

6. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table  [ERROR] 

7. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row  

[ERROR] 

8. parameters cannot be given default values, so Flags.HasDefault shall be 0  [CLS] 

9. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table  

[ERROR] 

10. Name can be null or non-null 

11. If Name is non-null, then it shall index a non-empty string in the String heap  [WARNING] 

End informative text 

22.34  Property : 0x17  

Properties within metadata are best viewed as a means to gather together collections of methods defined on a 

class, give them a name, and not much else.  The methods are typically get_ and set_ methods, already defined 

on the class, and inserted like any other methods into the MethodDef table.  The association is held together by 

three separate tables, as shown below: 

 

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing 

row 4 of the Property table on the right – the row for a property called Foo.  This setup establishes that 

MyClass has a property called Foo.  But what methods in the MethodDef table are gathered together as 

‗belonging‘ to property Foo?  That association is contained in the MethodSemantics table – its row 2 indexes 

property Foo to the right, and row 2 in the MethodDef table to the left (a method called get_Foo).  Also, row 3 
of the MethodSemantics table indexes Foo to the right, and row 3 in the MethodDef table to the left (a method 

called set_Foo).  As the shading suggests, MyClass has another property, called Bar, with two methods, 

get_Bar and set_Bar. 
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Property tables do a little more than group together existing rows from other tables.  The Property table has 

columns for Flags, Name (eg Foo and Bar in  the example here) and Type.  In addition, the MethodSemantics 

table has a column to record whether the method it points at is a set_, a get_ or other. 

[Note: The CLS (see Partition I) refers to instance, virtual, and static properties.  The signature of a property 

(from the Type column) can be used to distinguish a static property, since instance and virtual properties will 

have the ―HASTHIS‖ bit set in the signature (§23.2.1) while a static property will not.  The distinction between 
an instance and a virtual property depends on the signature of the getter and setter methods, which the CLS 

requires to be either both virtual or both instance. end note] 

The Property ( 0x17 ) table has the following columns: 

 Flags (a 2-byte bitmask of type PropertyAttributes, §23.1.14) 

 Name (an index into the String heap) 

 Type (an index into the Blob heap)  (The name of this column is misleading.  It does not index a 

TypeDef or TypeRef table—instead it indexes the signature in the Blob heap of the Property)  

This contains informative text only 

1. Property table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)  

[ERROR] 

3. PropFlags shall have only those values set that are specified (all combinations valid)  [ERROR]  

4. Name shall index a non-empty string in the String heap  [ERROR] 

5. The Name string shall be a valid CLS identifier  [CLS] 

6. Type shall index a non-null signature in the Blob heap  [ERROR] 

7. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading 
byte is 0x8).  Apart from this leading byte, the signature is the same as the property‘s get_ method  

[ERROR] 

8. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based 

upon Name+Type  [ERROR] 

9. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS 

conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type – a class 

cannot have two properties, "int Foo" and "String Foo", for example)  [CLS] 

End informative text 

22.35  PropertyMap : 0x15  

The PropertyMap table has the following columns: 

 Parent (an index into the TypeDef table) 

 PropertyList (an index into the Property table).  It marks the first of a contiguous run of 
Properties owned by Parent.  The run continues to the smaller of:  

o the last row of the Property table 

o the next run of Properties, found by inspecting the PropertyList of the next row in this 

PropertyMap table 

The PropertyMap and Property tables result from putting the .property directive on a class (§17). 

This contains informative text only 

1. PropertyMap table can contain zero or more rows 
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2. There shall be no duplicate rows, based upon Parent (a given class has only one ‗pointer‘ to the 

start of its property list)  [ERROR] 

3. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in 

the Property table)  [ERROR] 

End informative text 

22.36  StandAloneSig : 0x11  

Signatures are stored in the metadata Blob heap.  In most cases, they are indexed by a column in some table—
Field.Signature, Method.Signature, MemberRef.Signature, etc.  However, there are two cases that require a 

metadata token for a signature that is not indexed by any metadata table.  The StandAloneSig table fulfils this 

need.  It has just one column, which points to a Signature in the Blob heap. 

The signature shall describe either: 

 a method – code generators create a row in the StandAloneSig table for each occurrence of a calli 
CIL instruction.  That row indexes the call-site signature for the function pointer operand of the 

calli instruction 

 local variables – code generators create one row in the StandAloneSig table for each method, to 

describe all of its local variables.  The .locals directive (§15.4.1) in ILAsm generates a row in 

the StandAloneSig table. 

TheStandAloneSig table has the following column: 

 Signature (an index into the Blob heap) 

[Example:  

// On encountering the calli instruction, ilasm generates a signature 

// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Param1 = int32),  

// indexed by the StandAloneSig table: 

.assembly Test {} 

.method static int32 AddTen(int32) 

{ ldarg.0 

  ldc.i4  10 

  add 

  ret  

} 

.class Test 

{ .method static void main() 

  { .entrypoint 

    ldc.i4.1 

    ldftn int32 AddTen(int32) 

    calli int32(int32) 

    pop 

    ret 

  } 

} 

end example] 

This contains informative text only 

1. The StandAloneSig table can contain zero or more rows 

2. Signature shall index a valid signature in the Blob heap  [ERROR] 

3. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature  [ERROR] 

4. Duplicate rows are allowed 
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End informative text 

22.37  TypeDef : 0x02  

The TypeDef table has the following columns: 

 Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15) 

 TypeName (an index into the String heap) 

 TypeNamespace (an index into the String heap) 

 Extends (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef  
(§24.2.6) coded index) 

 FieldList (an index into the Field table; it marks the first of a contiguous run of Fields owned by 

this Type).  The run continues to the smaller of:  

o the last row of the Field table 

o the next run of Fields, found by inspecting the FieldList of the next row in this 

TypeDef table 

 MethodList (an index into the MethodDef table; it marks the first of a continguous run of Methods 

owned by this Type).  The run continues to the smaller of:  

o the last row of the MethodDef table 

o the next run of Methods, found by inspecting the MethodList of the next row in this 

TypeDef table 

The first row of the TypeDef table represents the pseudo class that acts as parent for functions and variables 

defined at module scope. 

Note that any type shall be one, and only one, of 

 Class (Flags.Interface = 0, and derives ultimately from System.Object) 

 Interface (Flags.Interface = 1) 

 Value type, derived ultimately from System.ValueType 

For any given type, there are two separate and distinct chains of pointers to other types (the pointers are 

actually implemented as indexes into metadata tables).  The two chains are: 

 Extension chain – defined via the Extends column of the TypeDef table.  Typically, a derived 

Class extends a base Class (always one, and only one, base Class) 

 Interface chains – defined via the InterfaceImpl table.  Typically, a Class implements zero, one or 
more Interfaces 

These two chains (extension and interface) are always kept separate in metadata.  The Extends chain represents 

one-to-one relations—that is, one Class extends (or ‗derives from‘) exactly one other Class (called its 

immediate base class).  The Interface chains can represent one-to-many relations—that is, one Class might well 

implement two or more Interfaces.  

An interface can also implement one or more other interfaces—metadata stores those links via the 

InterfaceImpl table (the nomenclature is a little inappropriate here—there is no ―implementation‖ involved; 

perhaps a clearer name might have been Interface table, or InterfaceInherit table)   

Another slightly specialized type is a nested type which is declared in ILAsm as lexically nested within an 

enclosing type declaration.   Whether a type is nested can be determined by the value of its Flags.Visibility sub-

field – it shall be one of the set {NestedPublic, NestedPrivate, NestedFamily, NestedAssembly, 
NestedFamANDAssem, NestedFamORAssem}.  
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If a type is generic, its parameters are defined in the GenericParam table (§22.20). Entries in the 

GenericParam table reference entries in the TypeDef table; there is no reference from the TypeDef table to the 

GenericParam table. 

This contains informative text only 

The roots of the inheritance hierarchies look like this: 

 
 

There is one system-defined root, System.Object.  All Classes and ValueTypes shall derive, ultimately, from 

System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth 

required.  This Extends inheritance chain is shown with heavy arrows. 

(See below for details of the System.Delegate Class) 

Interfaces do not inherit from one another; however, they can have zero or more required interfaces, which 

shall be implemented.  The Interface requirement chain is shown as light, dashed arrows.  This includes links 

between Interfaces and Classes/ValueTypes – where the latter are said to implement that interface or interfaces. 

Regular ValueTypes (i.e., excluding Enums – see later) are defined as deriving directly from 

System.ValueType.  Regular ValueTypes cannot be derived to a depth of more than one.  (Another way to state 

this is that user-defined ValueTypes shall be sealed.)  User-defined Enums shall derive directly from 

System.Enum.  Enums cannot be derived to a depth of more than one below System.Enum.  (Another way to 
state this is that user-defined Enums shall be sealed.)  System.Enum derives directly from System.ValueType. 

User-defined delegates derive from System.Delegate.   Delegates cannot be derived to a depth of more than 

one. 

For the directives to declare types see §9. 

1. A TypeDef table can contain one or more rows. 

2. Flags: 

a. Flags shall have only those values set that are specified  [ERROR] 

b. can set 0 or 1 of SequentialLayout and  ExplicitLayout (if none set, then defaults to 

AutoLayout)  [ERROR]  

c. can set 0 or 1 of UnicodeClass and AutoClass (if none set, then defaults to AnsiClass)  

[ERROR] 

d. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:  
[ERROR] 

 this Type owns at least one row in the DeclSecurity table  
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 this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute 

e. If this Type owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall 

be 1  [ERROR] 

f. If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then 

Flags.HasSecurity shall be 1  [ERROR] 

g. Note that it is valid for an Interface to have HasSecurity set.  However, the security system 
ignores any permission requests attached to that Interface 

3. Name shall index a non-empty string  in the String heap  [ERROR] 

4. The TypeName string shall be a valid CLS identifier  [CLS] 

5. TypeNamespace can be null or non-null 

6. If non-null, then TypeNamespace shall index a non-empty string in the String heap  [ERROR] 

7. If non-null, TypeNamespace‘s string shall be a valid CLS Identifier  [CLS]  

8. Every Class (with the exception of System.Object and the special class <Module>) shall extend 

one, and only one, other Class - so Extends for a Class shall be non-null [ERROR] 

9. System.Object shall have an Extends value of null  [ERROR] 

10. System.ValueType shall have an Extends value of System.Object  [ERROR] 

11. With the exception of System.Object and the special class <Module>, for any Class, Extends shall 
index a valid row in the TypeDef, TypeRef, or TypeSpec table, where valid means 1 <= row <= 

rowcount.  In addition, that row itself shall be a Class (not an Interface or ValueType)  In 

addition, that base Class shall not be sealed (its Flags.Sealed shall be 0)  [ERROR] 

12. A Class cannot extend itself, or any of its children (i.e., its derived Classes), since this would 

introduce loops in the hierarchy tree  [ERROR] (For generic types, see §9.1 and §9.2.) 

13. An Interface never extends another Type - so Extends shall be null (Interfaces do implement other 

Interfaces, but recall that this relationship is captured via the InterfaceImpl table, rather than the 

Extends column)  [ERROR] 

14. FieldList can be null or non-null 

15. A Class or Interface can ‗own‘ zero or more fields 

16. A ValueType shall have a non-zero size - either by defining at least one field, or by providing a 

non-zero ClassSize  [ERROR] 

17. If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row 

<= rowcount+1  [ERROR] 

18. MethodList can be null or non-null 

19. A Type can ‗own‘ zero or more methods 

20. The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes)  [ERROR]  

21. If MethodList is non-null, it shall index a valid row in the MethodDef table, where valid means 1 

<= row <= rowcount+1  [ERROR] 

22. A Class which has one or more abstract methods cannot be instantiated, and shall have 

Flags.Abstract = 1.   Note that the methods owned by the class include all of those inherited from 

its base class and interfaces it implements, plus those defined via its MethodList.  (The CLI shall 

analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but 

has Flags.Abstract = 0, it will throw an exception)  [ERROR] 

23. An Interface shall have Flags.Abstract = 1  [ERROR] 

24. It is valid for an abstract Type to have a constructor method (ie, a method named .ctor) 
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25. Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every 

method its contract requires.  Its methods can be inherited from its base class, from the interfaces 

it implements, or defined by itself.  The implementations can be inherited from its base class, or 

defined by itself  [ERROR] 

26. An Interface (Flags.Interface = 1) can own static fields (Field.Static = 1) but cannot own instance 

fields (Field.Static = 0)  [ERROR] 

27. An Interface cannot be sealed (if Flags.Interface = 1, then Flags.Sealed shall be 0)  [ERROR] 

28. All of the methods owned by an Interface (Flags.Interface = 1) shall be abstract (Flags.Abstract 

= 1)  [ERROR] 

29. There shall be no duplicate rows in the TypeDef table, based on TypeNamespace+TypeName 

(unless this is a nested type - see below)  [ERROR] 

30. If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon 

TypeNamespace+TypeName+OwnerRowInNestedClassTable  [ERROR] 

31. There shall be no duplicate rows, where TypeNamespace+TypeName fields are compared using 

CLS conflicting-identifier-rules (unless this is a nested type - see below)  [CLS] 

32. If this is a nested type, there shall be no duplicate rows, based upon 

TypeNamespace+TypeName+OwnerRowInNestedClassTable and where 

TypeNamespace+TypeName fields are compared using CLS conflicting-identifier-rules  [CLS] 

33. If Extends = System.Enum  (i.e., type is a user-defined Enum) then: 

a. shall be sealed (Sealed = 1)  [ERROR] 

b. shall not have any methods of its own (MethodList chain shall be zero length)  [ERROR] 

c. shall not implement any interfaces (no entries in InterfaceImpl table for this type)  

[ERROR] 

d. shall not have any properties   [ERROR] 

e. shall not have any events   [ERROR] 

f. any static fields shall be literal (have Flags.Literal = 1)  [ERROR] 

g. shall have one or more static, literal fields, each of which has the type of the Enum  [CLS] 

h. shall be exactly one instance field, of built-in integer type  [ERROR] 

i. the Name string of the instance field shall be "value__", the field shall be marked 

RTSpecialName, and that field shall have one of the CLS integer types [CLS] 

j. shall not have any static fields unless they are literal [ERROR] 

34. A Nested type (defined above) shall own exactly one row in the NestedClass table, where ‗owns‘ 

means a row in that NestedClass table whose NestedClass column holds the TypeDef token for 

this type definition  [ERROR] 

35. A ValueType shall be sealed  [ERROR] 

End informative text 

22.38  TypeRef : 0x01  

The TypeRef table has the following columns: 

 ResolutionScope (an index into a Module, ModuleRef, AssemblyRef or TypeRef table, or null; 

more precisely, a ResolutionScope  (§24.2.6) coded index) 

 TypeName (an index into the String heap) 

 TypeNamespace (an index into the String heap) 
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This contains informative text only 

1. ResolutionScope shall be exactly one of: 

a. null - in this case, there shall be a row in the ExportedType table for this Type - its 

Implementation field shall contain a File token or an AssemblyRef token that says where the 

type is defined [ERROR] 

b. a TypeRef token, if this is a nested type (which can be determined by, for example, 

inspecting the Flags column in its TypeDef table - the accessibility subfield is one of the 

tdNestedXXX set)  [ERROR] 

c. a ModuleRef token, if the target type is defined in another module within the same 
Assembly as this one [ERROR] 

d. a Module token, if the target type is defined in the current module - this should not occur in 

a CLI (―compressed metadata‖) module  [WARNING]  

e. an AssemblyRef token, if the target type is defined in a different Assembly from the current 

module [ERROR] 

2. TypeName shall index a non-empty string in the String heap  [ERROR] 

3. TypeNamespace can be null, or non-null 

4. If non-null, TypeNamespace shall index a non-empty string in the String heap  [ERROR] 

5. The TypeName string shall be a valid CLS identifier  [CLS] 

6. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, TypeName and 

TypeNamespace  [ERROR] 

7. There shall be no duplicate rows, where TypeName and TypeNamespace fields are compared 
using CLS conflicting-identifier-rules  [CLS] 

End informative text 

22.39  TypeSpec : 0x1B 

The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.  

This provides a metadata token for that Type (rather than simply an index into the Blob heap). This is required, 

typically, for array operations, such as creating, or calling methods on the array class. 

The TypeSpec table has the following column: 

 Signature (index into the Blob heap, where the blob is formatted as specified in  §23.2.14) 

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token; 

specifically, castclass, cpobj, initobj, isinst, ldelema, ldobj, mkrefany, newarr, refanyval, sizeof, stobj, 
box, and unbox. 

This contains informative text only 

1. The TypeSpec table can contain zero or more rows 

2. Signature shall index a valid Type specification in the Blob heap  [ERROR] 

3. There shall be no duplicate rows, based upon Signature  [ERROR] 

End informative text 
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23 Metadata logical format: other structures  

23.1  Bitmasks and flags  

This subclause explains the flags and bitmasks used in the metadata tables. When a conforming implementation 

encounters a metadata structure (such as a flag) that is not specified in this standard, the behavior of the 

implementation is unspecified. 

23.1.1 Values for  Asse mblyHashAlgorithm  

Algorithm Value 

None 0x0000 

Reserved (MD5) 0x8003 

SHA1  0x8004 

 

23.1.2 Values for  Asse mblyFlags  

Flag Value Description 

PublicKey 0x0001 The assembly reference holds the full (unhashed) 

public key. 

SideBySideCompatible 0x0000 The assembly is side-by-side compatible 

<reserved> 0x0030 Reserved: both bits shall be zero 

Retargetable 0x0100 The implementation of this assembly used at runtime is 

not expected to match the version seen at compile time. 

(See the text following this table.) 

EnableJITcompileTracking  0x8000 Reserved  (a conforming implementation of the CLI 

can ignore this setting on read; some implementations 
might use this bit to indicate that a CIL-to-native-code 

compiler should generate CIL-to-native code map) 

DisableJITcompileOptimizer 0x4000 Reserved  (a conforming implementation of the CLI 

can ignore this setting on read; some implementations 

might use this bit to indicate that a CIL-to-native-code 

compiler should not generate optimized code) 

 

In portable programs, the Retargetable (0x100) bit shall be set on all references to assemblies specified in this 

Standard. 

23.1.3 Values for  Culture  

ar-SA ar-IQ ar-EG ar-LY 

ar-DZ ar-MA ar-TN ar-OM 

ar-YE ar-SY ar-JO ar-LB 

ar-KW ar-AE ar-BH ar-QA 

bg-BG ca-ES zh-TW zh-CN 

zh-HK zh-SG zh-MO cs-CZ 

da-DK de-DE de-CH de-AT 

de-LU de-LI el-GR en-US 

en-GB en-AU en-CA en-NZ 
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en-IE en-ZA en-JM en-CB 

en-BZ en-TT en-ZW en-PH 

es-ES-Ts es-MX es-ES-Is es-GT 

es-CR es-PA es-DO es-VE 

es-CO es-PE es-AR es-EC 

es-CL es-UY es-PY es-BO 

es-SV es-HN es-NI es-PR 

fi-FI fr-FR fr-BE fr-CA 

fr-CH fr-LU fr-MC he-IL 

hu-HU is-IS it-IT it-CH 

ja-JP ko-KR nl-NL nl-BE 

nb-NO nn-NO pl-PL pt-BR 

pt-PT ro-RO ru-RU hr-HR 

lt-sr-SP cy-sr-SP sk-SK sq-AL 

sv-SE sv-FI th-TH tr-TR 

ur-PK id-ID uk-UA be-BY 

sl-SI et-EE lv-LV lt-LT 

fa-IR vi-VN hy-AM lt-az-AZ 

cy-az-AZ eu-ES mk-MK af-ZA 

ka-GE fo-FO hi-IN ms-MY 

ms-BN kk-KZ ky-KZ sw-KE 

lt-uz-UZ cy-uz-UZ tt-TA pa-IN 

gu-IN ta-IN te-IN kn-IN 

mr-IN sa-IN mn-MN gl-ES 

kok-IN syr-SY div-MV  

 

Note on RFC 1766, Locale names: a typical string would be ―en-US‖.  The first part (―en‖ in the example) uses 

ISO 639 characters (―Latin-alphabet characters in lowercase.  No diacritical marks of modified characters are 

used‖).  The second part (―US‖ in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase); 

that is, the familiar ASCII characters a–z and A–Z, respectively.  However, whilst RFC 1766 recommends the 

first part be lowercase and the second part be uppercase, it allows mixed case.  Therefore,  the validation rule 

checks only that Culture is one of the strings in the list above—but the check is totally case-blind—where case-

blind is the familiar fold on values less than U+0080 

23.1.4 Flags for  events [EventAttributes]  

Flag Value Description 

SpecialName 0x0200 Event is special. 

RTSpecialName  0x0400 CLI provides 'special' behavior, depending upon the name of the 
event 

 

23.1.5 Flags for  f ie lds [FieldAttributes]  

Flag Value Description 

FieldAccessMask 0x0007 These 3 bits contain one of the following values: 

CompilerControlled 0x0000 Member not referenceable 
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Private 0x0001 Accessible only by the parent type 

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly 

Assembly 0x0003 Accessibly by anyone in the Assembly 

Family 0x0004 Accessible only by type and sub-types 

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly 

Public 0x0006 Accessibly by anyone who has visibility to this scope field 

contract attributes 

Static 0x0010 Defined on type, else per instance 

InitOnly 0x0020 Field can only be initialized, not written to after init 

Literal 0x0040 Value is compile time constant 

NotSerialized 0x0080 Reserved (to indicate this field should not be serialized when 

type is remoted) 

SpecialName 0x0200 Field is special 

Interop Attributes 

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke. 

Additional flags 

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the 

field 

HasFieldMarshal 0x1000 Field has marshalling information 

HasDefault 0x8000 Field has default 

HasFieldRVA 0x0100 Field has RVA 

 

23.1.6 Flags for  f i les [Fi leAttributes]  

Flag Value Description 

ContainsMetaData 0x0000 This is not a resource file 

ContainsNoMetaData 0x0001 This is a resource file or other non-metadata-containing file 

 

23.1.7 Flags for  Generic Parameters [GenericParamAttributes]  

Flag Value Description 

VarianceMask 0x0003 These 2 bits contain one of the following values: 

None 0x0000 The generic parameter is non-variant and has no special 

constraints 

Covariant 0x0001 The generic parameter is covariant 

Contravariant 0x0002 The generic parameter is contravariant 

SpecialConstraintMask 0x001C These 3 bits contain one of the following values: 

ReferenceTypeConstraint 0x0004 The generic parameter has the class special constraint 

NotNullableValueTypeConstraint 0x0008 The generic parameter has the valuetype special 

constraint 

DefaultConstructorConstraint 0x0010 The generic parameter has the .ctor special constraint 
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23.1.8 Flags for  ImplMap [PInvokeAttributes]  

Flag Value Description 

NoMangle 0x0001 PInvoke is to use the member name as specified 

Character set 

CharSetMask 0x0006 This is a resource file or other non-metadata-containing file. 

These 2 bits contain one of the following values: 

CharSetNotSpec 0x0000  

CharSetAnsi 0x0002  

CharSetUnicode 0x0004  

CharSetAuto 0x0006  

SupportsLastError 0x0040 Information about target function. Not relevant for fields 

Calling convention 

CallConvMask 0x0700 These 3 bits contain one of the following values: 

CallConvWinapi 0x0100  

CallConvCdecl 0x0200  

CallConvStdcall 0x0300  

CallConvThiscall 0x0400  

CallConvFastcall 0x0500  

 

23.1.9 Flags for  ManifestResource [ManifestResourceAttributes]  

Flag Value Description 

VisibilityMask 0x0007 These 3 bits contain one of the following values: 

Public 0x0001 The Resource is exported from the Assembly 

Private 0x0002 The Resource is private to the Assembly 

 

23.1.10 Flags for  methods [MethodAttributes]  

 

Flag Value Description 

MemberAccessMask 0x0007 These 3 bits contain one of the following values: 

CompilerControlled 0x0000 Member not referenceable 

Private 0x0001 Accessible only by the parent type 

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly 

Assem 0x0003 Accessibly by anyone in the Assembly 

Family 0x0004 Accessible only by type and sub-types 

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly 

Public 0x0006 Accessibly by anyone who has visibility to this scope 

Static 0x0010 Defined on type, else per instance 

Final 0x0020 Method cannot be overridden 
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Virtual 0x0040 Method is virtual 

HideBySig 0x0080 Method hides by name+sig, else just by name 

VtableLayoutMask 0x0100 Use this mask to retrieve vtable attributes. This bit contains 

one of the following values: 

ReuseSlot 0x0000 Method reuses existing slot in vtable 

NewSlot 0x0100 Method always gets a new slot in the vtable 

Strict 0x0200 Method can only be overriden if also accessible 

Abstract 0x0400 Method does not provide an implementation 

SpecialName 0x0800 Method is special 

Interop attributes 

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke 

UnmanagedExport 0x0008 Reserved: shall be zero for conforming implementations 

Additional flags 

RTSpecialName 0x1000 CLI provides 'special' behavior, depending upon the name of 

the method 

HasSecurity 0x4000 Method has security associate with it 

RequireSecObject 0x8000 Method calls another method containing security code. 

 

23.1.11 Flags for  methods [MethodImplAttributes]  

Flag Value Description 

CodeTypeMask 0x0003 These 2 bits contain one of the following values: 

IL 0x0000 Method impl is CIL 

Native 0x0001 Method impl is native 

OPTIL 0x0002 Reserved: shall be zero in conforming implementations 

Runtime 0x0003 Method impl is provided by the runtime 

ManagedMask 0x0004 Flags specifying whether the code is managed or unmanaged. 
This bit contains one of the following values: 

Unmanaged 0x0004 Method impl is unmanaged, otherwise managed 

Managed 0x0000 Method impl is managed 

Implementation info and interop 

ForwardRef 0x0010 Indicates method is defined; used primarily in merge 

scenarios 

PreserveSig 0x0080 Reserved: conforming implementations can ignore 

InternalCall 0x1000 Reserved: shall be zero in conforming implementations 

Synchronized 0x0020 Method is single threaded through the body 

NoInlining 0x0008 Method cannot be inlined 

MaxMethodImplVal 0xffff Range check value     

NoOptimization 0x0040 Method will not be optimized when generating native code 
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23.1.12 Flags for  MethodSemantics [MethodSe manticsAttributes]  

Flag Value Description 

Setter 0x0001 Setter for property 

Getter 0x0002 Getter for property 

Other 0x0004 Other method for property or event 

AddOn 0x0008 AddOn method for event 

RemoveOn 0x0010 RemoveOn method for event 

Fire 0x0020 Fire method for event 

 

23.1.13 Flags for  params [ParamAttributes]  

Flag Value Description 

In 0x0001 Param is [In] 

Out 0x0002 Param is [out] 

Optional 0x0010 Param is optional 

HasDefault 0x1000 Param has default value 

HasFieldMarshal 0x2000 Param has FieldMarshal 

Unused 0xcfe0 Reserved: shall be zero in a conforming implementation 

 

23.1.14 Flags for  pr operties [PropertyAttributes]  

Flag Value Description 

SpecialName 0x0200 Property is special 

RTSpecialName 0x0400 Runtime(metadata internal APIs) should check name 

encoding 

HasDefault 0x1000 Property has default 

Unused 0xe9ff Reserved: shall be zero in a conforming implementation 

 

23.1.15 Flags for  types [TypeAttributes]  

Flag Value Description 

Visibility attributes 

VisibilityMask 0x00000007 Use this mask to retrieve visibility information. 

These 3 bits contain one of the following 

values:  

NotPublic 0x00000000 Class has no public scope 

Public 0x00000001 Class has public scope 

NestedPublic 0x00000002 Class is nested with public visibility 

NestedPrivate 0x00000003 Class is nested with private visibility 

NestedFamily 0x00000004 Class is nested with family visibility 

NestedAssembly 0x00000005 Class is nested with assembly visibility 
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NestedFamANDAssem 0x00000006 Class is nested with family and assembly 

visibility 

NestedFamORAssem 0x00000007 Class is nested with family or assembly 

visibility 

Class layout attributes 

LayoutMask 0x00000018 Use this mask to retrieve class layout 

information. These 2 bits contain one of the 

following values: 

AutoLayout 0x00000000 Class fields are auto-laid out 

SequentialLayout 0x00000008 Class fields are laid out sequentially 

ExplicitLayout 0x00000010 Layout is supplied explicitly 

Class semantics attributes 

ClassSemanticsMask 0x00000020 Use this mask to retrive class semantics 

information. This bit contains one of the 

following values: 

Class 0x00000000 Type is a class 

Interface 0x00000020 Type is an interface 

Special semantics in addition to class semantics 

Abstract 0x00000080 Class is abstract 

Sealed 0x00000100 Class cannot be extended 

SpecialName 0x00000400 Class name is special 

Implementation Attributes 

Import 0x00001000 Class/Interface is imported 

Serializable 0x00002000 Reserved (Class is serializable) 

String formatting Attributes 

StringFormatMask 0x00030000 Use this mask to retrieve string information for 

native interop. These 2 bits contain one of the 

following values: 

AnsiClass 0x00000000 LPSTR is interpreted as ANSI 

UnicodeClass 0x00010000 LPSTR is interpreted as Unicode 

AutoClass 0x00020000 LPSTR is interpreted automatically 

CustomFormatClass 0x00030000 A non-standard encoding specified by 
CustomStringFormatMask 

CustomStringFormatMask 0x00C00000 Use this mask to retrieve non-standard 

encoding information for native interop. The 

meaning of the values of these 2 bits is 

unspecified. 

Class Initialization Attributes 

BeforeFieldInit 0x00100000 Initialize the class before first static field 

access 

Additional Flags 
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RTSpecialName 0x00000800 CLI provides 'special' behavior, depending 

upon the name of the Type 

HasSecurity 0x00040000 Type has security associate with it 

IsTypeForwarder 0x00200000 This ExportedType entry is a type forwarder 

 

23.1.16 Element types used in signatures 

The following table lists the values for ELEMENT_TYPE constants.  These are used extensively in metadata 

signature blobs – see §23.2 

 

Name Value Remarks 

ELEMENT_TYPE_END 0x00 Marks end of a list 

ELEMENT_TYPE_VOID  0x01  

ELEMENT_TYPE_BOOLEAN  0x02  

ELEMENT_TYPE_CHAR  0x03  

ELEMENT_TYPE_I1  0x04  

ELEMENT_TYPE_U1  0x05  

ELEMENT_TYPE_I2  0x06  

ELEMENT_TYPE_U2  0x07  

ELEMENT_TYPE_I4  0x08  

ELEMENT_TYPE_U4  0x09  

ELEMENT_TYPE_I8  0x0a  

ELEMENT_TYPE_U8  0x0b  

ELEMENT_TYPE_R4  0x0c  

ELEMENT_TYPE_R8  0x0d  

ELEMENT_TYPE_STRING  0x0e  

ELEMENT_TYPE_PTR    0x0f Followed by type 

ELEMENT_TYPE_BYREF  0x10 Followed by type 

ELEMENT_TYPE_VALUETYPE  0x11 Followed by TypeDef or TypeRef token 

ELEMENT_TYPE_CLASS  0x12 Followed by TypeDef or TypeRef token 

ELEMENT_TYPE_VAR 0x13 Generic parameter in a generic type definition, 

represented as number (compressed unsigned 

integer) 

ELEMENT_TYPE_ARRAY  0x14 type rank boundsCount bound1 … loCount lo1 … 

ELEMENT_TYPE_GENERICINST 0x15 Generic type instantiation.  Followed by type type-

arg-count  type-1 ... type-n 

ELEMENT_TYPE_TYPEDBYREF 0x16  

ELEMENT_TYPE_I 0x18 System.IntPtr 

ELEMENT_TYPE_U  0x19 System.UIntPtr 
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ELEMENT_TYPE_FNPTR 0x1b Followed by full method signature 

ELEMENT_TYPE_OBJECT 0x1c System.Object 

ELEMENT_TYPE_SZARRAY 0x1d Single-dim array with 0 lower bound 

ELEMENT_TYPE_MVAR 0x1e Generic parameter in a generic method definition, 

represented as number (compressed unsigned 

integer) 

ELEMENT_TYPE_CMOD_REQD 0x1f Required modifier : followed by a TypeDef or 

TypeRef token 

ELEMENT_TYPE_CMOD_OPT 0x20 Optional modifier : followed by a TypeDef or 

TypeRef token 

ELEMENT_TYPE_INTERNAL 0x21 Implemented within the CLI 

ELEMENT_TYPE_MODIFIER  0x40 Or‘d with following element types 

ELEMENT_TYPE_SENTINEL 0x41 Sentinel for vararg method signature 

ELEMENT_TYPE_PINNED 0x45 Denotes a local variable that points at a pinned 

object 

 0x50 Indicates an argument of type System.Type. 

 0x51 Used in custom attributes to specify a boxed object 

(§23.3). 

 0x52 Reserved 

 0x53 Used in custom attributes to indicate a FIELD 
(§22.10, 23.3). 

 0x54 Used in custom attributes to indicate a PROPERTY 

(§22.10, 23.3). 

 0x55 Used in custom attributes to specify an enum 

(§23.3).    

 

23.2  Blobs and s ignatures  

The word signature is conventionally used to describe the type info for a function or method; that is, the type of 

each of its parameters, and the type of its return value.  Within metadata, the word signature is also used to 

describe the type info for fields, properties, and local variables.  Each Signature is stored as a (counted) byte 

array in the Blob heap.  There are several kinds of Signature, as follows: 

 MethodRefSig (differs from a MethodDefSig only for VARARG calls) 

 MethodDefSig 

 FieldSig 

 PropertySig 

 LocalVarSig 

 TypeSpec 

 MethodSpec 

The value of the first byte of a Signature 'blob' indicates what kind of Signature it is. Its lowest 4 bits hold one 

of the following: C, DEFAULT, FASTCALL, STDCALL, THISCALL, or VARARG (whose values are defined in §23.2.3), 

which qualify method signatures; FIELD, which denotes a field signature (whose value is defined in §23.2.4); or 

PROPERTY, which denotes a property signature (whose value is defined in §23.2.5).  This subclause defines the 
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binary 'blob' format for each kind of Signature.  In the syntax diagrams that accompany many of the definitions, 

shading is used to combine into a single diagram what would otherwise be multiple diagrams; the 

accompanying text describes the use of shading. 

Signatures are compressed before being stored into the Blob heap (described below) by compressing the 

integers embedded in the signature.  The maximum encodable unsigned integer is 29 bits long, 0x1FFFFFFF. 

For signed integers, as occur in ArrayShape (§23.2.13), the range is -228 (0xF0000000) to 228-1 (0x0FFFFFFF).  
The compression algorithm used is as follows (bit 0 is the least significant bit): 

 For unsigned integers: 

o If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte 

integer (bit 7 is clear, value held in bits 6 through 0) 

o If the value lies between 28 (0x80) and 214 – 1 (0x3FFF), inclusive, encode as a 2-byte 

integer with bit 15 set, bit 14 clear (value held in bits 13 through 0) 

o Otherwise, encode as a 4-byte integer, with bit 31 set, bit 30 set, bit 29 clear (value 

held in bits 28 through 0) 

 For signed integers: 

o If the value lies between -64 (0xFFFFFFC0) and 63 (0x3F), inclusive, encode as a one-

byte integer: bit 7 clear, value bits 5 through 0 held in bits 6 through 1, sign bit (value 
bit 31) in bit 0. 

o If the value lies between -8192 (0xFFFFE000) and 8191 (0x1FFF), inclusive, encode 

as a two-byte integer: 15 set, bit 14 clear, value bits 12 through 0 held in bits 13 

through 1, sign bit (value bit 31) in bit 0. 

o If the value lies between -268435456 (0xF000000) and 268435455 (0x0FFFFFFF), 

inclusive, encode as a four-byte integer: 31 set, 30 set, bit 29 clear, value bits 27 

through 0 held in bits 28 through 1, sign bit (value bit 31) in bit 0. 

[Note: When uncompressing the sign bit is used to fill all the missing bits. end note] 

 A null string should be represented with the reserved single byte 0xFF, and no following data 

 

[Note: The tables below show several examples. The first column gives a value, expressed in familiar (C-like) 

hex notation. The second column shows the corresponding, compressed result, as it would appear in a PE file, 
with successive bytes of the result lying at successively higher byte offsets within the file.  (This is the opposite 

order from how regular binary integers are laid out in a PE file.) 

Unsigned examples: 

Original Value Compressed Representation 

0x03 03 

0x7F 7F (7 bits set) 

0x80 8080 

0x2E57 AE57 

0x3FFF BFFF 

0x4000 C000 4000 

0x1FFF FFFF DFFF FFFF 

Signed examples: 

Original Value Compressed Representation 

3 06 
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-3 7B 

64 8080 

-64 01 

8192 C000 4000 

-8192 8001 

268435455 DFFF FFFE 

-268435456 C000 0001 

end note] 

 

The most significant bits (the first ones encountered in a PE file) of a ―compressed‖ field, can reveal whether it 

occupies 1, 2, or 4 bytes, as well as its value.  For this to work, the ―compressed‖ value, as explained above, is 

stored in big-endian order; i.e., with the most significant byte at the smallest offset within the file. 

Signatures make extensive use of constant values called ELEMENT_TYPE_xxx – see §23.1.16.  In particular, 

signatures include two modifiers called: 

ELEMENT_TYPE_BYREF – this element is a managed pointer (see Partition I).  This modifier can only occur in the 

definition of LocalVarSig (§23.2.6), Param (§23.2.10) or RetType (§23.2.11).  It shall not occur within the 

definition of a Field (§23.2.4)  

ELEMENT_TYPE_PTR – this element is an unmanaged pointer (see Partition I).  This modifier can occur in the 
definition of LocalVarSig (§23.2.6), Param (§23.2.10),  RetType (§23.2.11) or Field (§23.2.4) 

23.2.1 MethodDefSig  

A MethodDefSig is indexed by the Method.Signature column.  It captures the signature of a method or global 

function.  The syntax diagram for a MethodDefSig is: 

 

 

 

This diagram uses the following abbreviations: 
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HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3 

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3 

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see §15.3 

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see §15.3 

GENERIC = 0x10, used to indicate that the method has one or more generic parameters. 

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention (DEFAULT, VARARG, 

or GENERIC).  These are ORed together.  

GenParamCount is the number of generic parameters for the method.  This is a compressed unsigned integer. 

[Note: For generic methods, both MethodDef and MemberRef shall include the GENERIC calling convention, 

together with GenParamCount; these are significant for binding—they enable the CLI to overload on generic 

methods by the number of generic parameters they include. end note] 

ParamCount is an unsigned integer that holds the number of parameters (0 or more).  It can be any number 

between 0 and 0x1FFFFFFF.  The compiler compresses it too (see Partition II Metadata Validation) – before 

storing into the 'blob' (ParamCount counts just the method parameters – it does not include the method‘s return 

type) 

The RetType item describes the type of the method‘s return value (§23.2.11) 

The Param item describes the type of each of the method‘s parameters.  There shall be ParamCount instances 
of the Param item (§23.2.10). 

23.2.2 MethodRefSig  

A MethodRefSig is indexed by the MemberRef.Signature column.  This provides the call site Signature for a 

method.  Normally, this call site Signature shall match exactly the Signature specified in the definition of the 

target method.  For example, if a method Foo is defined that takes two unsigned int32s and returns void; then 

any call site shall index a signature that takes exactly two unsigned int32s and returns void.  In this case, the 

syntax diagram for a MethodRefSig is identical with that for a MethodDefSig – see §23.2.1 

The Signature at a call site differs from that at its definition, only for a method with the VARARG calling 

convention.  In this case, the call site Signature is extended to include info about the extra VARARG arguments 

(for example, corresponding to the ―...‖ in C syntax).  The syntax diagram for this case is: 

 

 

This diagram uses the following abbreviations: 

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3 

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3 

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see 15.3 

SENTINEL = 0x41 (§23.1.16), used to encode ―...‖ in the parameter list, see §15.3 
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 The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS, and the calling convention 

VARARG.   These are ORed together.  

 ParamCount is an unsigned integer that holds the number of parameters (0 or more).  It can be 

any number between 0 and 0x1FFFFFFF  The compiler compresses it (see Partition II Metadata 

Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it 

does not include the method‘s return type)  

 The RetType item describes the type of the method‘s return value (§23.2.11) 

 The Param item describes the type of each of the method‘s parameters.  There shall be 

ParamCount instances of the Param item (§23.2.10). 

The Param item describes the type of each of the method‘s parameters.  There shall be ParamCount instances 

of the Param item.This starts just like the MethodDefSig for a VARARG method (§23.2.1).  But then a SENTINEL 

token is appended, followed by extra Param items to describe the extra VARARG arguments.  Note that the 

ParamCount item shall  indicate the total number of Param items in the Signature – before and after the 

SENTINEL byte (0x41).   

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this 

is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the MethodRefSig 

definition). 

23.2.3 StandAl oneMethodSig  

A StandAloneMethodSig is indexed by the StandAloneSig.Signature column.  It is typically created as 

preparation for executing a calli instruction.  It is similar to a MethodRefSig, in that it represents a call site 

signature, but its calling convention can specify an unmanaged target (the calli instruction invokes either 
managed, or unmanaged code).  Its syntax diagram is: 

 

 

This diagram uses the following abbreviations (§15.3): 

HASTHIS for 0x20 

EXPLICITTHIS for 0x40 

DEFAULT for 0x0 

Partition%20II%20Metadata.doc
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VARARG for 0x5 

C for 0x1 

STDCALL for 0x2 

THISCALL for 0x3 

FASTCALL for 0x4 

SENTINEL for  0x41 (§23.1.16 and §15.3) 

 The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention – 

DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL.   These are OR‘d together.  

 ParamCount is an unsigned integer that holds the number of non-vararg and vararg parameters, 

combined.  It can be any number between 0 and 0x1FFFFFFF  The compiler compresses it (see 

Partition II Metadata Validation) – before storing into the blob (ParamCount counts just the 

method parameters – it does not include the method‘s return type)  

 The RetType item describes the type of the method‘s return value (§23.2.11) 

 The first Param item describes the type of each of the method‘s non-vararg parameters.  The 

(optional) second Param item describes the type of each of the method‘s vararg parameters.  

There shall be ParamCount instances of Param (§23.2.10). 

This is the most complex of the various method signatures.   Two separate diagrams have been combined into 

one in this diagram, using shading to distinguish between them.  Thus, for the following calling conventions: 

DEFAULT (managed), STDCALL, THISCALL and FASTCALL (unmanaged), the signature ends just before the 

SENTINEL item (these are all non vararg signatures).  However, for the managed and unmanaged vararg calling 

conventions: 

VARARG (managed) and C (unmanaged), the signature can include the SENTINEL and final Param items (they are 

not required, however).   These options are  indicated by the shading of boxes in the syntax diagram. 

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this 

is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the StandAloneMethodSig 

definition). 

23.2.4 FieldSig 

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case 

where it specifies a reference to a field, not a method, of course).   The Signature captures the field‘s definition.  

The field can be a static or instance field in a class, or it can be a global variable.  The syntax diagram for a 

FieldSig looks like this: 

 

This diagram uses the following abbreviations: 

FIELD for 0x6 

CustomMod is defined in §23.2.7.  Type is defined in §23.2.12 

23.2.5 PropertySig  

A PropertySig is indexed by the Property.Type column.  It captures the type information for a Property – 

essentially, the signature of its getter method: 
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the number of parameters supplied to its getter method 

the base type of the Property (the type returned by its getter method) 

type information for each parameter in the getter method (that is,  the index parameters) 

Note that the signatures of getter and setter are related precisely as follows: 

 The types of a getter’s  paramCount parameters are exactly the same as the first paramCount 

parameters of the setter 

 The return type of a getter is exactly the same as the type of the last parameter supplied to the 

setter 

The syntax diagram for a PropertySig looks like this: 

 

The first byte of the Signature holds bits for HASTHIS and PROPERTY.  These are OR‘d together.  

Type specifies the type returned by the Getter method for this property.  Type is defined in §23.2.12.  Param is 

defined in §23.2.10. 

ParamCount is a compressed unsigned integer that holds the number of index parameters in the getter methods 

(0 or more). (§23.2.1)  (ParamCount counts just the method parameters – it does not include the method‘s base 

type of the Property) 

23.2.6 LocalVarSig  

A LocalVarSig is indexed by the StandAloneSig.Signature column.  It captures the type of all the local 

variables in a method.  Its syntax diagram is: 

 

This diagram uses the following abbreviations: 

LOCAL_SIG for 0x7, used for the .locals directive, see§15.4.1.3 

BYREF for ELEMENT_TYPE_BYREF (§23.1.16) 

Constraint is defined in §23.2.9.  

Type is defined in §23.2.12 

Count is a compressed unsigned integer that holds the number of local variables.  It can be any number between 

1 and 0xFFFE.   

There shall be Count instances of the Type in the LocalVarSig 

23.2.7 CustomMod 

The CustomMod (custom modifier) item in Signatures has a syntax diagram like this: 
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This diagram uses the following abbreviations: 

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT (§23.1.16) 

CMOD_REQD for ELEMENT_TYPE_CMOD_REQD (§23.1.16) 

The CMOD_OPT or CMOD_REQD value is compressed, see §23.2. 

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row in the TypeDef table or the 

TypeRef table.  However, these tokens are encoded and compressed – see §23.2.8 for details 

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely ignore it entirely.  

Conversely, if the CustomModifier is tagged CMOD_REQD, any importing compiler shall ‗understand‘ the 

semantic implied by this CustomModifier in order to reference the surrounding Signature. 

23.2.8 TypeDefOrRefEncoded  

These items are compact ways to store a TypeDef, TypeRef, or TypeSpec token in a Signature (§23.2.12). 

Consider a regular TypeRef token, such as 0x01000012.  The top byte of 0x01 indicates that this is a TypeRef 

token (see Partition VI  for a list of the supported metadata token types).  The lower 3 bytes (0x000012) index 

row number 0x12 in the TypeRef table. 

The encoded version of this TypeRef token is made up as follows: 

1. encode the table that this token indexes as the least significant 2 bits.  The bit values to use are 0, 

1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively   

2. shift the 3-byte row index (0x000012 in  this example) left by 2 bits and OR into the 2-bit 

encoding from step 1 

3. compress the resulting value (§23.2).   This example yields the following encoded value:  

a)  encoded = value for TypeRef table = 0x01 (from 1. above)  

b)  encoded = ( 0x000012 << 2 ) |  0x01 

            = 0x48 | 0x01 

            = 0x49 

c)  encoded = Compress (0x49)  

            = 0x49 

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the 

Signature 'blob',  this TypeRef token is encoded as a single byte.  

23.2.9 Constraint  

The Constraint item in Signatures currently has only one possible value, ELEMENT_TYPE_PINNED (§23.1.16), 

which specifies that the target type is pinned in the runtime heap, and will not be moved by the actions of 

garbage collection.   

A Constraint can only be applied within a LocalVarSig (not a FieldSig).  The Type of the local variable shall 

either be a reference type (in other words, it points to the actual variable – for example, an Object, or a String); 

or it shall include the BYREF item.  The reason is that local variables are allocated on the runtime stack – they 

Partition%20VI%20Annexes.doc
Partition%20V%20Annexes.doc#_ilasmGrammar
Partition%20V%20Annexes.doc#_ilasmGrammar


 

 Partition II 167 

are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC 

heap, pinning makes no sense. 

23.2.10 Param 

The Param (parameter) item in Signatures has this syntax diagram: 

 

This diagram uses the following abbreviations: 

BYREF for 0x10 (§23.1.16) 

TYPEDBYREF for 0x16 (§23.1.16) 

CustomMod is defined in §23.2.7.  Type is defined in §23.2.12 

23.2.11 RetType 

The RetType (return type) item in Signatures has this syntax diagram: 

 

RetType is identical to Param except for one extra possibility, that it can include the type VOID.  This diagram 

uses the following abbreviations: 

BYREF for ELEMENT_TYPE_BYREF (§23.1.16) 

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (§23.1.16) 

VOID for ELEMENT_TYPE_VOID (§23.1.16) 

23.2.12 Type 

Type is encoded in signatures as follows (I1 is an abbreviation for ELEMENT_TYPE_I1, U1 is an abbreviation for 

ELEMENT_TYPE_U1, and so on; see 23.1.16): 

Type ::=    

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I | U 

| ARRAY Type ArrayShape (general array, see §23.2.13) 
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| CLASS TypeDefOrRefEncoded 

| FNPTR MethodDefSig 

| FNPTR MethodRefSig 

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type * 

| MVAR number 

| OBJECT 

| PTR CustomMod* Type 

| PTR CustomMod* VOID 

| STRING 

| SZARRAY CustomMod* Type (single dimensional, zero-based array i.e., vector) 

| VALUETYPE TypeDefOrRefEncoded 

| VAR number 

The GenArgCount non-terminal is an int32 value (compressed) specifying the number of generic arguments in 

this signature. The number non-terminal following MVAR or VAR is an unsigned integer value (compressed). 

23.2.13 ArrayShape  

An ArrayShape has the following syntax diagram: 

 

Rank is an unsigned integer (stored in compressed form, see §23.2) that specifies the number of dimensions in 

the array (shall be 1 or more).  NumSizes is a compressed unsigned integer that says how many dimensions 

have specified sizes (it shall be 0 or more).  Size is a compressed unsigned integer specifying the size of that 

dimension – the sequence starts at the first dimension, and goes on for a total of NumSizes items.  Similarly, 

NumLoBounds is a compressed unsigned integer that says how many dimensions have specified lower bounds 
(it shall be 0 or more). And LoBound is a compressed signed integer specifying the lower bound of that 

dimension – the sequence starts at the first dimension, and goes on for a total of NumLoBounds items.  None of 

the dimensions in these two sequences can be skipped, but the number of specified dimensions can be less than 

Rank. 

Here are a few examples, all for element type int32: 

 Type Rank NumSizes Size NumLoBounds LoBound 

[0...2] I4 1 1 3 0  

[,,,,,,] I4 7 0  0  

[0...3, 0...2,,,,] I4 6 2 4  3 2 0  0 

[1...2, 6...8] I4 2 2 2  3 2 1  6 

[5, 3...5, , ] I4 4 2 5  3 2 0  3 

 

[Note: definitions can nest, since the Type can itself be an array. end note] 

23.2.14 TypeSpec  

The signature in the Blob heap indexed by a TypeSpec token has the following format – 

TypeSpecBlob ::= 
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  PTR      CustomMod*  VOID 

| PTR      CustomMod*  Type 

| FNPTR    MethodDefSig 

| FNPTR    MethodRefSig 

| ARRAY    Type  ArrayShape 

| SZARRAY  CustomMod*  Type 

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type Type* 

For compactness, the ELEMENT_TYPE_ prefixes  have been omitted from this list.  So, for example, ―PTR‖ is 

shorthand for ELEMENT_TYPE_PTR.  (§23.1.16)   Note that a TypeSpecBlob does not begin with a calling-

convention byte, so it differs from the various other signatures that are stored into Metadata. 

23.2.15 MethodSpec  

The signature in the Blob heap indexed by a MethodSpec token has the following format – 

MethodSpecBlob ::= 

  GENRICINST GenArgCount Type Type* 

GENRICINST has the value 0x0A. [Note: This value is known as IMAGE_CEE_CS_CALLCONV_GENERICINST in 

the Microsoft CLR implementation. end note]  The GenArgCount is a compressed unsigned integer indicating 

the number of generic arguments in the method.  The blob then specifies the instantiated type, repeating a total 

of GenArgCount times. 

23.2.16 Short for m signatures  

The general specification for signatures leaves some leeway in how to encode certain items.  For example, it 

appears valid to encode a String as either 

long-form:    (ELEMENT_TYPE_CLASS, TypeRef-to-System.String ) 

short-form:   ELEMENT_TYPE_STRING 

Only the short form is valid.  The following table shows which short-forms should be used in place of each 

long-form item.  (As usual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here – so VALUETYPE 

is short for ELEMENT_TYPE_VALUETYPE) 

Long Form Short Form 

Prefix TypeRef to:  

CLASS System.String STRING 

CLASS System.Object OBJECT 

VALUETYPE System.Void VOID 

VALUETYPE System.Boolean BOOLEAN 

VALUETYPE System.Char CHAR 

VALUETYPE System.Byte U1 

VALUETYPE System.Sbyte I1 

VALUETYPE System.Int16 I2 

VALUETYPE System.UInt16 U2 

VALUETYPE System.Int32 I4 

VALUETYPE System.UInt32 U4 

VALUETYPE System.Int64 I8 

VALUETYPE System.UInt64 U8 
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VALUETYPE System.IntPtr I 

VALUETYPE System.UIntPtr U 

VALUETYPE System.TypedReference TYPEDBYREF 

 

[Note: arrays shall be encoded in signatures using one of ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY.  

There is no long form involving a TypeRef to System.Array. end note] 

23.3  Custo m attributes  

A Custom Attribute has the following syntax diagram: 

 

All binary values are stored in little-endian format (except PackedLen items, which are used only as counts for 

the number of bytes to follow in a UTF8 string).  If there are no fields, parameters, or properties specified the 

entire attribute is represented as an empty blob. 

CustomAttrib starts with a Prolog – an unsigned int16, with value 0x0001. 

Next comes a description of the fixed arguments for the constructor method.  Their number and type is found 

by examining that constructor‘s row in the MethodDef table; this information is not repeated in the 

CustomAttrib itself.  As the syntax diagram shows, there can be zero or more FixedArgs.  (Note that VARARG 

constructor methods are not allowed in the definition of Custom Attributes.) 

Next is a description of the optional ―named‖ fields and properties.  This starts with NumNamed – an unsigned 
int16 giving the number of ―named‖ properties or fields that follow.  Note that NumNamed shall always be 

present.  A value of zero indicates that there are no ―named‖ properties or fields to follow (and of course, in this 

case, the CustomAttrib shall end immediately after NumNamed).  In the case where NumNamed is non-zero, it 

is followed by NumNamed repeats of NamedArgs. 

 

The format for each FixedArg depends upon whether that argument is an SZARRAY or not – this is shown in the 

lower and upper paths, respectively, of the syntax diagram.  So each FixedArg is either a single Elem, or 

NumElem repeats of Elem.  

(SZARRAY is the single byte 0x1D, and denotes a vector – a single-dimension array with a lower bound of zero.) 

NumElem is an unsigned int32 specifying the number of elements in the SZARRAY, or 0xFFFFFFFF to indicate 

that the value is null. 
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An Elem takes one of the forms in this diagram, as follows: 

 If the parameter kind is simple (first line in the above diagram) (bool, char, float32, 

float64, int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned 

int32 or unsigned int64) then the 'blob' contains its binary value (Val). (A bool is a single 

byte with value 0 (false) or 1 (true); char is a two-byte Unicode character; and the others have 

their obvious meaning.) This pattern is also used if the parameter kind is an enum -- simply store 

the value of the enum's underlying integer type. 

 If the parameter kind is string, (middle line in above diagram) then the blob contains a SerString – 

a PackedLen count of bytes, followed by the UTF8 characters.  If the string is null, its PackedLen 

has the value 0xFF (with no following characters).  If the string is empty (―‖), then PackedLen 

has the value 0x00 (with no following characters).  

 If the parameter kind is System.Type, (also, the middle line in above diagram) its value is stored 
as a SerString (as defined in the previous paragraph), representing its canonical name.  The 

canonical name is its full type name, followed optionally by the assembly where it is defined, its 

version, culture and public-key-token.  If the assembly name is omitted, the CLI looks first in the 

current assembly, and then in the system library (mscorlib); in these two special cases, it is 

permitted to omit the assembly-name, version, culture and public-key-token.   

 If the parameter kind is System.Object, (third line in the above diagram) the value stored 

represents the ―boxed‖ instance of that value-type.  In this case, the blob contains the actual type's 

FieldOrPropType (see below), followed by the argument‘s unboxed value.  [Note: it is not 

possible to pass a value of null in this case. end note] 

 If the type is a boxed simple value type (bool, char, float32, float64, int8, int16, 

int32, int64, unsigned int8, unsigned int16, unsigned int32 or unsigned 

int64) then FieldOrPropType is immediately preceded by a byte containing the value 0x51 . 

 

The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, 
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, 

ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, 

ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING .  A single-dimensional, zero-based 

array is specified as a single byte 0x1D followed by the FieldOrPropType of the element type.  

(See §23.1.16)  An enum is specified as a single byte 0x55 followed by a SerString.  

Partition%20II%20Metadata.doc#SignatureElementTypes
Partition%20II%20Metadata.doc#SignatureElementTypes
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A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or 
property it represents.  [Note: Recall that the CLI allows fields and properties to have the same name; so we 

require a means to disambiguate such situations. end note] 

FIELD is the single byte 0x53. 

PROPERTY is the single byte 0x54. 

The FieldOrPropName is the name of the field or property, stored as a SerString (defined above). 

A number of examples involving custom attributes are contained in Annex B of Partition VI. 

23.4  Marshalling descriptors  

A Marshalling Descriptor is like a signature – it‘s a 'blob' of binary data.  It describes how a field or parameter 
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or 

from unmanaged code via PInvoke dispatch.  The ILAsm syntax marshal can be used to create a marshalling 

descriptor, as can the pseudo custom attribute MarshalAsAttribute – see §21.2.1) 

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier 

– see §15.5.4. 

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx.  Their names and values are listed 
in the following table: 

Name Value 

NATIVE_TYPE_BOOLEAN 0x02 

NATIVE_TYPE_I1 0x03 

NATIVE_TYPE_U1 0x04 

NATIVE_TYPE_I2 0x05 

NATIVE_TYPE_U2 0x06 

NATIVE_TYPE_I4 0x07 

NATIVE_TYPE_U4 0x08 

NATIVE_TYPE_I8 0x09 

NATIVE_TYPE_U8 0x0a 

NATIVE_TYPE_R4 0x0b 

NATIVE_TYPE_R8 0x0c 

NATIVE_TYPE_LPSTR  0x14 

NATIVE_TYPE_LPWSTR  0x15 

NATIVE_TYPE_INT  0x1f 

NATIVE_TYPE_UINT  0x20 

NATIVE_TYPE_FUNC 0x26 

NATIVE_TYPE_ARRAY 0x2a 
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The 'blob' has the following format – 

MarshalSpec ::= 

  NativeIntrinsic 

| ARRAY ArrayElemType 

| ARRAY ArrayElemType ParamNum 

| ARRAY ArrayElemType ParamNum NumElem 

NativeIntrinsic ::= 

  BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 

| LPSTR | LPSTR | INT | UINT | FUNC  

For compactness, the NATIVE_TYPE_ prefixes have been omitted in the above lists; for example, ―ARRAY‖ is 

shorthand for NATIVE_TYPE_ARRAY. 

ArrayElemType ::= 

   NativeIntrinsic  

ParamNum is an unsigned integer (compressed as described in §23.2) specifying the parameter in the method 

call that provides the number of elements in the array – see below. 

NumElem is an unsigned integer compressed as described in §23.2 (specifying the number of elements or 

additional elements – see below). 

[Note: For example, in the method declaration: 

.method void M(int32[] ar1, int32 size1, unsigned int8[] ar2, int32 size2) { … } 

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap 

with the format: 

ARRAY  MAX  2  1 

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY.  There is no additional info about the type of 

each element (signified by that NATIVE_TYPE_MAX).  The value of ParamNum is 2, which indicates that 

parameter number 2 in the method (the one called size1) will  specify the number of elements in the actual 

array – let‘s suppose its value on a particular call is 42.  The value of NumElem is 0.  The calculated total size, 

in bytes, of the array is given by the formula: 

if ParamNum = 0 

   SizeInBytes = NumElem * sizeof (elem) 

else 

   SizeInBytes = ( @ParamNum +  NumElem ) * sizeof (elem) 

endif 

 The syntax ―@ParamNum‖ is used here to denote the value passed in for parameter number ParamNum – it 

would be 42 in this example.  The size of each element is calculated from the metadata for the ar1 parameter in 

Foo‘s signature – an ELEMENT_TYPE_I4 (§23.1.16) of size 4 bytes. end note] 
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24 Metadata physical layout  

The physical on-disk representation of metadata is a direct reflection of the logical representation described 

in §22 and §23. That is, data is stored in streams representating the metadata tables and heaps. The main 

complication is that, where the logical representation is abstracted from the number of bytes needed for 

indexing into tables and columns, the physical representation has to take care of that explicitly by defining how 

to map logical metadata heaps and tables into their physical representations. 

 Unless stated otherwise, all binary values are stored in little-endian format. 

24.1  Fixed fields  

Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable 

Executable (PE) File Format (§25).  Because of this heritage, some of the fields in the physical representation 
of metadata have fixed values. When writing these fields it is best that they be set to the value indicated, on 

reading they should be ignored.  

24.2  File headers  

24.2.1 Metadata root  

The root of the physical metadata starts with a magic signature, several bytes of version and other 

miscellaneous information, followed by a count and an array of stream headers, one for each stream that is 

present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of 

headers. 

Offset Size Field Description 

0 4 Signature Magic signature for physical metadata : 0x424A5342. 

4 2 MajorVersion Major version, 1 (ignore on read) 

6 2 MinorVersion Minor version, 1 (ignore on read)  

8 4 Reserved Reserved, always 0 (§24.1). 

12 4 Length Number of bytes allocated to hold version string (including 

null terminator), call this x. 

Call the length of the string (including the terminator) m (we 

require m <= 255); the length x is m rounded up to a multiple 

of four. 

16 m Version UTF8-encoded null-terminated version string of length m 
(see below) 

16+m x-m  Padding to next 4 byte boundary. 

16+x 2 Flags Reserved, always 0 (§24.1). 

16+x+2 2 Streams Number of streams, say n. 

16+x+4  StreamHeaders Array of n StreamHdr structures. 

 

The Version string shall be ―Standard CLI 2005‖ for any file that is intended to be executed on any conforming 

implementation of the CLI, and all conforming implementations of the CLI shall accept files that use this 
version string.  Other strings shall be used when the file is restricted to a vendor-specific implementation of the 

CLI.  Future versions of this standard shall specify different strings, but they shall begin ―Standard CLI‖. Other 

standards that specify additional functionality shall specify their own specific version strings beginning with 

―Standard□‖, where ―□‖ represents a single space.  Vendors that provide implementation-specific extensions 

shall provide a version string that does not begin with ―Standard□‖. (For the first version of this Standard, the 

Version string was ―Standard CLI 2002‖.) 
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24.2.2 Stream header 

A stream header gives the names, and the position and length of a particular table or heap. Note that the length 

of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-

terminated string).  

Offset Size Field Description 

0 4 Offset Memory offset to start of this stream from start of the 

metadata root (§24.2.1) 

4 4 Size Size of this stream in bytes, shall be a multiple of 4. 

8  Name Name of the stream as null-terminated variable length array 

of ASCII characters, padded to the next 4-byte boundary 

with \0 characters. The name is limited to 32 characters. 

 

Both logical tables and heaps are stored in streams.  There are five possible kinds of streams. A stream header 

with name ―#Strings‖ that points to the physical representation of the string heap where identifier strings are 
stored; a stream header with name ―#US‖ that points to the physical representation of the user string heap; a 

stream header with name ―#Blob‖ that points to the physical representation of the blob heap, a stream header 

with name ―#GUID‖ that points to the physical representation of the GUID heap; and a stream header with 

name ―#~‖ that points to the physical representation of a set of tables. 

Each kind of stream shall occur at most once, that is, a meta-data file shall not contain two ―#US‖ streams, or 

five ―#Blob‖ streams. Streams need not be there if they are empty. 

The next subclauses describe the structure of each kind of stream in more detail. 

24.2.3 #Strings heap 

The stream of bytes pointed to by a ―#Strings‖ header is the physical representation of the logical string heap. 

The physical heap can contain garbage, that is, it can contain parts that are unreachable from any of the tables, 

but parts that are reachable from a table shall contain a valid null-terminated UTF8 string. When the #String 
heap is present, the first entry is always the empty string (i.e., \0). 

24.2.4 #US and #Blob heaps  

The stream of bytes pointed to by a ―#US‖ or ―#Blob‖ header are the physical representation of logical 

Userstring and 'blob' heaps respectively. Both these heaps can contain garbage, as long as any part that is 

reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in 

the first few bytes: 

 If the first one byte of the 'blob' is 0bbbbbbb2, then the rest of the 'blob' contains the bbbbbbb2 

bytes of actual data. 

 If the first two bytes of the 'blob' are 10bbbbbb2 and x, then the rest of the 'blob' contains the 

(bbbbbb2 << 8 + x) bytes of actual data. 

 If the first four bytes of the 'blob' are 110bbbbb2, x, y, and z, then the rest of the 'blob' contains the 

(bbbbb2 << 24 + x << 16 + y << 8 + z) bytes of actual data.  

The first entry in both these heaps is the empty 'blob' that consists of the single byte 0x00. 

Strings in the #US (user string) heap are encoded using 16-bit Unicode encodings. The count on each string is 

the number of bytes (not characters) in the string. Furthermore, there is an additional terminal byte (so all byte 

counts are odd, not even). This final byte holds the value 1 if and only if any UTF16 character within the string 

has any bit set in its top byte, or its low byte is any of the following: 0x01–0x08, 0x0E–0x1F, 0x27, 0x2D, 

0x7F.  Otherwise, it holds 0. The 1 signifies Unicode characters that require handling beyond that normally 

provided for 8-bit encoding sets. 
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24.2.5 #GUID heap 

The ―#GUID‖ header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the 

stream. 

24.2.6 #~ stream 

The ―#~‖ streams contain the actual physical representations of the logical metadata tables (§22).  A  ―#~‖ 

stream has the following top-level structure: 

Offset Size Field Description 

0 4 Reserved Reserved, always 0 (§24.1). 

4 1 MajorVersion Major version of table schemata; shall be 2 (§24.1). 

5 1 MinorVersion Minor version of table schemata; shall be 0 (§24.1). 

6 1 HeapSizes Bit vector for heap sizes. 

7 1 Reserved Reserved, always 1 (§24.1). 

8 8 Valid Bit vector of present tables, let n be the number of bits that 

are 1. 

16 8 Sorted Bit vector of sorted tables. 

24 4*n Rows Array of n 4-byte unsigned integers indicating the number of 

rows for each present table. 

24+4*n  Tables The sequence of physical tables. 

 

The HeapSizes field is a bitvector that encodes the width of indexes into the various heaps.  If bit 0 is set, 

indexes into the ―#String‖ heap are 4 bytes wide; if bit 1 is set, indexes into the ―#GUID‖ heap are 4 bytes 

wide; if bit 2 is set, indexes into the ―#Blob‖ heap are 4 bytes wide.  Conversely, if the HeapSize bit for a 

particular heap is not set, indexes into that heap are 2 bytes wide. 

Heap size flag Description 

0x01 Size of ―#String‖ stream >= 216. 

0x02 Size of ―#GUID‖ stream >= 216. 

0x04 Size of ―#Blob‖ stream >= 2
16

. 

 

The Valid field is a 64-bit bitvector that has a specific bit set for each table that is stored in the stream; the 

mapping of tables to indexes is given at the start of §22. For example when the DeclSecurity table is present in 
the logical metadata, bit 0x0e should be set in the Valid vector. It is invalid to include non-existent tables in 

Valid, so all bits above 0x2c shall be zero.  

The Rows array contains the number of rows for each of the tables that are present. When decoding physical 

metadata to logical metadata, the number of 1‘s in Valid indicates the number of elements in the Rows array.  

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in §22. For 

example, the table with assigned index 0x02 is a TypeDef  table, which, according to its specification in §22.37, 

has the following columns: a 4-byte-wide flags, an index into the String heap, another index into the String 

heap, an index into TypeDef , TypeRef , or TypeSpec table, an index into Field table, and an index into 

MethodDef table.  

The physical representation of a table with n columns and m rows with schema (C0,…,Cn-1) consists of the 

concatenation of the physical representation of each of its rows. The physical representation of a row with 

schema (C0,…, n-1) is the concatenation of the physical representation of each of its elements. The physical 
representation of a row cell e at a column with type C is defined as follows: 
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 If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e., a 

2-bit mask of type PropertyAttributes) 

 If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes 

as defined in the HeapSizes field. 

 If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than 216 

rows, otherwise it is stored using 4 bytes. 

 If  e is a coded index that points into table ti out of n possible tables t0, …tn-1, then it is stored as e 

<< (log n) | tag{ t0, …tn-1}[ ti] using 2 bytes if the maximum number of rows of tables t0, …tn-1, 

is less than 2(16 – (log n)), and using 4 bytes otherwise. The family of finite maps tag{ t0, …tn-1} is 

defined below. Note that decoding a physical row requires the inverse of this mapping. [For 

example, the Parent column of the Constant table indexes a row in the Field, Param, or Property 

tables.  The actual table is encoded into the low 2 bits of the number, using the values: 0 => 
Field, 1 => Param, 2 => Property.The remaining bits hold the actual row number being indexed.  

For example, a value of 0x321, indexes row number 0xC8 in the Param table.] 

TypeDefOrRef: 2 bits to encode tag Tag 

TypeDef 0 

TypeRef 1 

TypeSpec 2 

 

HasConstant: 2 bits to encode tag Tag 

Field 0 

Param 1 

Property 2 

 

HasCustomAttribute: 5 bits to encode tag Tag 

MethodDef 0 

Field 1 

TypeRef 2 

TypeDef 3 

Param 4 

InterfaceImpl 5 

MemberRef 6 

Module 7 

Permission 8 

Property 9 

Event 10 

StandAloneSig 11 

ModuleRef 12 

TypeSpec 13 

Assembly 14 

AssemblyRef 15 

File 16 

ExportedType 17 
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ManifestResource 18 

 

[Note: HasCustomAttributes only has values for tables that are ―externally visible‖; that is, that correspond to items 

in a user source program.  For example, an attribute can be attached to a TypeDef table and a Field table, but not a 

ClassLayout table.  As a result, some table types are missing from the enum above. end note] 

HasFieldMarshall: 1 bit to encode tag Tag 

Field 0 

Param 1 

 

HasDeclSecurity: 2 bits to encode tag Tag 

TypeDef 0 

MethodDef 1 

Assembly 2 

 

MemberRefParent: 3 bits to encode tag Tag 

TypeDef 0 

TypeRef 1 

ModuleRef 2 

MethodDef 3 

TypeSpec 4 

 

HasSemantics: 1 bit to encode tag Tag 

Event 0 

Property 1 

 

MethodDefOrRef: 1 bit to encode tag Tag 

MethodDef 0 

MemberRef 1 

 

MemberForwarded: 1 bit to encode tag Tag 

Field 0 

MethodDef 1 

 

Implementation: 2 bits to encode tag Tag 

File 0 

AssemblyRef 1 

ExportedType 2 

 

CustomAttributeType: 3 bits to encode tag Tag 

Not used 0 

Not used 1 

MethodDef 2 

MemberRef 3 
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Not used 4 

 

ResolutionScope: 2 bits to encode tag Tag 

Module 0 

ModuleRef 1 

AssemblyRef 2 

TypeRef 3 

 

TypeOrMethodDef: 1 bit to encode tag Tag 

TypeDef 0 

MethodDef 1 
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25 File format extensions to PE 

This contains informative text only 

The file format for CLI components is a strict extension of the current Portable Executable (PE) File Format. 

This extended PE format enables the operating system to recognize runtime images, accommodates code 
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.    

There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a 

tool or compiler can use the specifications to emit valid CLI images.  

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item 

once loaded into memory, with the base address of the image file subtracted from it (i.e., the offset from the 

base address where the file is loaded). The RVA of an item will almost always differ from its position within 

the file on disk. To compute the file position of an item with RVA r, search all the sections in the PE file to find 

the section with RVA s, length l and file position p in which the RVA lies, ie s  r < s+l. The file position of 
the item is then given by p+(r-s). 

Unless stated otherwise, all binary values are stored in little-endian format. 

End informative text 

25.1  Structure of the runtime fi le format  

The figure below provides a high-level view of the CLI file format.  All runtime images contain the following:  

 PE headers, with specific guidelines on how field values should be set in a runtime file.  

 A CLI header that contains all of the runtime specific data entries. The runtime header is read -

only and shall be placed in any read-only section. 

 The sections that contain the actual data as described by the headers, including imports/exports, 

data, and code. 

 

The CLI header (§25.3.3) is found using CLI Header directory entry in the PE header.  The CLI header in turn 

contains the address and sizes of the runtime data (for metadata, see §24; for CIL see § 25.4) in the rest of the 

image.  Note that the runtime data can be merged into other areas of the PE format with the other data based on 
the attributes of the sections (such as read only versus execute, etc.).  

25.2  PE headers  

A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and 

then the PE optional header followed by PE section headers. 
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25.2.1 MS-DOS header 

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the 

module. At offset 0x3c in the DOS header is a 4-byte unsigned integer offset, lfanew, to the PE signature (shall 

be ―PE\0\0‖), immediately followed by the PE file header.   

0x4d 0x5a 0x90 0x00 0x03 0x00 0x00 0x00 

0x04 0x00 0x00 0x00 0xFF 0xFF 0x00 0x00 

0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 lfanew 

0x0e 0x1f 0xba 0x0e 0x00 0xb4 0x09 0xcd 

0x21 0xb8 0x01 0x4c 0xcd 0x21 0x54 0x68 

0x69 0x73 0x20 0x70 0x72 0x6f 0x67 0x72 

0x61 0x6d 0x20 0x63 0x61 0x6e 0x6e 0x6f 

0x74 0x20 0x62 0x65 0x20 0x72 0x75 0x6e 

0x20 0x69 0x6e 0x20 0x44 0x4f 0x53 0x20 

0x6d 0x6f 0x64 0x65 0x2e 0x0d 0x0d 0x0a 

0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

 

25.2.2 PE fi le  header 

Immediately after the PE signature is the PE File header consisting of the following: 

Offset Size Field Description 

0 2 Machine Always 0x14c. 

2 2 Number of Sections Number of sections; indicates size of the Section Table, 

which immediately follows the headers. 

4 4 Time/Date Stamp Time and date the file was created in seconds since 

January 1st 1970 00:00:00 or 0. 

8 4 Pointer to Symbol Table Always 0 (§24.1). 

12 4 Number of Symbols Always 0 (§24.1). 

16 2 Optional Header Size Size of the optional header, the format is described below. 

18 2 Characteristics Flags indicating attributes of the file, see §25.2.2.1. 

 

25.2.2.1 Characterist ics 

A CIL-only DLL sets flag 0x2000 to 1, while a CIL-only .exe has flag 0x2000 set to zero: 

Flag Value Description 

IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link library (DLL).  

 

Except for the IMAGE_FILE_DLL flag (0x2000), flags 0x0002, 0x0004, 0x008, and 0x0100 shall all be set, while 

all others shall always be zero (§24.1). 



 

182 Partition II 

25.2.3 PE optional  header  

Immediately after the PE Header is the PE Optional Header. This header contains the following information: 

Offset Size Header part Description 

0 28 Standard fields These define general properties of the PE file, see §25.2.3.1. 

28 68 NT-specific fields These include additional fields to support specific features of 

Windows, see 25.2.3.2. 

96 128 Data directories These fields are address/size pairs for special tables, found in 

the image file (for example, Import Table and Export Table). 

 

25.2.3.1 PE header standard f ie lds 

These fields are required for all PE files and contain the following information: 

Offset Size Field Description 

0 2 Magic Always 0x10B (§24.1). 

2 1 LMajor Always 6 (§24.1). 

3 1 LMinor Always 0 (§24.1). 

4 4 Code Size Size of the code (text) section, or the sum of all code sections 

if there are multiple sections.  

8 4 Initialized Data Size Size of the initialized data section, or the sum of all such 

sections if there are multiple data sections. 

12 4 Uninitialized Data Size Size of the uninitialized data section, or the sum of all such 

sections if there are multiple unitinitalized data sections. 

16 4 Entry Point RVA RVA of entry point , needs to point to bytes 0xFF 0x25 

followed by the RVA in a section marked execute/read for 

EXEs or 0 for DLLs 

20 4 Base Of Code RVA of the code section. (This is a hint to the loader.) 

24 4 Base Of Data RVA of the data section. (This is a hint to the loader.) 

 

This contains informative text only 

The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this 

stub will call the entry point API of mscoree (_CorExeMain or _CorDllMain). The mscoree entry point will use 

the module handle to load the metadata from the image, and invoke the entry point specified in vthe CLI 

header. 

End informative text 

25.2.3.2 PE header Windows NT-specif ic  f ie lds 

These fields are Windows NT specific: 

Offset Size Field Description 

28 4 Image Base Always 0x400000 (§24.1).  

32 4 Section Alignment Always 0x2000 (§24.1). 

36 4 File Alignment Either 0x200 or 0x1000. 

40 2 OS Major Always 4 (§24.1). 
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42 2 OS Minor Always 0 (§24.1). 

44 2 User Major Always 0 (§24.1). 

46 2 User Minor Always 0 (§24.1). 

48 2 SubSys Major Always 4 (§24.1). 

50 2 SubSys Minor  Always 0 (§24.1). 

52 4 Reserved Always 0 (§24.1). 

56 4 Image Size Size, in bytes, of image, including all headers and padding; 

shall be a multiple of Section Alignment. 

60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional 

Header and padding; shall be a multiple of the file alignment.  

64 4 File Checksum Always 0 (§24.1). 

68 2 SubSystem Subsystem required to run this image.  Shall be either 

IMAGE_SUBSYSTEM_WINDOWS_CE_GUI (0x3) or 

IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2). 

70 2 DLL Flags Always 0 (§24.1). 

72 4 Stack Reserve Size Always 0x100000 (1Mb) (§24.1). 

76 4 Stack Commit Size Always 0x1000 (4Kb) (§24.1). 

80 4 Heap Reserve Size Always 0x100000 (1Mb) (§24.1). 

84 4 Heap Commit Size Always 0x1000 (4Kb) (§24.1). 

88 4 Loader Flags Always 0 (§24.1) 

92 4 Number of Data 

Directories 

Always 0x10 (§24.1).  

 

25.2.3.3 PE header data directories 

The optional header data directories give the address and size of several tables that appear in the sections of the 

PE file. Each data directory entry contains the RVA and Size of the structure it describes, in that order.  

Offset Size Field Description 

96 8 Export Table Always 0 (§24.1). 

104 8 Import Table RVA and Size of Import Table, (§25.3.1). 

112 8 Resource Table Always 0 (§24.1). 

120 8 Exception Table Always 0 (§24.1). 

128 8 Certificate Table Always 0 (§24.1). 

136 8 Base Relocation Table Relocation Table; set to 0 if unused (§25.3.2). 

144 8 Debug Always 0 (§24.1). 

152 8 Copyright Always 0 (§24.1). 

160 8 Global Ptr Always 0 (§24.1). 

168 8 TLS Table Always 0 (§24.1). 

176 8 Load Config Table Always 0 (§24.1). 
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184 8 Bound Import Always 0 (§24.1). 

192 8 IAT RVA and Size of Import Address Table, 

(§25.3.1). 

200 8 Delay Import Descriptor Always 0 (§24.1). 

208 8 CLI Header CLI Header with directories for runtime data, 

(§25.3.1). 

216 8 Reserved Always 0 (§24.1). 

 

The tables pointed to by the directory entries are stored in one of the PE file‘s sections; these sections 

themselves are described by section headers.  

25.3  Section headers  

Immediately following the optional header is the Section Table, which contains a number of section headers. 

This positioning is required because the file header does not contain a direct pointer to the section table; the 
location of the section table is determined by calculating the location of the first byte after the headers. 

Each section header has the following format, for a total of 40 bytes per entry: 

Offset Size Field Description 

0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null 

if the string is exactly eight characters long. 

8 4 VirtualSize Total size of the section in bytes. If this value is greater than 

SizeOfRawData, the section is zero-padded. 

12 4 VirtualAddress For executable images this is the address of the first byte of the 

section, when loaded into memory, relative to the image base.  

16 4 SizeOfRawData Size of the initialized data on disk in bytes, shall be a multiple of 

FileAlignment from the PE header. If this is less than VirtualSize 

the remainder of the section is zero filled. Because this field is 

rounded while the VirtualSize field is not it is possible for this to 

be greater than VirtualSize as well. When a section contains only 

uninitialized data, this field should be 0. 

20 4 PointerToRawData Offset of section‘s first page within the PE file. This shall be a 

multiple of FileAlignment from the optional header. When a 

section contains only uninitialized data, this field should be 0. 

24 4 PointerToRelocations RVA of Relocation section.  

28 4 PointerToLinenumbers Always 0 (§24.1). 

32 2 NumberOfRelocations Number of relocations, set to 0 if unused. 

34 2 NumberOfLinenumbers Always 0 (§24.1). 

36 4 Characteristics Flags describing section‘s characteristics, see below. 

 

The following table defines the possible characteristics of the section. 

Flag Value Description 

IMAGE_SCN_CNT_CODE 0x00000020 Section contains executable code. 

IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized data. 

IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized data. 

IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as code. 
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IMAGE_SCN_MEM_READ 0x40000000 Section can be read. 

IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to. 

 

25.3.1 Import Table  and Import Address Table  (IAT)  

The Import Table and the Import Address Table (IAT) are used to import the _CorExeMain (for a .exe) or 

_CorDllMain (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to 

a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each 

imported DLL): 

Offset Size Field Description 

0 4 ImportLookupTable RVA of the Import Lookup Table  

4 4 DateTimeStamp Always 0 (§24.1). 

8 4 ForwarderChain Always 0 (§24.1). 

12 4 Name RVA of null-terminated ASCII string ―mscoree.dll‖. 

16 4 ImportAddressTable RVA of Import Address Table (this is the same as the 

RVA of the IAT descriptor in the optional header).  

20 20  End of Import Table. Shall be filled with zeros. 

 

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of 

RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in 
this table for every imported symbol.  

Offset Size Field Description 

0 4 Hint/Name Table RVA A 31-bit RVA into the Hint/Name Table. Bit 31 

shall be set to 0 indicating import by name. 

4 4  End of table, shall be filled with zeros. 

 

The IAT should be in an executable and writable section as the loader will replace the pointers into the 

Hint/Name table by the actual entry points of the imported symbols. 

The Hint/Name table contains the name of the dll-entry that is imported. 

Offset Size Field Description 

0 2 Hint Shall be 0. 

2 variable Name Case sensitive, null-terminated ASCII string containing name to 

import. Shall be ―_CorExeMain‖ for a .exe file and 

―_CorDllMain‖ for a .dll file. 

 

25.3.2 Relocations  

In a pure CIL image, a single fixup of type IMAGE_REL_BASED_HIGHLOW (0x3) is required for the x86 

startup stub which access the IAT to load the runtime engine on down level loaders.  When building a mixed 

CIL/native image or when the image contains embedded RVAs in user data, the relocation section contains 

relocations for these as well.     

The relocations shall be in their own section, named ―.reloc‖, which shall be the final section in the PE file. The 
relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block 

represents the fixups for a 4K page, and each block shall start on a 32-bit boundary. 

Each fixup block starts with the following structure: 

Offset Size Field Description 
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0 4 PageRVA The RVA of the block in which the fixup needs to be 

applied. The low 12 bits shall be zero. 

4 4 Block Size Total number of bytes in the fixup block, including the 

Page RVA and Block Size fields, as well as the 

Type/Offset fields that follow, rounded up to the next 

multiple of 4. 

 

The Block Size field is then followed by (BlockSize –8)/2 Type/Offset. Each entry is a word (2 bytes) and has 

the following structure (if necessary, insert 2 bytes of 0 to pad to a multiple of 4 bytes in length): 

Offset Size Field Description 

0 4 bits Type Stored in high 4 bits of word. Value indicating which 

type of fixup is to be applied (described above) 

0 12 bits Offset Stored in remaining 12 bits of word. Offset from starting 
address specified in the Page RVA field for the block. 

This offset specifies where the fixup is to be applied. 

 

25.3.3 CLI header  

The CLI header contains all of the runtime-specific data entries and other information.  The header should be 

placed in a read-only, sharable section of the image.  This header is defined as follows: 

Offset Size Field Description 

0 4 Cb Size of the header in bytes 

4 2 MajorRuntimeVersion The minimum version of the runtime required to run 

this program, currently 2. 

6 2 MinorRuntimeVersion The minor portion of the version, currently 0. 

8 8 MetaData RVA and size of the physical metadata (§24). 

16 4 Flags Flags describing this runtime image.  (§25.3.3.1). 

20 4 EntryPointToken Token for the MethodDef or File of the entry point 

for the image 

24 8 Resources RVA and size of implementation-specific resources. 

32 8 StrongNameSignature RVA of the hash data for this PE file used by the 

CLI loader for binding and versioning 

40 8 CodeManagerTable Always 0 (§24.1). 

48 8 VTableFixups RVA of an array of locations in the file that contain 

an array of function pointers (e.g., vtable slots), see 

below. 

56 8 ExportAddressTableJumps Always 0 (§24.1). 

64 8 ManagedNativeHeader Always 0 (§24.1). 

 

25.3.3.1 Runti me flags 

The following flags describe this runtime image and are used by the loader. 

Flag Value Description 

COMIMAGE_FLAGS_ILONLY 0x00000001 Always 1 (§24.1). 
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COMIMAGE_FLAGS_32BITREQUIRED 0x00000002 Image can only be loaded into a 32-bit process, 

for instance if there are 32-bit vtablefixups, or 

casts from native integers to int32. CLI 

implementations that have 64-bit native 

integers shall refuse loading binaries with this 

flag set. 

COMIMAGE_FLAGS_STRONGNAMESIGNED 0x00000008 Image has a strong name signature. 

COMIMAGE_FLAGS_TRACKDEBUGDATA 0x00010000 Always 0 (§24.1). 

 

25.3.3.2 Entry point metadata token 

 The entry point token (§15.4.1.2) is always a MethodDef token (§22.26) or File token (§22.19 ) 

when the entry point for a multi-module assembly is not in the manifest assembly.  The signature 

and implementation flags in metadata for the method indicate how the entry is run 

25.3.3.3 Vtable  f ixup 

Certain languages, which choose not to follow the common type system runtime model, can have virtual 

functions which need to be represented in a v-table.  These v-tables are laid out by the compiler, not by the 

runtime.  Finding the correct v-table slot and calling indirectly through the value held in that slot is also done 

by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of 

Vtable Fixups (§15.5.1). V-tables shall be emitted into a read-write section of the PE file.   

Each entry in this array describes a contiguous array of v-table slots of the specified size.  Each slot starts out 

initialized to the metadata token value for the method they need to call.  At image load time, the runtime 

Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.  

Offset Size Field Description 

0 4 VirtualAddress RVA of Vtable 

4 2 Size Number of entries in Vtable 

6 2 Type Type of the entries, as defined in table below 

 

Constant Value Description 

COR_VTABLE_32BIT 0x01 Vtable slots are 32 bits. 

COR_VTABLE_64BIT 0x02 Vtable slots are 64 bits. 

COR_VTABLE_FROM_UNMANAGED 0x04 Transition from unmanaged to managed code. 

COR_VTABLE_CALL_MOST_DERIVED 0x10 Call most derived method described by the 

token (only valid for virtual methods). 

 

25.3.3.4 Strong name signature  

This header entry points to the strong name hash for an image that can be used to deterministically identify a 

module from a referencing point (§6.2.1.3). 

25.4  Common Intermediate Language phys ical layout  

This section contains the layout of the data structures used to describe a CIL method and its exceptions. Method 

bodies can be stored in any read-only section of a PE file. The MethodDef (§22.26) records in metadata carry 
each method's RVA.  

A method consists of a method header immediately followed by the method body, possibly followed by extra 

method data sections (§25.4.5), typically exception handling data.  If exception-handling data is present, then 
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CorILMethod_MoreSects flag (§25.4.4) shall be specified in the method header and for each chained item after 

that. 

There are two flavors of method headers - tiny (§25.4.2) and fat (§25.4.3). The two least significant bits in a 

method header indicate which type is present (§25.4.1). The tiny header is 1 byte long and stores only the 

method's code size. A method is given a tiny header if it has no local variables, maxstack is 8 or less, the 

method has no exceptions, the method size is less than 64 bytes, and the method has no flags above 0x7. Fat 
headers carry full information - local vars signature token, maxstack, code size, flag. Tiny method headers can 

start on any byte boundary.  Fat method headers shall start on a 4-byte boundary. 

25.4.1 Method header type values  

The two least significant bits of the first byte of the method header indicate what type of header is present.  

These 2 bits will be one and only one of the following: 

Value Value Description 

CorILMethod_TinyFormat 0x2 The method header is tiny (§25.4.2) . 

CorILMethod_FatFormat 0x3 The method header is fat (§25.4.3). 

 

25.4.2 Tiny format  

Tiny headers use a 6-bit length encoding.  The following is true for all tiny headers: 

 No local variables are allowed 

 No exceptions 

 No extra data sections 

 The operand stack shall be no bigger than 8 entries 

A Tiny Format header is encoded as follows: 

Start Bit Count of Bits Description 

0 2 Flags (CorILMethod_TinyFormat shall be set, see §25.4.4). 

2 6 Size, in bytes, of the method body immediately following this 

header. 

 

25.4.3 Fat for mat  

The fat format is used whenever the tiny format is not sufficient.  This can be true for one or more of the 

following reasons: 

 The method is too large to encode the size (i.e., at least 64 bytes) 

 There are exceptions 

 There are extra data sections 

 There are local variables 

 The operand stack needs more than 8 entries 

A fat header has the following structure  

Offset  Size  Field Description 

0 12 (bits) Flags Flags (CorILMethod_FatFormat shall be set in bits 0:1, 

see §25.4.4) 

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte 

integers occupied (currently 3) 
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2  2  MaxStack Maximum number of items on the operand stack 

4 4 CodeSize Size in bytes of the actual method body 

8 4 LocalVarSigTok Meta Data token for a signature describing the layout 

of the local variables for the method.  0 means there 

are no local variables present 

 

25.4.4 Flags for  method headers 

The first byte of a method header can also contain the following flags, valid only for the Fat format, that 

indicate how the method is to be executed: 

Flag Value Description 

CorILMethod_FatFormat 0x3 Method header is fat. 

CorILMethod_TinyFormat 0x2 Method header is tiny. 

CorILMethod_MoreSects 0x8 More sections follow after this header (§25.4.5). 

CorILMethod_InitLocals 0x10 Call default constructor on all local variables. 

 

25.4.5 Method data section  

At the next 4-byte boundary following the method body can be extra method data sections. These method data 

sections start with a two byte header (1 byte for flags, 1 byte for the length of the actual data)  or a 4-byte 

header  (1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the 

header, and what data is in the actual section:  

Flag Value Description 

CorILMethod_Sect_EHTable 0x1 Exception handling data. 

CorILMethod_Sect_OptILTable 0x2 Reserved, shall be 0. 

CorILMethod_Sect_FatFormat 0x40 Data format is of the fat variety, meaning there is a 3-

byte length least-significant byte first format.  If not 

set, the header is small with a  1-byte length 

CorILMethod_Sect_MoreSects 0x80 Another data section occurs after this current section 

 

Currently, the method data sections are only used for exception tables (§19). The layout of a small exception 

header structure as is a follows: 

Offset Size Field Description 

0 1 Kind Flags as described above. 

1 1 DataSize Size of the data for the block, including the header, say 

n*12+4. 

2 2 Reserved Padding, always 0. 

4 n Clauses n small exception clauses (§25.4.6). 

 

The layout of a fat exception header structure is as follows: 

Offset Size Field Description 

0 1 Kind Which type of exception block is being used 

1 3 DataSize Size of the data for the block, including the header, say 

n*24+4. 



 

190 Partition II 

4 n Clauses n fat exception clauses (§25.4.6). 

 

25.4.6 Exception handling c lauses  

Exception handling clauses also come in small and fat versions.  

The small form of the exception clause should be used whenever the code sizes for the try block and the 

handler code are both smaller than 256 bytes and both their offsets are smaller than 65536.  The format for a 

small exception clause is as follows: 

Offset Size Field Description 

0 2 Flags Flags, see below. 

2 2 TryOffset Offset in bytes of try block from start of method body. 

4 1 TryLength Length in bytes of the try block 

5 2 HandlerOffset Location of the handler for this try block 

7 1 HandlerLength Size of the handler code in bytes 

8 4 ClassToken Meta data token for a type-based exception handler 

8 4 FilterOffset Offset in method body for filter-based exception handler 

 

The layout of the fat form of exception handling clauses is as follows: 

Offset Size Field Description 

0 4 Flags Flags, see below. 

4 4 TryOffset Offset in bytes of try block from start of method body. 

8 4 TryLength Length in bytes of the try block 

12 4 HandlerOffset Location of the handler for this try block 

16 4 HandlerLength Size of the handler code in bytes 

20 4 ClassToken Meta data token for a type-based exception handler 

20 4 FilterOffset Offset in method body for filter-based exception handler 

 

The following flag values are used for each exception-handling clause: 

Flag Value Description 

COR_ILEXCEPTION_CLAUSE_EXCEPTION 0x0000 A typed exception clause 

COR_ILEXCEPTION_CLAUSE_FILTER 0x0001 An exception filter and handler clause 

COR_ILEXCEPTION_CLAUSE_FINALLY 0x0002 A finally clause 

COR_ILEXCEPTION_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on 

exception only) 
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