
 Partition II 1

Common Language Infrastructure (CLI)

Partition II:

Metadata Definition and Semantics

 Partition II i

Table of contents

1 Introducti on 9

2 Overview 10

3 Validation and verif ication 11

4 Introductory examples 12

4.1 ―Hel lo wor ld!‖ 12

4.2 Other examples 12

5 General syntax 13

5.1 General syn tax nota t ion 13

5.2 Basic syn tax categor ies 13

5.3 Iden t i fier s 14

5.4 Labels and lists of labels 15

5.5 Lists of hex byt es 15

5.6 Float ing-poin t numbers 15

5.7 Source l ine in formation 16

5.8 File names 16

5.9 Attr ibutes and metada ta 16

5.10 i lasm source fi les 17

6 Asse mblies, manifests and modules 18

6.1 Overview of modul es, assem blies, and fi les 18

6.2 Defin ing an assembl y 19

6.2.1 In format ion about the assembl y (AsmDecl) 20

6.2.2 Manifest r esources 22

6.2.3 Associa t ing fi les wi th an assembl y 22

6.3 Referencing assemblies 22

6.4 Declar ing modules 24

6.5 Referencing modules 24

6.6 Declarat ions inside a module or assembl y 24

6.7 Expor ted type defin i t ions 24

6.8 T ype forwarder s 25

7 Types and signatures 26

ii Partition II

7.1 T ypes 26

7.1.1 modreq an d modopt 27

7.1.2 pinned 28

7.2 Buil t - in types 28

7.3 References to user -defined t ypes (TypeReference) 28

7.4 Native data types 29

8 Visibi l i ty, accessibi l i ty and hiding 31

8.1 Visibi l i t y of top-level t ypes and accessi bi l i t y of nested t ypes 31

8.2 Accessi bi l i t y 31

8.3 Hiding 31

9 Generics 32

9.1 Gener ic type defin i t ions 33

9.2 Gener ics and recur sive inher i tance graphs 33

9.3 Gener ic method defin i t ions 34

9.4 Instan tia ting gener ic types 35

9.5 Gener ics var iance 36

9.6 Assignment compat ibi l i t y of in stan t ia ted types 36

9.7 Validi ty of mem ber signatures 37

9.8 Signatures and binding 38

9.9 Inheri tance and over riding 39

9.10 Explici t method over r ides 40

9.11 Constra ints on gener ic parameter s 41

9.12 References to members of gener ic t ypes 42

10 Defining types 43

10.1 T ype header (ClassHeader) 43

10.1.1 Visibi l i t y and accessi bi l i t y a t t r ibutes 44

10.1.2 T ype la yout a t t r ibutes 45

10.1.3 T ype semant ics a ttr ibutes 45

10.1.4 Inheri tance a t tr ibutes 46

10.1.5 In teroperat ion at tr ibutes 46

10.1.6 Specia l handling at tr ibutes 46

10.1.7 Gener ic parameter s (GenPars) 47

10.2 Body of a type de fin i t ion 51

10.3 In troducing and over riding vir tual methods 51

10.3.1 In troducing a vi r tual method 51

10.3.2 The .over r ide dir ect ive 52

 Partition II iii

10.3.3 Accessi bi l i t y and over r iding 53

10.4 Method implementat ion r equiremen ts 53

10.5 Specia l members 54

10.5.1 Instance constructor 54

10.5.2 Instance final izer 54

10.5.3 T ype in i t ia l izer 54

10.6 Nest ed t ypes 56

10.7 Control l ing instance layout 57

10.8 Global fields and methods 58

11 Semantics of c lasses 59

12 Semantics of interfaces 60

12.1 Implement ing in ter faces 60

12.2 Implement ing vir tual methods on in ter faces 60

13 Semantics of val ue types 62

13.1 Referencing value types 63

13.2 In i tia liz ing value t ypes 63

13.3 Methods of value t ypes 64

14 Semantics of special types 66

14.1 Vector s 66

14.2 Arrays 66

14.3 Enums 68

14.4 Poin ter types 69

14.4.1 Unmanaged poin ter s 70

14.4.2 Managed poin ter s 71

14.5 Method poin ter s 71

14.6 Delegates 72

14.6.1 Delegate signature compat ibi l i t y 73

14.6.2 Synchronous cal ls to delegates 74

14.6.3 Asynchronous cal ls to delegates 75

15 Defining, referencing, and cal l ing methods 77

15.1 Method descr iptor s 77

15.1.1 Method declara t ions 77

15.1.2 Method defin i t ions 77

15.1.3 Method references 77

15.1.4 Method implementat ions 77

iv Partition II

15.2 Stat ic, in stance, and vir tual methods 77

15.3 Call ing conven t ion 78

15.4 Defin ing methods 79

15.4.1 Method body 80

15.4.2 Predefined a t tr ibutes on methods 83

15.4.3 Implementat ion a t tr ibutes of methods 85

15.4.4 Scope bl ocks 87

15.4.5 vararg methods 87

15.5 Unmanaged methods 88

15.5.1 Method t r ansit ion thunks 88

15.5.2 Platform invoke 89

15.5.3 Method cal ls via funct ion poin ter s 90

15.5.4 Data type marshal ing 90

16 Defining and referencing f ie lds 91

16.1 Attr ibutes of fields 91

16.1.1 Accessi bi l i t y in format ion 92

16.1.2 Field con tract a ttr ibutes 92

16.1.3 In teroperat ion at t r ibutes 92

16.1.4 Other a ttr ibutes 93

16.2 Field in it metadata 93

16.3 Embedding data in a PE fi le 94

16.3.1 Data declara t ion 94

16.3.2 Accessing data from the PE fi le 95

16.4 In i tia lizat ion of non -l i tera l sta t ic data 95

16.4.1 Data known at l ink t ime 96

16.5 Data known at load t ime 96

16.5.1 Data known at run t ime 96

17 Defining properties 98

18 Defining events 100

19 Exception handling 103

19.1 Protect ed bl ocks 103

19.2 Handler blocks 104

19.3 Catch blocks 104

19.4 Fil ter blocks 104

19.5 Final ly bl ocks 105

 Partition II v

19.6 Faul t handler s 105

20 Declarative security 106

21 Custom attr ibutes 107

21.1 CLS conven t ions: custom at tr ibute usage 107

21.2 Attr ibutes used by the CLI 107

21.2.1 Pseudo cust om at tr ibutes 108

21.2.2 Custom at tr ibutes defined by the CLS 109

21.2.3 Custom at tr ibutes for secur i ty 109

21.2.4 Custom at tr ibutes for TLS 110

21.2.5 Custom at tr ibutes, var ious 110

22 Metadata logical format: tables 111

22.1 Metadata val idat ion rules 112

22.2 Assembl y : 0x20 113

22.3 Assembl yOS : 0x22 114

22.4 Assembl yProcessor : 0x21 114

22.5 Assembl yRef : 0x23 114

22.6 Assembl yRefOS : 0x25 115

22.7 Assembl yRefProcessor : 0x24 115

22.8 ClassLa yout : 0x0F 116

22.9 Constant : 0x0B 118

22.10 CustomAttr ibute : 0x0C 118

22.11 DeclSecur i ty : 0x0E 120

22.12 Even tMap : 0x12 122

22.13 Even t : 0x14 122

22.14 Expor tedT ype : 0x27 124

22.15 Field : 0x04 125

22.16 FieldLa yout : 0x10 127

22.17 FieldMarshal : 0x0D 128

22.18 FieldRVA : 0x1D 129

22.19 File : 0x26 129

22.20 Gener icParam : 0x2A 130

22.21 Gener icParamConstra int : 0x2C 131

22.22 ImplMap : 0x1C 132

22.23 In ter faceImpl : 0x09 133

22.24 ManifestResource : 0x28 133

22.25 MemberRef : 0x0A 134

vi Partition II

22.26 MethodDef : 0x06 135

22.27 MethodImpl : 0x19 138

22.28 MethodSemantics : 0x18 139

22.29 MethodSpec : 0x2B 140

22.30 Modul e : 0x00 141

22.31 Modul eRef : 0x1A 141

22.32 Nest edClass : 0x29 142

22.33 Param : 0x08 142

22.34 Proper t y : 0x17 143

22.35 Proper t yMap : 0x15 144

22.36 StandAloneSig : 0x11 145

22.37 T ypeDef : 0x02 146

22.38 T ypeRef : 0x01 149

22.39 T ypeSpec : 0x1B 150

23 Metadata logical for mat: other structures 151

23.1 Bitmasks and flags 151

23.1.1 Values for Assembl yHashAlgor i thm 151

23.1.2 Values for Assembl yFlags 151

23.1.3 Values for Cul ture 151

23.1.4 Flags for even ts [Even tAttr ibutes] 152

23.1.5 Flags for fields [FieldAttr ibutes] 152

23.1.6 Flags for fi les [Fi leAtt r ibutes] 153

23.1.7 Flags for Gener ic Parameter s [Gener icParamAttr ibutes] 153

23.1.8 Flags for ImplMap [PInvokeAttr ibutes] 154

23.1.9 Flags for Manifest Resource [Manifest ResourceAttr ibutes] 154

23.1.10 Flags for methods [MethodAttr ibutes] 154

23.1.11 Flags for methods [MethodImplAttr ibutes] 155

23.1.12 Flags for MethodSemant ics [MethodSemant icsAttr ibutes] 156

23.1.13 Flags for params [ParamAttr ibutes] 156

23.1.14 Flags for proper t ies [Proper t yAttr ibutes] 156

23.1.15 Flags for types [T ypeAttr ibutes] 156

23.1.16 Element types used in signatures 158

23.2 Bl obs and signatures 159

23.2.1 MethodDefSig 161

23.2.2 MethodRefSig 162

23.2.3 StandAloneMethodSig 163

23.2.4 FieldSig 164

 Partition II vii

23.2.5 Proper t ySig 164

23.2.6 LocalVarSig 165

23.2.7 CustomMod 165

23.2.8 T ypeDefOrRefEncoded 166

23.2.9 Constra int 166

23.2.10 Param 167

23.2.11 RetT ype 167

23.2.12 T ype 167

23.2.13 ArrayShape 168

23.2.14 T ypeSpec 168

23.2.15 MethodSpec 169

23.2.16 Shor t form signatures 169

23.3 Custom at tr ibutes 170

23.4 Marshall ing descr iptor s 172

24 Metadata physical layout 174

24.1 Fixed fi elds 174

24.2 File header s 174

24.2.1 Metadata root 174

24.2.2 Stream header 175

24.2.3 #Str ings heap 175

24.2.4 #US and #Blob heaps 175

24.2.5 #GUID heap 176

24.2.6 #~ str eam 176

25 File format extensions to PE 180

25.1 Structure of the run t ime fi le format 180

25.2 PE header s 180

25.2.1 MS-DOS header 181

25.2.2 PE fi le header 181

25.2.3 PE opt ional header 182

25.3 Sect ion header s 184

25.3.1 Impor t Table and Impor t Address Table (IAT) 185

25.3.2 Relocat ions 185

25.3.3 CLI header 186

25.4 Common Intermediate Language physi cal layout 187

25.4.1 Method header type values 188

25.4.2 Tiny format 188

25.4.3 Fat format 188

viii Partition II

25.4.4 Flags for method header s 189

25.4.5 Method data sect ion 189

25.4.6 Except ion handl ing clauses 190

26 Inde x 191

 Partition II 9

1 Introduction

This specification provides the normative description of the metadata: its physical layout (as a file format), its

logical contents (as a set of tables and their relationships), and its semantics (as seen from a hypothetical

assembler, ilasm).

10 Partition II

2 Overview

This partition focuses on the semantics and the structure of metadata. The semantics of metadata, which dictate

much of the operation of the VES, are described using the syntax of ILAsm, an assembly language for CIL.

The ILAsm syntax itself (contained in clauses 5 through 21) is considered a normative part of this International

Standard. (An implementation of an assembler for ILAsm is described in Partition VI.) The structure (both

logical and physical) is covered in clauses 22 through 25.

[Rationale: An assembly language is really just syntax for specifying the metadata in a file, and the CIL

instructions in that file. Specifying ILAsm provides a means of interchanging programs written directly for the

CLI without the use of a higher-level language; it also provides a convenient way to express examples.

The semantics of the metadata can also be described independently of the actual format in which the metadata

is stored. This point is important because the storage format as specified in clauses 22 through 25 is engineered

to be efficient for both storage space and access time, but this comes at the cost of the simplicity desirable for

describing its semantics. end rationale]

Partition%20VI%20Annexes.doc

 Partition II 11

3 Validation and verification

Validation refers to the application of a set of tests on any file to check that the file‘s format, metadata, and CIL

are self-consistent. These tests are intended to ensure that the file conforms to the normative requirements of

this specification. When a conforming implementation of the CLI is presented with a non-conforming file, the

behavior is unspecified.

Verification refers to the checking of both CIL and its related metadata to ensure that the CIL code sequences

do not permit any access to memory outside the program‘s logical address space. In conjunction with the

validation tests, verification ensures that the program cannot access memory or other resources to which it is

not granted access.

Partition III specifies the rules for both correct and verifiable use of CIL instructions. Partition III also provides

an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit

indirectly, from the specification in this Partition); it also contains a normative description of the verification

algorithm. A mathematical proof of soundness of the underlying type system is possible, and provides the
basis for the verification requirements. Aside from these rules, this standard leaves as unspecified:

 The time at which (if ever) such an algorithm should be performed.

 What a conforming implementation should do in the event of a verification failure.

The following figure makes this relationship clearer (see next paragraph for a description):

Figure 1: Relationship between correct and verifiable CIL

In the above figure, the outer circle contains all code permitted by the ILAsm syntax. The next inner circle

represents all code that is correct CIL. The striped inner circle represents all type-safe code. Finally, the black

innermost circle contains all code that is verifiable. (The difference between type-safe code and verifiable code
is one of provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that

simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type-safe).

Note that even if a program follows the syntax described in Partition VI, the code might still not be valid,

because valid code shall adhere to restrictions presented in this Partition and in Partition III.

The verification process is very stringent. There are many programs that will pass validation, but will fail

verification. The VES cannot guarantee that these programs do not access memory or resources to which they

are not granted access. Nonetheless, they might have been correctly constructed so that they do not access these

resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs.

Ordinarily, a conforming implementation of the CLI can allow unverifiable code (valid code that does not pass

verification) to be executed, although this can be subject to administrative trust controls that are not part of this

standard. A conforming implementation of the CLI shall allow the execution of verifiable code, although this

can be subject to additional implementation-specified trust controls.

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc
Partition%20VI%20Annexes.doc
Partition%20III%20CIL.doc

12 Partition II

4 Introductory examples

This clause and its subclauses contain only informative text.

4.1 “Hello world!”

To get the general feel of ILAsm, consider the following simple example, which prints the well known ―Hello

world!‖ salutation. The salutation is written by calling WriteLine, a static method found in the class

System.Console that is part of the standard assembly mscorlib (see Partition IV). [Example:

.assembly extern mscorlib {}

.assembly hello {}

.method static public void main() cil managed

{ .entrypoint
 .maxstack 1

 ldstr "Hello world!"

 call void [mscorlib]System.Console::WriteLine(class System.String)

 ret

}

end example]

The .assembly extern declaration references an external assembly, mscorlib, which contains the

definition of System.Console. The .assembly declaration in the second line declares the name of the

assembly for this program. (Assemblies are the deployment unit for executable content for the CLI.) The

.method declaration defines the global method main, the body of which follows, enclosed in braces. The first

line in the body indicates that this method is the entry point for the assembly (.entrypoint), and the second

line in the body specifies that it requires at most one stack slot (.maxstack).

Method main contains only three instructions: ldstr, call, and ret. The ldstr instruction pushes the string

constant "Hello world!" onto the stack and the call instruction invokes System.Console::WriteLine, passing

the string as its only argument. (Note that string literals in CIL are instances of the standard class

System.String.) As shown, call instructions shall include the full signature of the called method. Finally, the

last instruction, ret, returns from main.

4.2 Other examples

This Partition contains integrated examples for most features of the CLI metadata. Many subclauses conclude

with an example showing a typical use of some feature. All these examples are written using the ILAsm
assembly language. In addition, Partition VI contains a longer example of a program written in the ILAsm

assembly language. All examples are, of course, informative only.

End informative text

Partition%20IV%20Library.doc
Partition%20VI%20Annexes.doc
Partition%20V%20Annexes.doc#_Sample
Partition%20V%20Annexes.doc#_Sample

 Partition II 13

5 General syntax

This clause describes aspects of the ILAsm syntax that are common to many parts of the grammar.

5.1 General syntax notat ion

This partition uses a modified form of the BNF syntax notation. The following is a brief summary of this

notation.

Terminals are written in a constant-width font (e.g., .assembly, extern, and float64); however,

terminals consisting solely of punctuation characters are enclosed in single quotes (e.g., „:‟, „[‟, and „(‟).

The names of syntax categories are capitalized and italicized (e.g. ClassDecl) and shall be replaced by actual

instances of the category. Items placed in [] brackets (e.g., [Filename] and [Float]), are optional, and any item

followed by * (e.g., HexByte* and [„.‟ Id]*) can appear zero or more times. The character ―|‖ means that the

items on either side of it are acceptable (e.g., true | false). The options are sorted in alphabetical order (to

be more specific: in ASCII order, and case-insensitive). If a rule starts with an optional term, the optional term

is not considered for sorting purposes.

ILAsm is a case-sensitive language. All terminals shall be used with the same case as specified in this clause.

[Example: A grammar such as

Top ::= Int32 | float Float | floats [Float [„,‟ Float]*] | else QSTRING

would consider all of the following to be valid:

12

float 3

float –4.3e7

floats

floats 2.4

floats 2.4, 3.7

else "Something \t weird"

but all of the following to be invalid:

else 3

3, 4

float 4.3, 2.4

float else

stuff

end example]

5.2 Basic syntax categories

These categories are used to describe syntactic constraints on the input intended to convey logical restrictions

on the information encoded in the metadata.

Int32 is either a decimal number or ―0x‖ followed by a hexadecimal number, and shall be represented in
32 bits. [Note: ILAsm has no concept of 8- or 16-bit integer constants. Instead, situations requiring such a

constant (such as int8(...) and int16(...) in §16.2) accept an Int32 instead, and use only the least-significant

bytes. end note]

Int64 is either a decimal number or ―0x‖ followed by a hexadecimal number, and shall be represented in

64 bits.

HexByte is a hexadecimal number that is a pair of characters from the set 0–9, a–f, and A–F.

RealNumber is any syntactic representation for a floating-point number that is distinct from that for all other

syntax categories. In this partition, a period (.) is used to separate the integer and fractional parts, and ―e‖

or ―E‖ separates the mantissa from the exponent. Either of the period or the mantissa separator (but not both)

can be omitted.

[Note: A complete assembler might also provide syntax for infinities and NaNs. end note]

14 Partition II

QSTRING is a string surrounded by double quote (″) marks. Within the quoted string the character ―\‖ can be

used as an escape character, with ―\t‖ representing a tab character, ―\n‖ representing a newline character, and

―\‖ followed by three octal digits representing a byte with that value. The ―+‖ operator can be used to

concatenate string literals. This way, a long string can be broken across multiple lines by using ―+‖ and a new

string on each line. An alternative is to use ―\‖ as the last character in a line, in which case, that character and

the line break following it are not entered into the generated string. Any white space characters (space, line-
feed, carriage-return, and tab) between the ―\‖ and the first non-white space character on the next line are

ignored. [Note: To include a double quote character in a QSTRING, use an octal escape sequence. end note]

[Example: The following result in strings that are equivalent to "Hello World from CIL!":

ldstr "Hello " + "World " +

"from CIL!"

and

ldstr "Hello World\

 \040from CIL!"

end example]

[Note: A complete assembler will need to deal with the full set of issues required to support Unicode

encodings, see Partition I (especially CLS Rule 4). end note]

SQSTRING is just like QSTRING except that the former uses single quote (′) marks instead of double quote.

[Note: To include a single quote character in an SQSTRING, use an octal escape sequence. end note]

ID is a contiguous string of characters which starts with either an alphabetic character (A–Z, a–z) or one of ―_‖,

―$‖, ―@‖, ―`‖ (grave accent), or ―?‖, and is followed by any number of alphanumeric characters (A–Z, a–z, 0–
9) or the characters ―_‖, ―$‖, ―@‖, ―`‖ (grave accent), and ―?‖. An ID is used in only two ways:

 As a label of a CIL instruction (§5.4).

 As an Id (§5.3).

5.3 Identifiers

Identifiers are used to name entities. Simple identifiers are equivalent to an ID. However, the ILAsm syntax

allows the use of any identifier that can be formed using the Unicode character set (see Partition I). To achieve

this, an identifier shall be placed within single quotation marks. This is summarized in the following grammar.

Id ::=

 ID

| SQSTRING

A keyword shall only be used as an identifier if that keyword appears in single quotes (see Partition VI for a

list of all keywords).

Several Ids can be combined to form a larger Id, by separating adjacent pairs with a dot (.). An Id formed in

this way is called a DottedName.

DottedName ::= Id [„.‟ Id]*

[Rationale: DottedName is provided for convenience, since ―.‖ can be included in an Id using the SQSTRING

syntax. DottedName is used in the grammar where ―.‖ is considered a common character (e.g., in fully

qualified type names) end rationale]

[Example: The following are simple identifiers:

A Test $Test @Foo? ?_X_ MyType`1

The following are identifiers in single quotes:

′Weird Identifier′ ′Odd\102Char′ ′Embedded\nReturn′

Partition%20I%20Architecture.doc
Partition%20I%20Architecture.doc#References
Partition%20VI%20Annexes.doc
Partition%20V%20Annexes.doc#_ilasmKeywords
Partition%20V%20Annexes.doc#_ilasmKeywords

 Partition II 15

The following are dotted names:

System.Console ′My Project′.′My Component′.′My Name′ System.IComparable`1

end example]

5.4 Labels and l is ts of labels

Labels are provided as a programming convenience; they represent a number that is encoded in the metadata.

The value represented by a label is typically an offset in bytes from the beginning of the current method,

although the precise encoding differs depending on where in the logical metadata structure or CIL stream the

label occurs. For details of how labels are encoded in the metadata, see clauses 22 through 25; for their

encoding in CIL instructions see Partition III.

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an Id. Thus,
labels can be single quoted and can contain Unicode characters.

A list of labels is comma separated, and can be any combination of simple labels.

LabelOrOffset ::= Id

Labels ::= LabelOrOffset [„,‟ LabelOrOffset]*

[Note: In a real assembler the syntax for LabelOrOffset might allow the direct specification of a number rather

than requiring symbolic labels. end note]

ILAsm distinguishes between two kinds of labels: code labels and data labels. Code labels are followed by a

colon (―:‖) and represent the address of an instruction to be executed. Code labels appear before an instruction

and they represent the address of the instruction that immediately follows the label. A particular code label

name shall not be declared more than once in a method.

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon

character. A data label shall not be used as a code label, and a code label shall not be used as a data label. A

particular data label name shall not be declared more than once in a module.

CodeLabel ::= Id „:‟

DataLabel ::= Id

[Example: The following defines a code label, ldstr_label, that represents the address of the ldstr

instruction:

ldstr_label: ldstr "A label"

end example]

5.5 Lists of hex bytes

A list of bytes consists simply of one or more hexbytes.

Bytes ::= HexByte [HexByte*]

5.6 Floating-point numbers

There are two different ways to specify a floating-point number:

1. As a RealNumber.

2. By using the keyword float32 or float64, followed by an integer in parentheses, where the

integer value is the binary representation of the desired floating-point number. For example,

float32(1) results in the 4-byte value 1.401298E-45, while float64(1) results in the 8-byte

value 4.94065645841247E-324.

Float32 ::=

Partition%20III%20CIL.doc

16 Partition II

 RealNumber

| float32 „(‟ Int32 „)‟

Float64 ::=

 RealNumber

| float64 „(‟ Int64 „)‟

[Example:

5.5

1.1e10

float64(128) // note: this results in an 8-byte value whose bits are the same

 // as those for the integer value 128.

end example]

5.7 Source l ine information

The metadata does not encode information about the lexical scope of variables or the mapping from source line

numbers to CIL instructions. Nonetheless, it is useful to specify an assembler syntax for providing this

information for use in creating alternate encodings of the information.

.line takes a line number, optionally followed by a column number (preceded by a colon), optionally

followed by a single-quoted string that specifies the name of the file to which the line number is referring:

ExternSourceDecl ::= .line Int32 [„:‟ Int32] [SQSTRING]

5.8 File names

Some grammar elements require that a file name be supplied. A file name is like any other name where ―.‖ is

considered a normal constituent character. The specific syntax for file names follows the specifications of the

underlying operating system.

Filename ::= Clause

 DottedName 5.3

5.9 Attributes and metadata

Attributes of types and their members attach descriptive information to their definition. The most common

attributes are predefined and have a specific encoding in the metadata associated with them (§23). In addition,

the metadata provides a way of attaching user-defined attributes to metadata, using several different encodings.

From a syntactic point of view, there are several ways for specifying attributes in ILAsm:

 Using special syntax built into ILAsm. For example, the keyword private in a ClassAttr

specifies that the visibility attribute on a type shall be set to allow access only within the defining

assembly.

 Using a general-purpose syntax in ILAsm. The non-terminal CustomDecl describes this grammar

(§21). For some attributes, called pseudo-custom attributes, this grammar actually results in

setting special encodings within the metadata (§21.2.1).

 Security attributes are treated specially. There is special syntax in ILAsm that allows the XML

representing security attributes to be described directly (§20). While all other attributes defined

either in the standard library or by user-provided extension are encoded in the metadata using one

common mechanism described in §22.10, security attributes (distinguished by the fact that they

inherit, directly or indirectly from System.Security.Permissions.SecurityAttribute , see

Partition IV) shall be encoded as described in §22.11.

Partition%20IV%20Library.doc

 Partition II 17

5.10 i lasm source files

An input to ilasm is a sequence of top-level declarations, defined as follows:

ILFile ::= Reference

 Decl* 5.10

The complete grammar for a top-level declaration is shown below. The reference subclauses contain details of

the corresponding productions of this grammar. These productions begin with a name having a ‗.‘ prefix. Such

a name is referred to as a directive.

Decl ::= Reference

 .assembly DottedName „{‟ AsmDecl* „}‟ 6.2

| .assembly extern DottedName „{‟ AsmRefDecl* „}‟ 6.3

| .class ClassHeader „{‟ ClassMember* „}‟ 10

| .class extern ExportAttr DottedName „{‟ ExternClassDecl* „}‟ 6.7

| .corflags Int32 6.2

| .custom CustomDecl 21

| .data DataDecl 16.3.1

| .field FieldDecl 16

| .file [nometadata] Filename .hash „=’ „(’ Bytes „)’ [.entrypoint] 6.2.3

| .method MethodHeader „{‟ MethodBodyItem* „}‟ 15

| .module [Filename] 6.4

| .module extern Filename 6.5

| .mresource [public | private] DottedName „{‟ ManResDecl* „}‟ 6.2.2

| .subsystem Int32 6.2

| .vtfixup VTFixupDecl 15.5.1

| ExternSourceDecl 5.7

| SecurityDecl 20

18 Partition II

6 Assemblies, manifests and modules

Assemblies and modules are grouping constructs, each playing a different role in the CLI.

An assembly is a set of one or more files deployed as a unit. An assembly always contains a manifest that

specifies (§6.1):

 Version, name, culture, and security requirements for the assembly.

 Which other files, if any, belong to the assembly, along with a cryptographic hash of each file.

The manifest itself resides in the metadata part of a file, and that file is always part of the

assembly.

 The types defined in other files of the assembly that are to be exported from the assembly. Types

defined in the same file as the manifest are exported based on attributes of the type itself.

 Optionally, a digital signature for the manifest itself, and the public key used to compute it.

A module is a single file containing executable content in the format specified here. If the module contains a
manifest then it also specifies the modules (including itself) that constitute the assembly. An assembly shall

contain only one manifest amongst all its constituent files. For an assembly that is to be executed (rather than

simply being dynamically loaded) the manifest shall reside in the module that contains the entry point.

While some programming languages introduce the concept of a namespace, the only support in the CLI for this

concept is as a metadata encoding technique. Type names are always specified by their full name relative to

the assembly in which they are defined.

6.1 Overview of modules, assemblies, and fi les

This subclause contains informative text only.

Consider the following figure:

Figure 2: References to Modules and Files

Eight files are shown, each with its name written below it. The six files that each declare a module have an

additional border around them, and their names begin with M. The other two files have a name beginning

with F. These files can be resource files (such as bitmaps) or other files that do not contain CIL code.

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B,

respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines. For
example, assembly A references M2 and M3, and assembly B references M3 and M5. Thus, both assemblies

reference M3.

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When

assembly A is loaded at runtime, an instance of M3 will be loaded for it. When assembly B is loaded into the

same application domain, possibly simultaneously with assembly A, M3 will be shared for both assemblies.

Both assemblies also reference F2, for which similar rules apply.

 Partition II 19

The module M2 references F1, shown by dotted lines. As a consequence, F1 will be loaded as part of

assembly A, when A is executed. Thus, the file reference shall also appear with the assembly declaration.

Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows that

assembly B shall also have a module reference to M6.

End informative text

6.2 Defining an assembly

An assembly is specified as a module that contains a manifest in the metadata; see §22.2. The information for
the manifest is created from the following portions of the grammar:

Decl ::= Clause

 .assembly DottedName „{‟ AsmDecl* „}‟ 6.2

| .assembly extern DottedName „{‟ AsmRefDecl* „}‟ 6.3

| .corflags Int32 6.2

| .file [nometadata] Filename .hash „=‟ „(‟ Bytes „)‟ [.entrypoint] 6.2.3

| .module extern Filename 6.5

| .mresource [public | private] DottedName „{‟ ManResDecl* „}‟ 6.2.2

| .subsystem Int32 6.2

| …

The .assembly directive declares the manifest and specifies to which assembly the current module belongs.

A module shall contain at most one .assembly directive. The DottedName specifies the name of the

assembly. [Note: The standard library assemblies are described in Partition IV. end note])

[Note: Since some platforms treat names in a case-insensitive manner, two assemblies that have names that

differ only in case should not be declared. end note]

The .corflags directive sets a field in the CLI header of the output PE file (see §25.3.3.1). A conforming

implementation of the CLI shall expect this field‘s value to be 1. For backwards compatibility, the three least-

significant bits are reserved. Future versions of this standard might provide definitions for values between 8

and 65,535. Experimental and non-standard uses should thus use values greater than 65,535.

The .subsystem directive is used only when the assembly is executed directly (as opposed to its being used

as a library for another program). This directive specifies the kind of application environment required for the

program, by storing the specified value in the PE file header (see §25.2.2). While any 32-bit integer value can

be supplied, a conforming implementation of the CLI need only respect the following two values:

 If the value is 2, the program should be run using whatever conventions are appropriate for an application

that has a graphical user interface.

 If the value is 3, the program should be run using whatever conventions are appropriate for an application

that has a direct console attached.

[Example:

.assembly CountDown

{ .hash algorithm 32772

 .ver 1:0:0:0

}

.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7

02 BE E7 52 3A CB 17 AF)

end example]

Partition%20IV%20Library.doc

20 Partition II

6.2.1 Informati on about the assembly (AsmDecl)

The following grammar shows the information that can be specified about an assembly:

AsmDecl ::= Description Claus

e

 .custom CustomDecl Custom attributes 21

| .hash algorithm Int32 Hash algorithm used in the .file directive 6.2.1.1

| .culture QSTRING Culture for which this assembly is built 6.2.1.2

| .publickey „=‟ „(‟ Bytes „)‟ The originator's public key. 6.2.1.3

| .ver Int32 „:‟ Int32 „:‟ Int32 „:‟ Int32 Major version, minor version, build, and

revision

6.2.1.4

| SecurityDecl Permissions needed, desired, or prohibited 20

6.2.1.1 Hash algorithm

AsmDecl ::= .hash algorithm Int32 | …

When an assembly consists of more than one file (see §6.2.3), the manifest for the assembly specifies both the

name and cryptographic hash of the contents of each file other than its own. The algorithm used to compute the

hash can be specified, and shall be the same for all files included in the assembly. All values are reserved for

future use, and conforming implementations of the CLI shall use the SHA-1 (see FIPS 180-1 in Partition I, 3)

hash function and shall specify this algorithm by using a value of 32772 (0x8004).

[Rationale: SHA-1 was chosen as the best widely available technology at the time of standardization (see

Partition I). A single algorithm was chosen since all conforming implementations of the CLI would be
required to implement all algorithms to ensure portability of executable images.end rationale]

6.2.1.2 Culture

AsmDecl ::= .culture QSTRING | …

When present, this indicates that the assembly has been customized for a specific culture. The strings that shall

be used here are those specified in Partition IV as acceptable with the class

System.Globalization.CultureInfo. When used for comparison between an assembly reference and an

assembly definition these strings shall be compared in a case-insensitive manner. (See §23.1.3.)

[Note: The culture names follow the IETF RFC1766 names. The format is ―<language>-<country/region>‖,

where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter
code in ISO 3166. end note]

6.2.1.3 Originator’s public key

AsmDecl ::= .publickey „=‟ „(‟ Bytes „)‟ | …

The CLI metadata allows the producer of an assembly to compute a cryptographic hash of that assembly (using

the SHA-1 hash function) and then to encrypt it using the RSA algorithm (see Partition I) and a public/private

key pair of the producer‘s choosing. The results of this (an ―SHA-1/RSA digital signature‖) can then be stored

in the metadata (§25.3.3) along with the public part of the key pair required by the RSA algorithm. The

.publickey directive is used to specify the public key that was used to compute the signature. To calculate

the hash, the signature is zeroed, the hash calculated, and then the result is stored into the signature.

All of the assemblies in the Standard Library (see Partition IV) use the public key 00 00 00 00 00 00 00 00 04

00 00 00 00 00 00 00. This key is known as the Standard Public Key in this standard.

Partition%20I%20Architecture.doc#References
Partition%20I%20Architecture.doc#References
Partition%20V%20Annexes.doc
Partition%20I%20Architecture.doc#References

 Partition II 21

A reference to an assembly (§6.3) captures some of this information at compile time. At runtime, the

information contained in the assembly reference can be combined with the information from the manifest of the

assembly located at runtime to ensure that the same private key was used to create both the assembly seen when

the reference was created (compile time) and when it is resolved (runtime).

The Strong Name (SN) signing process uses standard hash and cipher algorithms for Strong name signing. An

SHA-1 hash over most of the PE file is generated. That hash value is RSA-signed with the SN private key. For
verification purposes the public key is stored into the PE file as well as the signed hash value.

Except for the following, all portions of the PE File are hashed:

 The Authenticode Signature entry: PE files can be authenticode signed. The authenticode

signature is contained in the 8-byte entry at offset 128 of the PE Header Data Directory

(―Certificate Table‖ in §25.2.3.3) and the contents of the PE File in the range specified by this

directory entry. [Note: In a conforming PE File, this entry shall be zero. end note]

 The Strong Name Blob: The 8-byte entry at offset 32 of the CLI Header (―StrongNameSignature‖

in §25.3.3) and the contents of the hash data contained at this RVA in the PE File. If the 8-byte

entry is 0, there is no associated strong name signature.

 The PE Header Checksum: The 4-byte entry at offset 64 of the PE Header Windows NT-Specific

Fields (―File Checksum‖ in §25.2.3.2). [Note: In a conforming PE File, this entry shall be zero.
end note]

6.2.1.4 Version numbers

AsmDecl ::= .ver Int32 „:‟ Int32 „:‟ Int32 „:‟ Int32 | …

The version number of an assembly is specified as four 32-bit integers. This version number shall be captured

at compile time and used as part of all references to the assembly within the compiled module.

All standardized assemblies shall have the last two 32-bit integers set to 0. This standard places no other

requirement on the use of the version numbers, although individual implementers are urged to avoid setting

both of the last two 32-bit integers to 0 to avoid a possible collision with future versions of this standard.

Future versions of this standard shall change one or both of the first two 32-bit integers specified for a
standardized assembly if any additional functionality is added or any additional features of the VES are

required to implement it. Furthermore, future versions of this standard shall change one or both of the first two

32-bit integers specified for the mscorlib assembly so that its version number can be used (if desired) to

distinguish between different versions of the Execution Engine required to run programs.

[Note: A conforming implementation can ignore version numbers entirely, or it can require that they match

precisely when binding a reference, or it can exhibit any other behavior deemed appropriate. By convention:

1. The first of these 32-bit integers is considered to be the major version number, and assemblies with the

same name, but different major versions, are not interchangeable. This would be appropriate, for example,

for a major rewrite of a product where backwards compatibility cannot be assumed.

2. The second of these 32-bit integers is considered to be the minor version number, and assemblies with the

same name and major version, but different minor versions, indicate significant enhancements, but with the
intention of being backwards compatible. This would be appropriate, for example, on a ―point release‖ of

a product or a fully backward compatible new version of a product.

3. The third of these 32-bit integers is considered to be the build number, and assemblies that differ only by

build number are intended to represent a recompilation from the same source. This would be appropriate,

for example, because of processor, platform, or compiler changes.

4. The fourth of these 32-bit integers is considered to be the revision number, and assemblies with the same

name, major and minor version number, but different revisions, are intended to be fully interchangeable.

This would be appropriate, for example, to fix a security hole in a previously released assembly.

end note]

22 Partition II

6.2.2 Manifest resources

A manifest resource is simply a named item of data associated with an assembly. A manifest resource is

introduced using the .mresource directive, which adds the manifest resource to the assembly manifest

begun by a preceding .assembly declaration.

Decl ::= Clause

 .mresource [public | private] DottedName „{‟ ManResDecl* „}‟

| … 5.10

If the manifest resource is declared public, it is exported from the assembly. If it is declared private, it is

not exported, in which case, it is only available from within the assembly. The DottedName is the name of the

resource.

ManResDecl ::= Description Clause

 .assembly extern DottedName Manifest resource is in external

assembly with name DottedName.

6.3

| .custom CustomDecl Custom attribute. 21

| .file DottedName at Int32 Manifest resource is in file DottedName

at byte offset Int32.

For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared

in the manifest using a separate (top-level) .file declaration (see §6.2.3) and the byte offset shall be zero. A

resource that is defined in another assembly is referenced using .assembly extern, which requires that

the assembly has been defined in a separate (top-level) .assembly extern directive (§6.3).

6.2.3 Associating f i les with an assembly

Assemblies can be associated with other files (such as documentation and other files that are used during

execution). The declaration .file is used to add a reference to such a file to the manifest of the assembly:

(See §22.19)

Decl ::= Clause

 .file [nometadata] Filename .hash „=‟ „(‟ Bytes „)‟ [.entrypoint]

| … 5.10

The attribute nometadata is specified if the file is not a module according to this specification. Files that are

marked as nometadata can have any format; they are considered pure data files.

The Bytes after the .hash specify a hash value computed for the file. The VES shall recompute this hash value

prior to accessing this file and if the two do not match, the behavior is unspecified. The algorithm used to

calculate this hash value is specified with .hash algorithm (§6.2.1.1).

If specified, the .entrypoint directive indicates that the entrypoint of a multi-module assembly is contained

in this file.

6.3 Referencing assemblies

Decl ::= Clause

 .assembly extern DottedName [as DottedName] „{‟ AsmRefDecl* „}‟

| … 5.10

 Partition II 23

An assembly mediates all accesses to other assemblies from the files that it contains. This is done through the

metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly

referenced by the executing code. A top-level .assembly extern declaration is used for this purpose.

The optional as clause provides an alias, which allows ILAsm to address external assemblies that have the

same name, but differing in version, culture, etc.

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared

with an .assembly directive, in a case-sensitive manner. (So, even though an assembly might be stored

within a file, within a file system that is case-insensitive, the names stored internally within metadata are case-

sensitive, and shall match exactly.)

AsmRefDecl ::= Description Clause

 .hash „=‟ „(‟ Bytes „)‟ Hash of referenced assembly 6.2.3

| .custom CustomDecl Custom attributes 21

| .culture QSTRING Culture of the referenced assembly 6.2.1.2

| .publickeytoken „=‟ „(‟ Bytes „)‟ The low 8 bytes of the SHA-1 hash of the

originator's public key.

6.3

| .publickey „=‟ „(‟ Bytes „)‟ The originator‘s full public key 6.2.1.3

| .ver Int32 „:‟ Int32 „:‟ Int32 „:‟ Int32 Major version, minor version, build, and

revision

6.2.1.4

These declarations are the same as those for .assembly declarations (§6.2.1), except for the addition of

.publickeytoken. This declaration is used to store the low 8 bytes of the SHA-1 hash of the originator‘s

public key in the assembly reference, rather than the full public key.

An assembly reference can store either a full public key or an 8-byte ―public key token.‖ Either can be used to

validate that the same private key used to sign the assembly at compile time also signed the assembly used at
runtime. Neither is required to be present, and while both can be stored, this is not useful.

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it

can refuse to load an assembly for which the validation fails. A conforming implementation of the CLI can

also refuse to permit access to an assembly unless the assembly reference contains either the public key or the

public key token. A conforming implementation of the CLI shall make the same access decision independent

of whether a public key or a token is used.

[Rationale: The public key or public key token stored in an assembly reference is used to ensure that the

assembly being referenced and the assembly actually used at runtime were produced by an entity in possession

of the same private key, and can therefore be assumed to have been intended for the same purpose. While the

full public key is cryptographically safer, it requires more storage in the reference. The use of the public key

token reduces the space required to store the reference while only weakening the validation process slightly.

end rationale]

[Note: To validate that an assembly‘s contents have not been tampered with since it was created, the full public

key in the assembly‘s own identity is used, not the public key or public key token stored in a reference to the

assembly. end note]

[Example:

.assembly extern MyComponents

{ .publickeytoken = (BB AA BB EE 11 22 33 00)

 .hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24)

 .ver 2:10:2002:0

}

end example]

24 Partition II

6.4 Declaring modules

All CIL files are modules and are referenced by a logical name carried in the metadata rather than by their file

name. See §22.30.

Decl ::= Clause

| .module Filename

| … 5.10

[Example:

.module CountDown.exe

end example]

6.5 Referencing modules

When an item is in the current assembly, but is part of a module other than the one containing the manifest, the

defining module shall be declared in the manifest of the assembly using the .module extern directive.

The name used in the .module extern directive of the referencing assembly shall exactly match the name

used in the .module directive (§6.4) of the defining module. See §22.31.

Decl ::= Clause

| .module extern Filename

| … 5.10

[Example:

.module extern Counter.dll

end example]

6.6 Declarations ins ide a module or assembly

Declarations inside a module or assembly are specified by the following grammar. More information on each

option can be found in the corresponding clause or subclause.

Decl ::= Clause

| .class ClassHeader „{‟ ClassMember* „}‟ 10

| .custom CustomDecl 21

| .data DataDecl 16.3.1

| .field FieldDecl 16

| .method MethodHeader „{‟ MethodBodyItem* „}‟ 15

| ExternSourceDecl 5.7

| SecurityDecl 20

| …

6.7 Exported type definit ions

The manifest module, of which there can only be one per assembly, includes the .assembly directive. To

export a type defined in any other module of an assembly requires an entry in the assembly‘s manifest. The

following grammar is used to construct such an entry in the manifest:

 Partition II 25

Decl ::= Clause

 .class extern ExportAttr DottedName „{‟ ExternClassDecl* „}‟

| …

ExternClassDecl ::= Clause

.file DottedName

| .class extern DottedName

| .custom CustomDecl 21

The ExportAttr value shall be either public or nested public and shall match the visibility of the type.

For example, suppose an assembly consists of two modules, A.EXE and B.DLL. A.EXE contains the manifest.

A public class Foo is defined in B.DLL. In order to export it—that is, to make it visible by, and usable from,

other assemblies—a .class extern directive shall be included in A.EXE. Conversely, a public class Bar

defined in A.EXE does not need any .class extern directive.

[Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete

set of types defined by the assembly. Therefore, information from other modules within the assembly is

replicated in the manifest module. By convention, the manifest module is also known as the assembly. end

rationale]

6.8 Type forwarders

A type forwarder indicates that a type originally in this assembly is now located in a different assembly, the

VES shall resolve references for the type to the other assembly. The type forwarding information is stored in

the ExportedType table (§Error! Reference source not found.). The following grammar is used to construct
the entry in the ExportedType table:

Decl ::= Clause

 .class extern forwarder DottedName

 „{‟.assembly extern DottedName „}‟

| …

[Rationale: Type forwarders allow assemblies which reference the original assembly for the type to function

correctly without recompilation if the type is moved to another assembly. end rationale]

26 Partition II

7 Types and signatures

The metadata provides mechanisms to both define and reference types. §10 describes the metadata associated

with a type definition, regardless of whether the type is an interface, class, or value type. The mechanism used

to reference types is divided into two parts:

 A logical description of user-defined types that are referenced, but (typically) not defined in the current

module. This is stored in a table in the metadata (§22.38).

 A signature that encodes one or more type references, along with a variety of modifiers. The grammar

non-terminal Type describes an individual entry in a signature. The encoding of a signature is specified

in §23.1.16.

7.1 Types

The following grammar completely specifies all built-in types (including pointer types) of the CLI system. It

also shows the syntax for user defined types that can be defined in the CLI system:

Type ::= Description Clause

 „!‟ Int32 Generic parameter in a type definition,

accessed by index from 0

9.1

| „!!‟ Int32 Generic parameter in a method

definition, accessed by index from 0

9.2

| bool Boolean 7.2

| char 16-bit Unicode code point 7.2

| class TypeReference User defined reference type 7.3

| float32 32-bit floating-point number 7.2

| float64 64-bit floating-point number 7.2

| int8 Signed 8-bit integer 7.2

| int16 Signed 16-bit integer 7.2

| int32 Signed 32-bit integer 7.2

| int64 Signed 64-bit integer 7.2

| method CallConv Type „*‟

 „(‟ Parameters „)‟

Method pointer 14.5

| native int 32- or 64-bit signed integer whose size

is platform-specific

7.2

| native unsigned int 32- or 64-bit unsigned integer whose

size is platform-specific

7.2

| object See System.Object in Partition IV

| string See System.String in Partition IV

| Type „&‟ Managed pointer to Type. Type shall

not be a managed pointer type or
typedref

14.4

| Type „*‟ Unmanaged pointer to Type 14.4

| Type „<‟ GenArgs „>‟ Instantiation of generic type 9.4

Partition%20IV%20Library.doc
Partition%20IV%20Library.doc

 Partition II 27

Type ::= Description Clause

| Type „[‟ [Bound [„,‟ Bound]*] „]‟ Array of Type with optional rank

(number of dimensions) and bounds.

14.1and 14.2

| Type modopt „(‟ TypeReference „)‟ Custom modifier that can be ignored

by the caller.

7.1.1

| Type modreq „(‟ TypeReference „)‟ Custom modifier that the caller shall

understand.

7.1.1

| Type pinned For local variables only. The garbage

collector shall not move the referenced

value.

7.1.2

| typedref Typed reference (i.e., a value of type

System.TypedReference), created by

mkrefany and used by

refanytype or refanyval.

7.2

| valuetype TypeReference (Unboxed) user defined value type 13

| unsigned int8 Unsigned 8-bit integer 7.2

| unsigned int16 Unsigned 16-bit integer 7.2

| unsigned int32 Unsigned 32-bit integer 7.2

| unsigned int64 Unsigned 64-bit integer 7.2

| void No type. Only allowed as a return

type or as part of void *

7.2

In several situations the grammar permits the use of a slightly simpler representation for specifying types; e.g.,

―System.GC‖ can be used instead of ―class System.GC‖. Such representations are called type specifications:

TypeSpec ::= Clause

 „[‟ [.module] DottedName „]‟ 7.3

| TypeReference 7.2

| Type 7.1

7.1.1 modreq and modopt

Custom modifiers, defined using modreq (―required modifier‖) and modopt (―optional modifier‖), are

similar to custom attributes (§21) except that modifiers are part of a signature rather than being attached to a

declaration. Each modifer associates a type reference with an item in the signature.

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only
by the addition of a custom modifier (required or optional) shall not be considered to match. Custom modifiers

have no other effect on the operation of the VES.

[Rationale: The distinction between required and optional modifiers is important to tools other than the CLI

that deal with the metadata, typically compilers and program analysers. A required modifier indicates that

there is a special semantics to the modified item that should not be ignored, while an optional modifier can

simply be ignored.

For example, the const qualifier in the C programming language can be modelled with an optional modifier

since the caller of a method that has a const-qualified parameter need not treat it in any special way. On the

other hand, a parameter that shall be copy-constructed in C++ shall be marked with a required custom attribute

since it is the caller who makes the copy. end rationale]

28 Partition II

7.1.2 pinned

The signature encoding for pinned shall appear only in signatures that describe local variables (§15.4.1.3).

While a method with a pinned local variable is executing, the VES shall not relocate the object to which the

local refers. That is, if the implementation of the CLI uses a garbage collector that moves objects, the collector

shall not move objects that are referenced by an active pinned local variable.

[Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned. This

happens, for example, when a managed object is passed to a method designed to operate with unmanaged data.

end rationale]

7.2 Built- in types

The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be

referenced in signatures only using their special encodings (i.e., not using the general purpose valuetype

TypeReference syntax). Partition I specifies the built-in types.

7.3 References to user-defined types (TypeReference)

User-defined types are referenced either using their full name and a resolution scope or, if one is available in

the same module, a type definition (§10).

A TypeReference is used to capture the full name and resolution scope:

TypeReference ::=

 [ResolutionScope] DottedName [„/‟ DottedName]*

ResolutionScope ::=

„[‟ .module Filename „]‟

| „[‟ AssemblyRefName „]‟

AssemblyRefName ::= Clause

 DottedName 5.1

The following resolution scopes are specified for un-nested types:

 Current module (and, hence, assembly). This is the most common case and is the default if no

resolution scope is specified. The type shall be resolved to a definition only if the definition

occurs in the same module as the reference.

[Note: A type reference that refers to a type in the same module and assembly is better represented using a type

definition. Where this is not possible (e.g., when referencing a nested type that has compilercontrolled

accessibility) or convenient (e.g., in some one-pass compilers) a type reference is equivalent and can be used.

end note]

 Different module, current assembly. The resolution scope shall be a module reference

syntactically represented using the notation [.module Filename]. The type shall be resolved to

a definition only if the referenced module (§6.4) and type (§6.7) have been declared by the

current assembly and hence have entries in the assembly‘s manifest. Note that in this case the

manifest is not physically stored with the referencing module.

 Different assembly. The resolution scope shall be an assembly reference syntactically

represented using the notation [AssemblyRefName]. The referenced assembly shall be declared in

the manifest for the current assembly (§6.3), the type shall be declared in the referenced

assembly‘s manifest, and the type shall be marked as exported from that assembly (§6.7

and §10.1.1).

Partition%20I%20Architecture.doc#_BuiltInTypes

 Partition II 29

 For nested types, the resolution scope is always the enclosing type. (See §10.6). This is indicated

syntactically by using a slash (―/‖) to separate the enclosing type name from the nested type‘s

name.

[Example: The type System.Console defined in the base class library (found in the assembly named mscorlib):

.assembly extern mscorlib { }

.class [mscorlib]System.Console

A reference to the type named C.D in the module named x in the current assembly:

.module extern x

.class [.module x]C.D

A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named

MyAssembly:

.assembly extern MyAssembly { }

.class [MyAssembly]Foo.Bar/C

end example]

7.4 Native data types

Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that

specify data types required to perform certain functions. The metadata allows interaction with these native data

types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native

data types. This marshalling information can be specified (using the keyword marshal) for

 the return type of a method, indicating that a native data type is actually returned and shall be

marshalled back into the specified CLI data type

 a parameter to a method, indicating that the CLI data type provided by the caller shall be

marshalled into the specified native data type. (If the parameter is passed by reference, the

updated value shall be marshalled back from the native data type into the CLI data type when the

call is completed.)

 a field of a user-defined type, indicating that any attempt to pass the object in which it occurs, to

platform methods shall make a copy of the object, replacing the field by the specified native data

type. (If the object is passed by reference, then the updated value shall be marshalled back when

the call is completed.)

The following table lists all native types supported by the CLI, and provides a description for each of them. (A

more complete description can be found in Partition IV in the definition of the enum

System.Runtime.Interopservices.UnmanagedType, which provides the actual values used to encode these

types.) All encoding values in the range 0–63, inclusive, are reserved for backward compatibility with existing

implementations of the CLI. Values in the range 64–127 are reserved for future use in this and related

Standards.

NativeType ::= Description Name in the class

library enum type
UnmanagedType

„[‟ „]‟ Native array. Type and size are determined at

runtime from the actual marshaled array.

LPArray

| bool Boolean. 4-byte integer value where any non-

zero value represents TRUE, and 0 represents

FALSE.

Bool

| float32 32-bit floating-point number. R4

| float64 64-bit floating-point number. R8

Partition%20IV%20Library.doc

30 Partition II

NativeType ::= Description Name in the class

library enum type
UnmanagedType

| [unsigned] int Signed or unsigned integer, sized to hold a

pointer on the platform
SysUInt or SysInt

| [unsigned] int8 Signed or unsigned 8-bit integer U1 or I1

| [unsigned] int16 Signed or unsigned 16-bit integer U2 or I2

| [unsigned] int32 Signed or unsigned 32-bit integer U4 or I4

| [unsigned] int64 Signed or unsigned 64-bit integer U8 or I8

| lpstr A pointer to a null-terminated array of ANSI

characters. The code page is implementation-

specific.

LPStr

| lpwstr A pointer to a null-terminated array of Unicode

characters. The character encoding is

implementation-specific.

LPWStr

| method A function pointer. FunctionPtr

| NativeType „[‟ „]‟ Array of NativeType. The length is determined

at runtime by the size of the actual marshaled

array.

LPArray

| NativeType „[‟ Int32 „]‟ Array of NativeType of length Int32. LPArray

| NativeType

„[‟ „+‟ Int32 „]‟

Array of NativeType with runtime supplied

element size. The Int32 specifies a parameter to

the current method (counting from parameter

number 0) that, at runtime, will contain the size

of an element of the array in bytes. Can only be

applied to methods, not fields.

LPArray

| NativeType

„[‟ Int32 „+‟ Int32 „]‟

Array of NativeType with runtime supplied

element size. The first Int32 specifies the

number of elements in the array. The second
Int32 specifies which parameter to the current

method (counting from parameter number 0)

will specify the additional number of elements

in the array. Can only be applied to methods,

not fields.

LPArray

[Example:

.method int32 M1(int32 marshal(int32), bool[] marshal(bool[5]))

Method M1 takes two arguments: an int32, and an array of 5 bools.

.method int32 M2(int32 marshal(int32), bool[] marshal(bool[+1]))

Method M2 takes two arguments: an int32, and an array of bools: the number of elements in that array is

given by the value of the first parameter.

.method int32 M3(int32 marshal(int32), bool[] marshal(bool[7+1]))

Method M3 takes two arguments: an int32, and an array of bools: the number of elements in that array is

given as 7 plus the value of the first parameter. end example]

 Partition II 31

8 Visibi lity, accessibi lity and hiding

Partition I specifies visibility and accessibility. In addition to these attributes, the metadata stores information

about method name hiding. Hiding controls which method names inherited from a base type are available for

compile-time name binding.

8.1 Vis ibility of top-level types and access ibil ity of nested types

Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the

same assembly, or visible to types regardless of assembly. For nested types (i.e., types that are members of

another type) the nested type has an accessibility that further refines the set of methods that can reference the

type. A nested type can have any of the seven accessibility modes (see Partition I), but has no direct visibility

attribute of its own, using the visibility of its enclosing type instead.

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type

cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an

assembly then a nested type with public accessibility is still only available within that assembly. By contrast,

a nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing

type is visible outside the assembly.

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility

of a nested type are encoded using the same mechanism in the logical model of §23.1.15.

8.2 Access ibil ity

Accessibility is encoded directly in the metadata (see §22.26 for an example).

8.3 Hiding

Hiding is a compile-time concept that applies to individual methods of a type. The CTS specifies two

mechanisms for hiding, specified by a single bit:

 hide-by-name, meaning that the introduction of a name in a given type hides all inherited

members of the same kind with the same name.

 hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited

member of the same kind, but with precisely the same type (in the case of nested types and fields)

or signature (in the case of methods, properties, and events).

There is no runtime support for hiding. A conforming implementation of the CLI treats all references as though
the names were marked hide-by-name-and-sig. Compilers that desire the effect of hide-by-name can do so by

marking method definitions with the newslot attribute (§15.4.2.3) and correctly choosing the type used to

resolve a method reference (§15.1.3).

Partition%20I%20Architecture.doc#_Accessibility_2
Partition%20I%20Architecture.doc#_Accessibility

32 Partition II

9 Generics

As mentioned in Partition I, generics allows a whole family of types and methods to be defined using a pattern,

which includes placeholders called generic parameters. These generic parameters are replaced, as required, by

specific types, to instantiate whichever member of the family is actually required. For example, class

List<T>{}, represents a whole family of possible Lists; List<string>, List<int> and List<Button> are three

possible instantiations; however, as we‘ll see below, the CLS-compliant names of these types are really class

List`1<T>{}, List`1<string>, List`1<int>, and List`1<Button>.

A generic type consists of a name followed by a <…>-delimited list of generic parameters, as in C<T>. Two or

more generic types shall not be defined with the same name, but different numbers of generic parameters, in the

same scope. However, to allow such overloading on generic arity at the source language level, CLS Rule 43 is

defined to map generic type names to unique CIL names. That Rule states that the CLS-compliant name of a

type C having one or more generic parameters, shall have a suffix of the form `n, where n is a decimal integer

constant (without leading zeros) representing the number of generic parameters that C has. For example: the

types C, C<T>, and C<K,V> have CLS-compliant names of C, C`1<T>, and C`2<K,V>, respectively. [Note: The

names of all standard library types are CLS-compliant; e.g.,

System.Collections.Generic.IEnumerable`1<T>. end note]

Before generics is discussed in detail, here are the definitions of some new terms:

 public class List`1<T> {} is a generic type definition.

 <T> is a generic parameter list, and T is a generic parameter.

 List`1<T> is a generic type; it is sometimes termed a generic type, or open generic type because

it has at least one generic parameter. This partition will use the term open type.

 List`1<int> is a closed generic type because it has no unbound generic parameters. (It is

sometimes called an instantiated generic type or a generic type instantiation). This partition will
use the term closed type.

 Note that generics includes generic types which are neither strictly open nor strictly closed; e.g.,

the base class B, in: .public class D`1<V> extends B`2<!0,int32> {}, given .public class

B`2<T,U> {}.

 If a distinction need be made between generic types and ordinary types, the latter are referred to

as non-generic types.

 <int> is a generic argument list, and int is a generic argument.

 This standard maintains the distinction between generic parameters and generic arguments. If at

all possible, use the phrase ―int is the type used for generic parameter T” when speaking of

List`1<int>. (In Reflection, this is sometimes referred to as ―T is bound to int‖)

 “(C1, …, Cn) T” is a generic parameter constraint on the generic parameter T.

[Note: Conside the following definition:

class C`2<(I1,I2) S, (Base,I3) T> { … }

This denotes a class called C, with two generic parameters, S and T. S is constrained to implement two

interfaces, I1 and I2. T is constrained to derive from the class Base, and also to implement the interface I3.

end note]

Within a generic type definition, its generic parameters are referred to by their index. Generic parameter zero

is referred to as !0, generic parameter one as !1, and so on. Similarly, within the body of a generic method

definition, its generic parameters are referred to by their index; generic parameter zero is referred to as !!0,

generic parameter one as !!1, and so on.

??.htm

 Partition II 33

9.1 Generic type definit ions

A generic type definition is one that includes generic parameters. Each such generic parameter can have a

name and an optional set of constraints—types with which generic arguments shall be assignment-compatible.

Optional variance notation is also permitted (§10.1.7). (For an explanation of the ! and !! notation used below,
see §9.4) The generic parameter is in scope in the declarations of:

 its constraints (e.g., .class … C`1<(class IComparable`1<!0>) T>)

 any base class from which the type-under-definition derives (e.g., .class … MultiSet`1<T>

extends class Set`1<!0[]>)

 any interfaces that the type-under-definition implements (e.g., .class … Hashtable`2<K,D>

implements class IDictionary`2<!0,!1>)

 all members (instance and static fields, methods, constructors, properties and events) except

nested classes. [Note: C# allows generic parameters from an enclosing class to be used in a

nested class, but adds any required extra generic parameters to the nested class definition in

metadata. end note]

A generic type definition can include static, instance, and virtual methods.

Generic type definitions are subject to the following restrictions:

 A generic parameter, on its own, cannot be used to specify the base class, or any implemented

interfaces. So, for example, .class … G`1<T> extends !0 is invalid. However, it is valid for

the base class, or interfaces, to use that generic parameter when nested within another generic

type. For example, .class … G`1<T> extends class H`1<!0> and .class … G`1<T> extends

class B`2<!0,int32> are valid.

[Rationale: This permits checking that generic types are valid at definition time rather than at

instantiation time. e.g., in .class … G`1<T> extends !0, we do not know what methods would override

what others because no information is available about the base class; indeed, we do not even know

whether T is a class: it might be an array or an interface. Similarly, for .class … C`2<(!1)T,U> where

we are in the same situation of knowing nothing about the base class/interface definition. end rationale]

 Varargs methods cannot be members of generic types

[Rationale: Implementing this feature would take considerable effort. Since varargs has very limited use

among languages targetting the CLI, it was decided to exclude varargs methods from generic types. end

rationale]

 When generic parameters are ignored, there shall be no cycles in the inheritance/interface

hierarchy. To be precise, define a graph whose nodes are possibly-generic (but open) classes and

interfaces, and whose edges are the following:

o If a (possibly-generic) class or interface D extends or implements a class or

interface B, then add an edge from D to B.

o If a (possibly-generic) class or interface D extends or implements an instantiated class

or interface B<type-1, …, type-n>, then add an edge from D to B.

o The graph is valid if it contains no cycles.

[Note: This algorithm is a natural generalization of the rules for non-generic types. See Partition I, §8.9.9

end note]

9.2 Generics and recurs ive inheritance graphs

[Rationale: Although inheritance graphs cannot be directly cyclic, instantiations given in parent classes or

interfaces may introduce either direct or indirect cyclic dependencies, some of which are allowed (e.g.,

C : IComparable<C>), and some of which are disallowed (e.g., class A<T> : B<A<A<T>>> given class B<U>).

end rationale]

Each type definition shall generate a finite instantiation closure. An instantiation closure is defined as follows:

34 Partition II

1. Create a set containing a single generic type definition.

2. Form the closure of this set by adding all generic types referenced in the type signatures of

base classes and implemented interfaces of all types in the set. Include nested instantiations in

this set, so a referenced type Stack<List<T>> actually counts as both List<T> and

Stack<List<T>>.

3. Construct a graph:

 Whose nodes are the formal type parameters of types in the set. Use alpha-renaming as

needed to avoid name clashes.

 If T appears as the actual type argument to be substituted for U in some referenced

type D<…, U, …> add a non-expanding (->) edge from T to U.

 If T appears somewhere inside (but not as) the actual type argument to be substituted

for U in referenced type D<…, U, …> add an expanding (=>) edge from T to U.

An expanding-cycle is a cycle in the instantiation closure that contains at least one expanding-edge

(=>). The instantiation-closure of the system is finite if and only if the graph as constructed above

contains no expanding-cycles.

[Example:

class B<U>

class A<T> : B<A<A<T>>>

generates the edges (using => for expanding-edges and -> for non-expanding-edges)

T -> T (generated by referenced type A<T>)

T => T (generated by referenced type A<A<T>>)

T => U (generated by referenced type B<A<A<T>>>)

This graph does contain an expanding-cycle, so the instantiation closure is infinite. end example]

[Example:

class B<U>

class A<T> : B<A<T>>

generates the edges

T -> T (generated by referenced type A<T>)

T => U (generated by referenced type B<A<T>>)

This graph does not contain an expanding-cycle, so the instantiation closure is finite. end example]

[Example:

class P<T>

class C<U,V> : P<D<V,U>>

class D<W,X> : P<C<W,X>>

generates the edges

U -> X V -> W U => T V => T (generated by referenced type D<V,U> and P<D<V,U>>)

W -> U X -> V W => T X => T (generated by referenced type C<W,X> and P<C<W,X>>)

This graph contains non-expanding-cycles (e.g. U -> X -> V -> W -> U), but no expanding-cycle, so

the instantiation closure is finite. end example]

9.3 Generic method definit ions

A generic method definition is one that includes a generic parameter list. A generic method can be defined

within a non-generic type; or within a generic type, in which case the method‘s generic parameter(s) shall be

additional to the generic parameter(s) of the owner. As with generic type definitions, each generic parameter

on a generic method definition has a name and an optional set of constraints.

Generic methods can be static, instance, or virtual. Class or instance constructors (.cctor, or .ctor,

respectively) shall not be generic.

 Partition II 35

The method generic parameters are in scope in the signature and body of the method, and in the generic

parameter constraints. [Note: The signature includes the method return type. So, in the example:

.method … !!0 M`1<T>() { … }

the !!0 is in scope—it‘s the generic parameter of M`1<T> even though it preceeds that parameter in the
declaration.. end note]

Generic instance (virtual and non-virtual) methods can be defined as members of generic types, in which case

the generic parameters of both the generic type and the generic method are in scope in the method signature and

body, and in constraints on method generic parameters.

9.4 Instantiat ing generic types

GenArgs is used to represent a generic argument list:

GenArgs ::=

 Type [„,‟ Type]*

We say that a type is closed if it contains no generic parameters; otherwise, it is open.

A given generic type definition can be instantiated with generic arguments to produce an instantiated type.

[Example: Given suitable definitions for the generic class MyList and value type Pair, we could instantiate

them as follows:

newobj instance void class MyList`1<int32>::.ctor()

initobj valuetype Pair`2<int32, valuetype Pair<string,int32>>

end example]

[Example:

ldtoken !0 // !0 = generic parameter 0 in generic type definition

castclass class List`1<!1> // !1 = generic parameter 1 in generic type definition

box !!1 // !!1 = generic parameter 1 in generic method definition

end example]

The number of generic arguments in an instantiation shall match the number of generic parameters specified in
the type or method definition.

The CLI does not support partial instantiation of generic types. And generic types shall not appear

uninstantiated anywhere in metadata signature blobs.

The following kinds of type cannot be used as arguments in instantiations (of generic types or methods):

 Byref types (e.g., System.Generic.Collection.List`1<string&> is invalid)

 Byref-like types, i.e. value types that contain fields that can point into the CIL evaluation stack

(e.g., List<System.RuntimeArgumentHandle> is invalid)

 Typed references (e.g. List<System.TypedReference> is invalid)

 Unmanaged pointers (e.g. List<int32*> is invalid)

 void (e.g., List<System.Void> is invalid)

 [Rationale: Byrefs types cannot be used as generic arguments because some, indeed most, instantiations would
be invalid. For example, since byrefs are not allowed as field types or as method return types, in the definition

of List`1<string&>, one could not declare a field of type !0, nor a method that returned a type of !0. end

rationale]

[Rationale: Unmanaged pointers are disallowed because as currently specified unmanaged pointers are not

technically subclasses of System.Object. This restriction can be lifted, but currently the runtime enforces this

restriction and this spec reflects that.]

36 Partition II

Objects of instantiated types shall carry sufficient information to recover at runtime their exact type (including

the types and number of their generic arguments). [Rationale: This is required to correctly implement casting

and instance-of testing, as well as in reflection capabilities (System.Object::GetType). end rationale]

9.5 Generics variance

The CLI supports covariance and contravariance of generic parameters, but only in the signatures of interfaces

and delegate classes.

The symbol ―+‖ is used in the syntax of §10.1.7 to denote a covariant generic parameter, while ―-‖ is used to

denote a contravariant generic parameter

This block contains only informative text

Suppose we have a generic interface, which is covariant in its one generic parameter; e.g., IA`1<+T>. Then all

instantiations satisfy IA`1<GenArgB> := IA`1<GenArgA>, so long as GenArgB := GenArgA using the notion from

assignment compatibility. So, for example, an instance of type IA`1<string> can be assigned to a local of type

type IA`1<object>.

Generic contravariance operates in the opposite sense: supposing that we have a contravariant interface IB`1<-

T>, then IB`1<GenArgB> := IB`1<GenArgA>, so long as GenArgA := GenArgB.

[Example: (The syntax used is illustrative of a high-level language.)

// Covariant parameters can be used as result types

interface IEnumerator<+T> {

 T Current { get; }

 bool MoveNext();

}

// Covariant parameters can be used in covariant result types

interface IEnumerable<+T> {

 IEnumerator<T> GetEnumerator();

}

// Contravariant parameters can be used as argument types

interface IComparer<-T> {

 bool Compare(T x, T y);

}

// Contravariant parameters can be used in contravariant interface types

interface IKeyComparer<-T> : IComparer<T> {

 bool Equals(T x, T y);

 int GetHashCode(T obj);

}

// A contravariant delegate type

delegate void EventHandler<-T>(T arg);

// No annotation indicates non-variance. Non-variant parameters can be used anywhere.

// The following type shall be non-variant because T appears in as a method argument as

// well as in a covariant interface type

interface ICollection<T> : IEnumerable<T> {

 void CopyTo(T[] array, int index);

 int Count { get; }

}

end example]

End informative text

9.6 Assignment compatibil ity of instantiated types

 Assignment compatibility is defined in Partition I.8.7.

[Example:

 Partition II 37

Assuming Employee := Manager,

IEnumerable<Manager> eManager = ...

IEnumerable<Employee> eEmployee = eManager; // Covariance

IComparer<object> objComp = ...

IComparer<string> strComp = objComp; // Contravariance

EventHandler<Employee> employeeHandler = ...

EventHandler<Manager> managerHandler = employeeHandler; // Contravariance

end example]

 [Example: Given the following:

interface IConverter<-T,+U> {

 U Convert(T x);

}

IConverter<string, object> := IConverter<object, string>

Given the following:

delegate U Function<-T,+U>(T arg);

Function<string, object> := Function<object, string>. end example]

[Example:

IComparer<object> objComp = ...

// Contravariance and interface inheritance

IKeyComparer<string> strKeyComp = objComp;

IEnumerable<string[]> strArrEnum = …

// Covariance on IEnumerable and covariance on arrays

IEnumerable<object[]> objArrEnum = strArrEnum;

IEnumerable<string>[] strEnumArr = ...

// Covariance on IEnumerable and covariance on arrays

IEnumerable<object>[] objEnumArr = strEnumArr;

IComparer<object[]> objArrComp = ...

// Contravariance on IComparer and covariance on arrays

IComparer<string[]> strArrComp = objArrComp;

IComparer<object>[] objCompArr = ...

// Contravariance on IComparer and covariance on arrays

IComparer<string>[] strCompArr = objCompArr;

end example]

9.7 Validity of member signatures

To achieve type safety, it is necessary to impose additional requirements on the well-formedness of signatures
of members of covariant and contravariant generic types.

This block contains only informative text

 Covariant parameters can only appear in ―producer ,‖ ―reader,‖ or ―getter‖ positions in the type
definition; i.e., in

o result types of methods

o inherited interfaces

 Contravariant parameters can only appear in ―consumer ,‖ ―writer,‖ or ―setter‖ positions in the

type definition; i.e., in

o argument types of methods

 NonVariant parameters can appear anywhere.

End informative text

38 Partition II

We now define formally what it means for a co/contravariant generic type definition to be valid.

Generic type definition: A generic type definition G<var_1 T_1, …, var_n T_n> is valid if G is an interface or

delegate type, and each of the following holds, given S = <var_1 T_1, …, var_n T_n>, where var_n is +, -, or

nothing:

 Every instance method and virtual method declaration is valid with respect to S

 Every inherited interface declaration is valid with respect to S

 There are no restrictions on static members, instance constructors, or on the type‘s own generic

parameter constraints.

Given the annotated generic parameters S = <var_1 T_1, …, var_n T_n>, we define what it means for various

components of the type definition to be valid with respect to S. We define a negation operation on annotations,

written –S, to mean ―flip negatives to positives, and positives to negatives‖.

Think of

 ―valid with respect to S‖ as ―behaves covariantly‖

 ―valid with respect to ¬S‖ as ―behaves contravariantly‖

 ―valid with respect to S and to ¬S‖ as ―behaves non-variantly‖.

Note that the last of these has the effect of prohibiting covariant and contravariant parameters from a type; i.e.,

all generic parameters appearing shall be non-variant.

Methods. A method signature t meth(t_1,…,t_n) is valid with respect to S if

 its result type signature t is valid with respect to S; and

 each argument type signature t_i is valid with respect to ¬S.

 each method generic parameter constraint type t_j is valid with respect to ¬S.

[Note: In other words, the result behaves covariantly and the arguments behave contravariantly. Constraints on

generic parameters also behave contravariantly. end note]

Type signatures. A type signature t is valid with respect to S if it is

 a non-generic type (e.g., an ordinary class or value type)

 a generic parameter T_i for which var_i is + or none (i.e., it is a generic parameter that is marked

covariant or non-variant)

 an array type u[] and u is valid with respect to S; i.e., array types behave covariantly

 a closed generic type G<t_1,…,t_n> for which each

o t_i is valid with respect to S, if the i‘th parameter of G is declared covariant

o t_i is valid with respect to ¬S, if the i‘th parameter of G is declared contravariant

o t_i is valid with respect to S and with respect to ¬S, if the i’th parameter of G is

declared non-variant.

9.8 Signatures and binding

Members (fields and methods) of a generic type are referenced in CIL instructions using a metadata token,

which specifies an entry in the MemberRef table (§22.25). Abstractly, the reference consists of two parts:

1. The type in which the member is declared, in this case, an instantiation of the generic type

definition. For example: IComparer`1<String>.

2. The name and generic (uninstantiated) signature of the member. For example: int32

Compare(!0,!0).

 Partition II 39

It is possible for distinct members to have identical types when instantiated, but which can be distinguished by

MemberRef.

[Example:

.class public C`2<S,T> {

 .field string f

 .field !0 f

 .method instance void m(!0 x) {...}

 .method instance void m(!1 x) {...}

 .method instance void m(string x) {...}

}

The closed type C`2<string,string> is valid: it has three methods called m, all with the same parameter type;

and two fields called f with the same type. They are all distinguished through the MemberRef encoding

described above:

string C`2<string, string>::f

!0 C<string, string>::f

void C`2<string, string>::m(!0)

void C`2<string, string>::m(!1)

void C`2<string, string>::m(string)

The way in which a source language might resolve this kind of overloading is left to each individual language.

For example, many might disallow such overloads.

end example]

9.9 Inheritance and overriding

Member inheritance is defined in Partition I, in ―Member Inheritance‖. (Overriding and hiding are also defined

in that partition, in ―Hiding, overriding, and layout‖.) This definition is extended, in an obvious manner, in the

presence of generics. Specifically, in order to determine whether a member hides (for static or instance

members) or overrides (for virtual methods) a member from a base class or interface, simply substitute each

generic parameter with its generic argument, and compare the resulting member signatures. [Example: The

following illustrates this point:

Suppose the following definitions of a base class B, and a derived class D.

.class B

{ .method public virtual void V(int32 i) { … } }

.class D extends B

{ .method public virtual void V(int32 i) { … } }

In class D, D.V overrides the inherited method B.V, because their names and signatures match.

How does this simple example extend in the presence of generics, where class D derives from a generic

instantiation? Consider this example:

.class B`1<T>

{ .method public virtual void V(!0) { … } }

.class D extends B`1<int32>

{ .method public virtual void V(int32) { … } }

.class E extends B`1<string>

{ .method public virtual void V(int32) { … } }

Class D derives from B<int32>. And class B<int32> defines the method:

 public virtual void V(int32 t) { … }

where we have simply substituted B‘s generic parameter T, with the specific generic argument int32. This

matches the method D.V (same name and signature). Thus, for the same reasons as in the non-generic example

above, it‘s clear that D.V overrides the inherited method B.V.

Contrast this with class E, which derives from B<string>. In this case, substituting B‘s T with string, we see

that B.V has this signature:

 public virtual void V(string t) { … }

Partition%20I%20Architecture.doc

40 Partition II

This signature differs from method E.V, which therefore does not override the base class‘s B.V method.

end example]

Type definitions are invalid if, after substituting base class generic arguments, two methods result in the same

name and signature (including return type). The following illustrates this point:

[Example:

.class B`1<T>

{ .method public virtual void V(!0 t) { … }

 .method public virtual void V(string x) { … }

}

.class D extends B`1<string> { } // Invalid

Class D is invalid, because it will inherit from B<string> two methods with identical signatures:

void V(string)

However, the following version of D is valid:

.class D extends B`1<string>

{ .method public virtual void V(string t) { … }

 .method public virtual void W(string t)

 { …

 .override method instance void class B`1<string>::V(!0)

 …

 }

}

end example]

When overriding generic methods (that is, methods with their own generic parameters) the number of generic

parameters shall match exactly those of the overridden method. If an overridden generic method has one or

more constraints on its generic arguments then:

 The overriding method can have constraints only on the same generic arguments;

 Any such constraint on a generic argument specified by the overriding method shall be no more
restrictive than the constraint specified by the overridden method for the same generic argument;

 [Note: Within the body of an overriding method, only constraints directly specified in its signature apply.

When a method is invoked, it‘s the constraints associated with the metadata token in the call or callvirt
instruction that are enforced. end note]

9.10 Explicit method overrides

A type, be it generic or non-generic, can implement particular virtual methods (whether the method was

introduced in an interface or base class) using an explicit override. (See §10.3.2 and §15.1.4.)

The rules governing overrides are extended, in the presence of generics, as follows:

 If the implementing method is part of a non-generic type or a closed generic type, then the

declaring method shall be part of a base class of that type or an interface implemented by that

type. [Example:

.class interface I`1<T>

{ .method public abstract virtual void M(!0) {}

}

.class C implements class I`1<string>

{ .override method instance void class I`1<string>::M(!0) with

 method instance void class C::MInC(string)

 .method virtual void MInC(string s)

 { ldstr "I.M"

 call void [mscorlib]System.Console::WriteLine(string)

 ret

 }

}

end example]

 Partition II 41

 If the implementing method is generic, then the declared method shall also be generic and shall

have the same number of method generic parameters.

Neither the implementing method nor the declared method shall be an instantiated generic method. This

means that an instantiated generic method cannot be used to implement an interface method, and that it is

not possible to provide a special method for instantiating a generic method with specific generic

parameters.
[Example: Given the following
 .class interface I
{ .method public abstract virtual void M<T>(!!0) {}

 .method public abstract virtual void N() {}

}

neither of the following .override statements is allowed

.class C implements class I`1<string>

{ .override class I::M<string> with instance void class C::MInC(string)

 .override class I::N with instance void class C::MyFn<string>

 .method virtual void MInC(string s) { … }

 .method virtual void MyFn<T>() { … }

}

end example]

9.11 Constraints on generic parameters

A generic parameter declared on a generic class or generic method can be constrained by one or more types

(for encoding, see GenericParamConstraint table in §22.21) and by one or more special constraints (§10.1.7).

Generic parameters can be instantiated only with generic arguments that are assignment compatible (when

boxed) with each of the declared constraints and that satisfy all specified special constraints.

Generic parameter constraints shall have at least the same visibility as the generic type definition or generic

method definition itself.

[Note: There are no other restrictions on generic parameter constraints. In particular, the following uses are

valid: Constraints on generic parameters of generic classes can make recursive reference to the generic

parameters, and even to the class itself.

.class public Set`1<(class IComparable<!0>) T> { … }

// can only be instantiated by a derived class!

.class public C`1<(class C<!0>) T> {}

.class public D extends C`1<class D> { … }

Constraints on generic parameters of generic methods can make recursive reference to the generic

parameters of both the generic method and its enclosing class (if generic). The constraints can also

reference the enclosing class itself.

.class public A`1<T> {

 .method public void M<(class IDictionary<!0,!!0>) U>() {}

}

Generic parameter constraints can be generic parameters or non-generic types such as arrays.

.class public List`1<T> {

 // The constraint on U is T itself

 .method public void AddRange<(!0) U>(class IEnumerable`1<!!0> items) { … }

}

 end note]

Generic parameters can have multiple constraints: to inherit from at most one base class (if none is specified,

the CLI defaults to inheriting from System.Object); and to implement zero or more interfaces. (The syntax for

using constraints with a class or method is defined in §10.1.7.) [Example:

The following declaration shows a generic class OrderedSet<T>, in which the generic parameter T is

constrained to inherit both from the class Employee, and to implement the interface IComparable<T>:

42 Partition II

.class OrderedSet`1<(Employee, class [mscorlib]System.IComparable`1<!0>) T> { … }

end example]

[Note: Constraints on a generic parameter only restrict the types that the generic parameter may be instantiated

with. Verification (see Partition III) requires that a field, property or method that a generic parameter is known

to provide through meeting a constraint, cannot be directly accessed/called via the generic parameter unless it is

first boxed (see Partition III) or the callvirt instruction is prefixed with the constrained. prefix instruction (see
Partition III). end note]

This block contains only informative text

9.12 References to members of generic types

CIL instructions that reference type members are generalized to permit reference to members of instantiated

types.

The number of generic arguments specified in the reference shall match the number specified in the

definition of the type.

CIL instructions that reference methods are generalized to permit reference to instantiated generic methods.

End informative text

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc
Partition%20III%20CIL.doc

 Partition II 43

10 Defining types

Types (i.e., classes, value types, and interfaces) can be defined at the top-level of a module:

Decl ::=

 .class ClassHeader „{‟ ClassMember* „}‟

| …

The logical metadata table created by this declaration is specified in §22.37.

[Rationale: For historical reasons, many of the syntactic categories used for defining types incorrectly use

―class‖ instead of ―type‖ in their name. All classes are types, but ―types‖ is a broader term encompassing value

types, and interfaces as well. end rationale]

10.1 Type header (ClassHeader)

A type header consists of

 any number of type attributes,

 optional generic parameters

 a name (an Id),

 a base type (or base class type), which defaults to [mscorlib]System.Object, and

 an optional list of interfaces whose contract this type and all its descendent types shall satisfy.

ClassHeader ::=

 ClassAttr* Id [„<‟ GenPars „>‟] [extends TypeSpec [implements TypeSpec] [„,‟

TypeSpec]*]

The optional generic parameters are used when defining a generic type (§10.1.7).

The extends keyword specifies the base type of a type. A type shall extend from exactly one other type. If no

type is specified, ilasm will add an extends clause to make the type inherit from System.Object.

The implements keyword specifies the interfaces of a type. By listing an interface here, a type declares that

all of its concrete implementations will support the contract of that interface, including providing

implementations of any virtual methods the interface declares. See also §11 and §12.

[Example: This code declares the class CounterTextBox, which extends the class

System.Windows.Forms.TextBox in the assembly System.Windows.Forms, and implements the interface

CountDisplay in the module Counter of the current assembly. The attributes private, auto and autochar

are described in the following subclauses.

.class private auto autochar CounterTextBox

 extends [System.Windows.Forms]System.Windows.Forms.TextBox

 implements [.module Counter]CountDisplay

{ // body of the class

}

end example]

A type can have any number of custom attributes attached. Custom attributes are attached as described in §21.

The other (predefined) attributes of a type can be grouped into attributes that specify visibility, type layout

information, type semantics information, inheritance rules, interoperation information, and information on

special handling. The following subclauses provide additional information on each group of predefined

attributes.

ClassAttr ::= Description Clause

44 Partition II

ClassAttr ::= Description Clause

 abstract Type is abstract. 10.1.4

| ansi Marshal strings to platform as ANSI. 10.1.5

| auto Layout of fields is provided automatically. 10.1.2

| autochar Marshal strings to platform as ANSI or Unicode

(platform-specific).

10.1.5

| beforefieldinit Need not initialize the type before a static method is

called.

10.1.6

| explicit Layout of fields is provided explicitly. 10.1.2

| interface Declares an interface. 10.1.3

| nested assembly Assembly accessibility for nested type. 10.1.1

| nested famandassem Family and assembly accessibility for nested type. 10.1.1

| nested family Family accessibility for nested type. 10.1.1

| nested famorassem Family or assembly accessibility for nested type. 10.1.1

| nested private Private accessibility for nested type. 10.1.1

| nested public Public accessibility for nested type. 10.1.1

| private Private visibility of top-level type. 10.1.1

| public Public visibility of top-level type. 10.1.1

| rtspecialname Special treatment by runtime. 10.1.6

| sealed The type cannot be derived from. 10.1.4

| sequential Layout of fields is sequential. 10.1.2

| serializable Reserved (to indicate this type can be serialized). 10.1.6

| specialname Might get special treatment by tools. 10.1.6

| unicode Marshal strings to platform as Unicode. 10.1.5

10.1.1 Visibi l i ty and accessibi l i ty attr ibutes

ClassAttr ::= …

| nested assembly

| nested famandassem

| nested family

| nested famorassem

| nested private

| nested public

| private

| public

See Partition I. A type that is not nested inside another type shall have exactly one visibility (private or

public) and shall not have an accessiblity. Nested types shall have no visibility, but instead shall have

exactly one of the accessibility attributes nested assembly, nested famandassem, nested

Partition%20I%20Architecture.doc#VisibilityAccessibilitySecurity

 Partition II 45

family, nested famorassem, nested private, or nested public. The default visibility for top-

level types is private. The default accessibility for nested types is nested private.

10.1.2 Type layout attr ibutes

ClassAttr ::= …

| auto

| explicit

| sequential

The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one

layout attribute specified. By convention, ilasm supplies auto if no layout attribute is specified. The layout

attributes are:

auto: The layout shall be done by the CLI, with no user-supplied constraints.

explicit: The layout of the fields is explicitly provided (§10.7). However, a generic type shall not have

explicit layout.

sequential: The CLI shall lay out the fields in sequential order, based on the order of the fields in the

logical metadata table (§22.15).

[Rationale: The default auto layout should provide the best layout for the platform on which the code is

executing. sequential layout is intended to instruct the CLI to match layout rules commonly followed by

languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable

layout. explicit layout allows the CIL generator to specify the precise layout semantics. end rationale]

10.1.3 Type semantics attr ibutes

ClassAttr ::= …

| interface

The type semantic attributes specify whether an interface, class, or value type shall be defined. The

interface attribute specifies an interface. If this attribute is not present and the definition extends (directly

or indirectly) System.ValueType, and the definition is not for System.Enum, a value type shall be defined (§13).

Otherwise, a class shall be defined (§11).

[Example:

.class interface public abstract auto ansi ‟System.IComparable‟ { … }

System.IComparable is an interface because the interface attribute is present.

.class public sequential ansi serializable sealed beforefieldinit

 ‟System.Double‟ extends System.ValueType implements System.IComparable,

 … { … }

System.Double directly extends System.ValueType; System.Double is not the type System.Enum; so

System.Double is a value type.

.class public abstract auto ansi serializable beforefieldinit ’System.Enum‟

 extends System.ValueType implements System.IComparable, … { … }

Although System.Enum directly extends System.ValueType, System.Enum is not a value type, so it is a class.

.class public auto ansi serializable beforefieldinit ‟System.Random‟

 extends System.Object { … }

System.Random is a class because it is not an interface or a value type.

end example]

46 Partition II

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes)

10.1.4 Inheritance attr ibutes

ClassAttr ::= …

| abstract

| sealed

Attributes that specify special semantics are abstract and sealed. These attributes can be used together.

abstract specifies that this type shall not be instantiated. If a type contains abstract methods, that type

shall be declared as an abstract type.

sealed specifies that a type shall not have derived classes. All value types shall be sealed.

[Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden.

Framework authors should use sealed classes sparingly since they do not provide a convenient building block

for user extensibility. Sealed classes can be necessary when the implementation of a set of virtual methods for

a single class (typically multiple interfaces) becomes interdependent or depends critically on implementation
details not visible to potential derived classes.

A type that is both abstract and sealed should have only static members, and serves as what some

languages call a ―namespace‖ or ―static class‖. end rationale]

10.1.5 Interoperation attr ibutes

ClassAttr ::= …

| ansi

| autochar

| unicode

These attributes are for interoperation with unmanaged code. They specify the default behavior to be used

when calling a method (static, instance, or virtual) on the class, that has an argument or return type of

System.String and does not itself specify marshalling behavior. Only one value shall be specified for any

type, and the default value is ansi. The interoperation attributes are:

ansi specifies that marshalling shall be to and from ANSI strings.

autochar specifies marshalling behavior (either ANSI or Unicode), depending on the platform on which the

CLI is running.

unicode specifies that marshalling shall be to and from Unicode strings.

In addition to these three attributes, §23.1.15 specifies an additional set of bit patterns (CustomFormatClass and

CustomStringFormatMask), which have no standardized meaning. If these bits are set, but an implementation

has no support for them, a System.NotSupportedException is thrown.

10.1.6 Special handling attr ibutes

ClassAttr ::= …

| beforefieldinit

| rtspecialname

| serializable

| specialname

These attributes can be combined in any way.

 Partition II 47

beforefieldinit instructs the CLI that it need not initialize the type before a static method is called. See

§10.5.3.

rtspecialname indicates that the name of this item has special significance to the CLI. There are no

currently defined special type names; this is for future use. Any item marked rtspecialname shall also be

marked specialname.

serializable Reserved for future use, to indicate that the fields of the type are to be serialized into a data

stream (should such support be provided by the implementation).

specialname indicates that the name of this item can have special significance to tools other than the CLI.

See, for example, Partition I .

[Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that. The

converse is not true. end rationale]

10.1.7 Generic parameters (GenPars)

Generic parameters are included when defining a generic type.

GenPars ::=

 GenPar [„,‟ GenPars]

The GenPar non-terminal has the following production:

GenPar::=

 [GenParAttribs]* [„(‟ [GenConstraints] „)‟] Id

GenParAttribs::=

 „+‟

| „-‟

| class

| valuetype

| .ctor

+ denotes a covariant generic parameter (§9.5).

- denotes a contravariant generic parameter (§9.5).

class is a special-purpose constraint that constrains Id to being a reference type. [Note: This includes type

parameters which are themselves constrained to be reference types through a class or base type constraint. end

note]

valuetype is a special-purpose constraint that constrains Id to being a value type, except that that type shall

not be System.Nullable<T> or any concrete closed type of System.Nullable<T>. [Note: This includes type

parameters which are themselves constrained to be value types. end note]

.ctor is a special-purpose constraint that constrains Id to being a concrete reference type (i.e., not abstract)

that has a public constructor taking no arguments (the default constructor), or to being a value type. [Note: This

includes type parameters which are, themselves, constrained either to be concrete reference types, or to being a

value type. end note]

class and valuetype shall not both be specified for the same Id.

[Example:

Partition%20I%20Architecture.doc#_CLSRules

48 Partition II

.class C< + class .ctor (class System.IComparable<!0>) T > { … }

This declares a generic class C<T>, which has a covariant generic parameter named T. T is constrained such that

it must implement System.IComparable<T>, and must be a concrete class with a public default constructor. end

example]

Finally, the GenConstraints non-terminal has the following production:

GenConstraints ::=

 Type [„,‟ GenConstraints]

There shall be no duplicates of Id in the GenPars production.

[Example: Given appropriate definitions for interfaces I1 and I2, and for class Base, the following code defines

a class Dict that has two generic parameters, K and V, where K is constrained to implement both interfaces I1

and I2, and V is constrained to derive from class Base:

.class Dict`2<(I1,I2)K, (Base)V> { … }

end example]

The following table shows the valid combinations of type and special constraints for a representative set of

types. The first set of rows (Type Constraint System.Object) applies either when no base class constraint is

specified or when the base class constraint is System.Object. The symbol means ―set‖, the symbol means

―not set‖, and the symbol * means ―either set or not set‖ or ―don‘t care‖.

Type Constraint Special Constraint Meaning

class valuetype .ctor

(System.Object) Any type

 Any reference type

 Any reference type having a default
constructor

 * Any value type except
System.Nullable<T>

 Any type with a public default
constructor

 * Invalid

System.ValueType Any value type including
System.Nullable<T>

 * Any value type except
System.Nullable<T>

 Any value type and System.ValueType,

and System.Enum

 System.ValueType and System.Enum only

 Not meaningful: Cannot be instantiated
(no instantiable reference type can be

derived from System.ValueType)

 * Invalid

 Partition II 49

System.Enum Any enum type

 *

 Any enum type and System.Enum

 System.Enum only

 Not meaningful: Cannot be instantiated
(no instantiable reference type can be

derived from System.Enum)

 * Invalid

System.Exception (an
example of any non-special

reference Type)

 System.Exception, or any class derived
from System.Exception

 Any System.Exception with a public
default constructor

 System.Exception, or any class derived
from System.Exception. This is exactly
the same result as if the class constraint
was not specified

 Any Exception with a public default
constructor.

 * Not meaningful: Cannot be instantiated
(a value type cannot be derived from a
reference type)

 * Invalid

System.Delegate System.Delegate, or any class derived
from System.Delegate

 Not meaningful: Cannot be instantiated
(there is no default constructor)

 System.Delegate, or any class derived
from System.Delegate

 Any Delegate with a public .ctor. Invalid

for known delegates (System.Delegate)

 * Not meaningful: Cannot be instantiated
(a value type cannot be derived from a
reference type)

 * Invalid

System.Array Any array

* Not meaningful: Cannot be instantiated
(no default constructor)

 Any array

 * Not meaningful: Cannot be instantiated
(a value type cannot be derived from a
reference type)

50 Partition II

 * Invalid

[Example: The following instantiations are allowed or disallowed, based on the constraint. In all of these

instances, the declaration itself is allowed. Items marked Invalid indicate where the attempt to instantiate the

specified type fails verification, while those marked Valid do not.

.class public auto ansi beforefieldinit Bar`1<valuetype T>

Valid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<Nullable`1<int32>>

Invalid ldtoken class Bar`1<class [mscorlib]System.ValueType>

.class public auto ansi beforefieldinit 'Bar`1'<class T>

Invalid ldtoken class Bar`1<int32>

Valid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Valid ldtoken class Bar`1<class [mscorlib]System.ValueType>

.class public auto ansi beforefieldinit Bar`1<(class

 [mscorlib]System.ValueType) T>

Valid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Valid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Valid ldtoken class Bar`1<class [mscorlib]System.ValueType>

.class public auto ansi beforefieldinit Bar`1<class (int32)> T>

Invalid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Invalid ldtoken class Bar`1<class [mscorlib]System.ValueType>

Note: This type cannot be instantiated as no reference type can extend int32

.class public auto ansi beforefieldinit Bar`1<valuetype

 (class [mscorlib]System.Exception)> T>

Invalid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Invalid ldtoken class Bar`1<class [mscorlib]System.ValueType>

Note: This type cannot be instantiated as no value type can extend System.Exception

.class public auto ansi beforefieldinit Bar`1<.ctor (class Foo) T>

where Foo has no public .ctor, but FooBar, which derives from Foo, has a public .ctor:

Invalid ldtoken class Bar`1<class Foo>

Valid ldtoken class Bar`1<class FooBar>

end example]

 Partition II 51

10.2 Body of a type definit ion

A type can contain any number of further declarations. The directives .event, .field, .method, and

.property are used to declare members of a type. The directive .class inside a type declaration is used to

create a nested type, which is discussed in further detail in §10.6.

ClassMember ::= Description Clause

 .class ClassHeader „{‟ ClassMember* „}‟ Defines a nested type. 10.6

| .custom CustomDecl Custom attribute. 21

| .data DataDecl Defines static data

associated with the type.

16.3

| .event EventHeader „{‟ EventMember* „}‟ Declares an event. 18

| .field FieldDecl Declares a field belonging

to the type.

16

| .method MethodHeader „{‟ MethodBodyItem* „}‟ Declares a method of the

type.

15

| .override TypeSpec „::‟ MethodName with

CallConv Type TypeSpec „::‟ MethodName „(‟

Parameters „)‟

Specifies that the first

method is overridden by

the definition of the

second method.

10.3.2

| .pack Int32 Used for explicit layout of

fields.

10.7

| .param type „[‟ Int32 „]‟ Specifies a type parameter

for a generic type; for use

in associating a custom

attribute with that type
parameter.

15.4.1.5

| .property PropHeader „{‟ PropMember* „}‟ Declares a property of the

type.

17

| .size Int32 Used for explicit layout of

fields.

10.7

| ExternSourceDecl Source line information. 5.7

| SecurityDecl Declarative security

permissions.

20

10.3 Introducing and overriding virtual methods

A virtual method of a base type is overridden by providing a direct implementation of the method (using a

method definition, see §15.4) and not specifying it to be newslot (§15.4.2.3). An existing method body can

also be used to implement a given virtual declaration using the .override directive (§10.3.2).

10.3.1 Introducing a virtual method

A virtual method is introduced in the inheritance hierarchy by defining a virtual method (§15.4). The definition

can be marked newslot to always create a new virtual method for the defining class and any classes derived

from it:

 If the definition is marked newslot, the definition always creates a new virtual method, even if

a base class provides a matching virtual method. A reference to the virtual method via the class

containing the method definition, or via a class derived from that class, refer s to the new

52 Partition II

definition (unless hidden by a newslot definition in a derived class). Any reference to the

virtual method not via the class containing the method definition, nor via its derived classes,

refers to the original definition.

 If the definition is not marked newslot, the definition creates a new virtual method only if there

is not virtual method of the same name and signature inherited from a base class.

It follows that when a virtual method is marked newslot, its introduction will not affect any existing

references to matching virtual methods in its base classes.

10.3.2 The .override directive

The .override directive specifies that a virtual method shall be implemented (overridden), in this type, by a

virtual method with a different name, but with the same signature. This directive can be used to provide an

implementation for a virtual method inherited from a base class, or a virtual method specified in an interface

implemented by this type. The .override directive specifies a Method Implementation (MethodImpl) in the

metadata (§15.1.4).

ClassMember ::= Clause

 .override TypeSpec „::‟ MethodName with CallConv Type TypeSpec „::‟

MethodName „(‟ Parameters „)‟

 .override method CallConv Type TypeSpec „::‟ MethodName GenArity „(‟

Parameters „)‟ with method CallConv Type TypeSpec „::‟ MethodName GenArity

„(‟ Parameters „)‟

| … 10.2

GenArity ::= [„<‟ „[‟ Int32 „]‟ „>‟]

Int32 is the number of generic parameters.

The first TypeSpec::MethodName pair specifies the virtual method that is being overridden, and shall be either

an inherited virtual method or a virtual method on an interface that the current type implements. The remaining

information specifies the virtual method that provides the implementation.

While the syntax specified here (as well as the actual metadata format (§22.27)) allows any virtual method to

be used to provide an implementation, a conforming program shall provide a virtual method actually

implemented directly on the type containing the .override directive.

[Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the

VES. end rationale]

[Example: The following shows a typical use of the .override directive. A method implementation is

provided for a method declared in an interface (see §12).

.class interface I

{ .method public virtual abstract void M() cil managed {}

}

.class C implements I

{ .method virtual public void M2()

 { // body of M2

 }

 .override I::M with instance void C::M2()

}

The .override directive specifies that the C::M2 body shall provide the implementation of be used to

implement I::M on objects of class C.

 Partition II 53

end example]

10.3.3 Accessibi l i ty and overriding

If the strict flag (§23.1.10) is specified then only accessible virtual methods can be overridden.

If a type overrides an inherited method through means other than a MethodImpl, it can widen, but it shall not

narrow, the accessibility of that method. As a principle, if a client of a type is allowed to access a method of

that type, then it should also be able to access that method (identified by name and signature) in any derived
type. Table 7.1 specifies narrow and widen in this context—a ―Yes‖ denotes that the derived class can apply

that accessibility, a ―No‖ denotes it is invalid.

If a type overrides an inherited method via a MethodImpl, it can widen or narrow the accessibility of that

method.

Table 7.1: Valid Widening of Access to a Virtual Method

Derived

class\Base type

Accessibility

Compiler-

controlled

private family assembly famandassem famorassem public

Compiler-

controlled

See note 3 No No No No No No

private See note 3 Yes No No No No No

family See note 3 Yes Yes No Yes See note 1 No

assembly See note 3 Yes No See note 2 See note 2 No No

famandassem See note 3 Yes No No See note 2 No No

famorassem See note 3 Yes Yes See note 2 Yes Yes No

public See note 3 Yes Yes Yes Yes Yes Yes

1 Yes, provided both are in different assemblies; otherwise, No.

2 Yes, provided both are in the same assembly; otherwise, No.

3 Yes, provided both are in the same module; otherwise, No.

[Note: A method can be overridden even if it might not be accessed by the derived class.

If a method has assembly accessibility, then it shall have public accessibility if it is being overridden by a

method in a different assembly. A similar rule applies to famandassem, where also famorassem is allowed

outside the assembly. In both cases assembly or famandassem, respectively, can be used inside the same

assembly. end note]

A special rule applies to famorassem, as shown in the table. This is the only case where the accessibility is

apparently narrowed by the derived class. A famorassem method can be overridden with family

accessibility by a type in another assembly.

[Rationale: Because there is no way to specify ―family or specific other assembly‖ it is not possible to specify

that the accessibility should be unchanged. To avoid narrowing access, it would be necessary to specify an

accessibility of public, which would force widening of access even when it is not desired. As a compromise,

the minor narrowing of ―family‖ alone is permitted. end rationale]

10.4 Method implementation requirements

A type (concrete or abstract) can provide

 implementations for instance, static, and virtual methods that it introduces

54 Partition II

 implementations for methods declared in interfaces that it has specified it will implement, or that

its base type has specified it will implement

 alternative implementations for virtual methods inherited from its base class

 implementations for virtual methods inherited from an abstract base type that did not provide an

implementation

A concrete (i.e., non-abstract) type shall provide, either directly or by inheritance, an implementation for

 all methods declared by the type itself

 all virtual methods of interfaces implemented by the type

 all virtual methods that the type inherits from its base type

10.5 Special members

There are three special members, all of which are methods that can be defined as part of a type: instance

constructors, instance finalizers, and type initializers.

10.5.1 Instance constr uctor

An instance constructor initializes an instance of a type, and is called when an instance of a type is created by

the newobj instruction (see Partition III). An instance constructor shall be an instance (not static or virtual)

method, it shall be named .ctor, and marked instance, rtspecialname, and specialname

(§15.4.2.6). An instance constructor can have parameters, but shall not return a value. An instance constructor

cannot take generic type parameters. An instance constructor can be overloaded (i.e., a type can have several

instance constructors). Each instance constructor for a type shall have a unique signature. Unlike other

methods, instance constructors can write into fields of the type that are marked with the initonly attribute

(§16.1.2).

[Example: The following shows the definition of an instance constructor that does not take any parameters:

.class X {

 .method public rtspecialname specialname instance void .ctor() cil managed

 { .maxstack 1

 // call super constructor

 ldarg.0 // load this pointer

 call instance void [mscorlib]System.Object::.ctor()

 // do other initialization work

 ret

 }

}

end example]

10.5.2 Instance f inal izer

The behavior of finalizers is specified in Partition I. The finalize method for a particular type is specified by

overriding the virtual method Finalize in System.Object.

10.5.3 Type init ial izer

A type (class, interface, or value type) can contain a special method called a type initializer, which is used to

initialize the type itself. This method shall be static, take no parameters, return no value, be marked with

rtspecialname and specialname (§15.4.2.6), and be named .cctor.

Like instance constructors, type initializers can write into static fields of their type that are marked with the

initonly attribute (§16.1.2).

[Example: The following shows the definition of a type initializer:

Partition%20III%20CIL.doc
Partition%20I%20Architecture.doc#_Finalizers

 Partition II 55

.class public EngineeringData extends [mscorlib]System.Object

{

.field private static initonly float64[] coefficient

.method private specialname rtspecialname static void .cctor() cil managed

 {

 .maxstack 1

 // allocate array of 4 Double

 ldc.i4.4

 newarr [mscorlib]System.Double

 // point initonly field to new array

 stsfld float64[] EngineeringData::coefficient

 // code to initialize array elements goes here

 ret

 }

}

end example]

[Note: Type initializers are often simple methods that initialize the type‘s static fields from stored constants or

via simple computations. There are, however, no limitations on what code is permitted in a type initializer. end

note]

10.5.3.1 Type init ial izat ion guarantees

The CLI shall provide the following guarantees regarding type initialization (but see also §10.5.3.2 and

§10.5.3.3):

1. As to when type initializers are executed is specified in Partition I.

2. A type initializer shall be executed exactly once for any given type, unless explicitly called by
user code.

3. No methods other than those called directly or indirectly from the type initializer are able to

access members of a type before its initializer completes execution.

10.5.3.2 Relaxed guarantees

A type can be marked with the attribute beforefieldinit (§10.1.6) to indicate that the guarantees

specified in §10.5.3.1 are not necessarily required. In particular, the final requirement above need not be

provided: the type initializer need not be executed before a static method is called or referenced.

[Rationale: When code can be executed in multiple application domains it becomes particularly expensive to

ensure this final guarantee. At the same time, examination of large bodies of managed code have shown that

this final guarantee is rarely required, since type initializers are almost always simple methods for initializing

static fields. Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether

this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees.

end rationale]

10.5.3.3 Races and deadlocks

In addition to the type initialization guarantees specified in §10.5.3.1, the CLI shall ensure two further

guarantees for code that is called from a type initializer:

1. Static variables of a type are in a known state prior to any access whatsoever.

2. Type initialization alone shall not create a deadlock unless some code called from a type

initializer (directly or indirectly) explicitly invokes blocking operations.

[Rationale: Consider the following two class definitions:

Partition%20I%20Architecture.doc#ClassTypeDefinition

56 Partition II

.class public A extends [mscorlib]System.Object

{ .field static public class A a

 .field static public class B b

 .method public static rtspecialname specialname void .cctor ()

 { ldnull // b=null

 stsfld class B A::b

 ldsfld class A B::a // a=B.a

 stsfld class A A::a

 ret

 }

}

.class public B extends [mscorlib]System.Object

{ .field static public class A a

 .field static public class B b

 .method public static rtspecialname specialname void .cctor ()

 { ldnull // a=null

 stsfld class A B::a

 ldsfld class B A::b // b=A.b

 stsfld class B B::b

 ret

 }

}

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type

initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no

access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the

CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But

this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to

guarantee repeatable results.

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system.

In these cases, for example, two separate threads might start attempting to access static variables of separate

types (A and B) and then each would have to wait for the other to complete initialization.

A rough outline of an algorithm to ensure points 1 and 2 above is as follows:

1. At class load-time (hence prior to initialization time) store zero or null into all static fields of the type.

2. If the type is initialized, you are done.

2.1. If the type is not yet initialized, try to take an initialization lock.

2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3.

2.2.1. If not successful, see whether this thread or any thread waiting for this thread to complete already holds

the lock.

2.2.2. If so, return since blocking would create a deadlock. This thread will now see an incompletely initialized

state for the type, but no deadlock will arise.

2.2.3 If not, block until the type is initialized then return.

2.3 Initialize the base class type and then all interfaces implemented by this type.

2.4 Execute the type initialization code for this type.

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be

initialized, and return.

end rationale]

10.6 Nested types

Nested types are specified in Partition I. For information about the logical tables associated with nested types,

see §22.32.

Partition%20I%20Architecture.doc#_NestedTypes

 Partition II 57

[Note: A nested type is not associated with an instance of its enclosing type. The nested type has its own base

type, and can be instantiated independently of its enclosing type. This means that the instance members of the

enclosing type are not accessible using the this pointer of the nested type.

A nested type can access any members of its enclosing type, including private members, as long as those

members are static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested

types, a type can give access to its private members to another type.

On the other hand, the enclosing type cannot access any private or family members of the nested type. Only

members with assembly, famorassem, or public accessibility can be accessed by the enclosing type.

end note]

[Example: The following shows a class declared inside another class. Each class declares a field. The nested

class can access both fields, while the enclosing class does not have access to the enclosed class‘s field b.

.class public auto ansi X

{ .field static private int32 a

 .class auto ansi nested public Y

 { .field static private int32 b

 // ...

 }

}

end example]

10.7 Controll ing instance layout

The CLI supports both sequential and explicit layout control, see § 10.1.2. For explicit layout it is also

necessary to specify the precise layout of an instance; see also §22.18 and §22.16.

FieldDecl ::=

 [„[‟ Int32 „]‟] FieldAttr* Type Id

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the
beginning of the instance of the type. (For a given type t, this beginning refers to the start of the set of members

explicitly defined in type t, excluding all members defined in any types from which type t directly or indirectly

inherits.) This form of explicit layout control shall not be used with global fields specified using the at

notation §16.3.2).

Offset values shall be non-negative. It is possible to overlap fields in this way, though offsets occupied by an

object reference shall not overlap with offsets occupied by a built-in value type or a part of another object

reference. While one object reference can completely overlap another, this is unverifiable.

Fields can be accessed using pointer arithmetic and ldind to load the field indirectly or stind to store the field
indirectly (see Partition III). See §22.16 and §22.18 for encoding of this information. For explicit layout, every

field shall be assigned an offset.

The .pack directive specifies that fields should be placed within the runtime object at byte addresses which

are a multiple of the specified number, or at natural alignment for that field type, whichever is smaller. For

example, .pack 2 would allow 32-bit-wide fields to be started on even addresses, whereas without any

.pack directive, they would be naturally aligned; that is, placed on addresses that are a multiple of 4. The

integer following .pack shall be one of the following: 0, 1, 2, 4, 8, 16, 32, 64, or 128. (A value of zero

indicates that the pack size used should match the default for the current platform.) The .pack directive shall

not be supplied for any type with explicit layout control.

The .size directive indicates a minimum size, and is intended to allow for padding. Therefore, the amount of

memory allocated is the maximum of the size calculated from the layout and the .size directive. Note that if

this directive applies to a value type, then the size shall be less than 1 MByte.

[Note: Metadata that controls instance layout is not a ―hint,‖ it is an integral part of the VES that shall be

supported by all conforming implementations of the CLI. end note]

Partition%20III%20CIL.doc

58 Partition II

[Example: The following class uses sequential layout of its fields:

.class sequential public SequentialClass

{ .field public int32 a // store at offset 0 bytes

 .field public int32 b // store at offset 4 bytes

}

The following class uses explicit layout of its fields:

.class explicit public ExplicitClass

{ .field [0] public int32 a // store at offset 0 bytes

 .field [6] public int32 b // store at offset 6 bytes

}

The following value type uses .pack to pack its fields together:

.class value sealed public MyClass extends [mscorlib]System.ValueType

{ .pack 2

 .field public int8 a // store at offset 0 bytes

 .field public int32 b // store at offset 2 bytes (not 4)

}

The following class specifies a contiguous block of 16 bytes:

.class public BlobClass

{ .size 16

}

end example]

10.8 Global fie lds and methods

In addition to types with static members, many languages have the notion of data and methods that are not part

of a type at all. These are referred to as global fields and methods.

The simplest way to understand global fields and methods in the CLI is to imagine that they are simply

members of an invisible abstract public class. In fact, the CLI defines such a special class, named

<Module>, that does not have a base type and does not implement any interfaces. (This class is a top-level class;

i.e., it is not nested.)The only noticeable difference is in how definitions of this special class are treated when
multiple modules are combined together, as is done by a class loader. This process is known as metadata

merging.

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition

on the assumption they are equivalent, and that any anomaly will be discovered when the type is used. For the

special class that holds global members, however, members are unioned across all modules at merge time. If

the same name appears to be defined for cross-module use in multiple modules then there is an error. In detail:

 If no member of the same kind (field or method), name, and signature exists, then add this

member to the output class.

 If there are duplicates and no more than one has an accessibility other than

compilercontrolled, then add them all to the output class.

 If there are duplicates and two or more have an accessibility other than

compilercontrolled, an error has occurred.

[Note: Strictly speaking, the CLI does not support global statics, even though global fields and methods might

be thought of as such. All global fields and methods in a module are owned by the manufactured class

"<Module>". However, each module has its own "<Module>" class. There's no way to even refer, early-bound,

to such a global field or method in another module. (You can, however, "reach" them, late-bound, via

Reflection.) end note]

 Partition II 59

11 Semantics of classes

Classes, as specified in Partition I, define types in an inheritance hierarchy. A class (except for the built-in

class System.Object and the special class <Module>) shall declare exactly one base class. A class shall declare

zero or more interfaces that it implements (§12). A concrete class can be instantiated to create an object, but an

abstract class (§10.1.4) shall not be instantiated. A class can define fields (static or instance), methods

(static, instance, or virtual), events, properties, and nested types (classes, value types, or interfaces).

Instances of a class (i.e., objects) are created only by explicitly using the newobj instruction (see Partition III).
When a variable or field that has a class as its type is created (for example, by calling a method that has a local

variable of a class type), the value shall initially be null, a special value that := with all class types even though
it is not an instance of any particular class.

Partition%20I%20Architecture.doc#_ClassTypes
Partition%20III%20CIL.doc

60 Partition II

12 Semantics of interfaces

Interfaces, as specified in Partition I, each define a contract that other types can implement. Interfaces can have

static fields and methods, but they shall not have instance fields or methods. Interfaces can define virtual

methods, but only if those methods are abstract (see Partition I and §15.4.2.4).

[Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple

inheritance of base types: in the presence of dynamic loading of data types there is no known implementation

technique that is both efficient when used and has no cost when not used. By contrast, providing static fields
and methods need not affect the layout of instances and therefore does not raise these issues. end rationale]

Interfaces can be nested inside any type (interface, class, or value type).

12.1 Implementing interfaces

Classes and value types shall implement zero or more interfaces. Implementing an interface implies that all

concrete instances of the class or value type shall provide an implementation for each abstract virtual

method declared in the interface. In order to implement an interface, a class or value type shall either

explicitly declare that it does so (using the implements attribute in its type definition, see §10.1) or shall be

derived from a base class that implements the interface.

[Note: An abstract class (since it cannot be instantiated) need not provide implementations of the virtual

methods of interfaces it implements, but any concrete class derived from it shall provide the implementation.

Merely providing implementations for all of the abstract methods of an interface is not sufficient to have a

type implement that interface. Conceptually, this represents the fact that an interface represents a contract that

can have more requirements than are captured in the set of abstract methods. From an implementation

point of view, this allows the layout of types to be constrained only by those interfaces that are explicitly

declared. end note]

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface,

A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires

the implementation of all interfaces required by B. If a class or value type declares that it implements A, then

all concrete instances shall provide implementations of the virtual methods declared in A and all of the

interfaces A requires. [Note: The class need not explicitly declare that it implements the interfaces required

by A. end note]

[Example: The following class implements the interface IStartStopEventSource defined in the module

Counter.

.class private auto autochar StartStopButton

 extends [System.Windows.Forms]System.Windows.Forms.Button

 implements [.module Counter]IstartStopEventSource

{ // body of class

}

end example]

12.2 Implementing v irtual methods on interfaces

Classes that implement an interface (§12.1) are required to provide implementations for the abstract virtual

methods defined by that interface. There are three mechanisms for providing this implementation:

 Directly specifying an implementation, using the same name and signature as appears in the

interface.

 Inheritance of an existing implementation from the base type.

 Use of an explicit MethodImpl (§15.1.4).

The VES shall use the following algorithm to determine the appropriate implementation of an interface's virtual

abstract methods:

Partition%20I%20Architecture.doc#_External_Type_Definitions
Partition%20I%20Architecture.doc#_VirtualMethods

 Partition II 61

 If the base class implements the interface, start with the same virtual methods that it provides;

otherwise, create an interface that has empty slots for all virtual functions.

 If this class explicitly specifies that it implements the interface (i.e., the interfaces that appear in

this class‘s InterfaceImpl table, §22.23)

o If the class defines any public virtual newslot methods whose name and

signature match a virtual method on the interface, then use these new virtual methods

to implement the corresponding interface method.

 If there are any virtual methods in the interface that still have empty slots, see if there are any

public virtual methods, but not public virtual newslot methods, available on this

class (directly or inherited) having the same name and signature, then use these to implement the

corresponding methods on the interface.

 Apply all MethodImpls that are specified for this class, thereby placing explicitly specified virtual

methods into the interface in preference to those inherited or chosen by name matching.

 If the current class is not abstract and there are any interface methods that still have empty

slots, then the program is invalid.

[Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be

implemented by any class that implements the interface. The class specifies a mapping from its own virtual

methods to those of the interface. Thus it is virtual methods, not specific implementations of those methods

that are associated with interfaces. Overriding a virtual method on a class with a specific implementation will

thus affect not only the virtual method named in the class but also any interface virtual methods to which that

same virtual method has been mapped. end rationale]

62 Partition II

13 Semantics of value types

In contrast to reference types, value types (see Partition I) are not accessed by using a reference, but are stored

directly in the location of that type.

[Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as

opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since

there is no additional indirection involved. As elements of arrays they do not require allocating memory for the

pointers as well as for the data itself. Typical value types are complex numbers, geometric points, and dates.

end rationale]

Like other types, value types can have fields (static or instance), methods (static, instance, or virtual),

properties, events, and nested types. A value of some value type can be converted into an instance of a

corresponding reference type (its boxed form, a class automatically created for this purpose by the VES when a

value type is defined) by a process called boxing. A boxed value type can be converted back into its value type

representation, the unboxed form, by a process called unboxing. Value types shall be sealed, and they shall

have a base type of either System.ValueType or System.Enum (see Partition IV). Value types shall implement

zero or more interfaces, but this has meaning only in their boxed form (§13.3).

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction

(see Partition III) on unboxed value types. The isinst instruction can be used for boxed value types, however.
Unboxed value types shall not be assigned the value null and they shall not be compared to null.

Value types support layout control in the same way as do reference types (§10.7). This is especially important

when values are imported from native code.

Since ValueTypes represent direct layout of data, recursive struct definitions such as (in C#) struct S {S x;

S y;} are not permitted. A struct shall have an acyclic finite flattening graph:

For a value type S, define the flattening graph G of S to be the smallest directed graph such that:

 S is in G.

 Whenever T is in G and T has an instance field of value type X then X is in G and there is an edge from T

to X.

 Whenever T is in G and T has a static field of value type Y then Y is in G.

[Example:

class C<U> { }

struct S1<V> {

 S1<V> x;

}

struct S2<V> {

 static S2<V> x;

}

struct S3<V> {

 static S3<C<V>> x;

}

struct S4<V> {

 S4<C<V>>[] x;

}

Struct type S1 has a finite but cyclic flattening graph and is invalid; S2 has a finite acyclic flattening graph and

is valid; S3 has an infinite acyclic flattening graph and is invalid; S4 has a finite acyclic flattening graph and is

valid because field S4<C<V>>.x has reference type, not value type.

The C<U> type is not strictly necessary for the examples, but if it were not used, it might be unclear whether

something like the following

Partition%20I%20Architecture.doc#_ValueTypes
Partition%20IV%20Library.doc
Partition%20III%20CIL.doc

 Partition II 63

 struct S3<V> {

 static S3<S3<V>> x;

 }

is problematic due to the inner or the outer occurrence of S3<...> in the field type. end example]

13.1 Referencing value types

The unboxed form of a value type shall be referred to by using the valuetype keyword followed by a type

reference. The boxed form of a value type shall be referred to by using the boxed keyword followed by a

type reference.

ValueTypeReference ::=

 boxed TypeReference

| valuetype TypeReference

13.2 Init ializing value types

Like classes, value types can have both instance constructors (§10.5.1) and type initializers (§10.5.3). Unlike

classes, whose fields are automatically initialized to null, the following rules constitute the only guarantee

about the initilization of (unboxed) value types:

 Static variables shall be initialized to zero when a type is loaded (§10.5.3.3), hence statics whose

type is a value type are zero-initialized when the type is loaded.

 Local variables shall be initialized to zero if the localsinit bit in the method header

(§25.4.4) is set.

 Arrays shall be zero-initialized.

 Instances of classes (i.e., objects) shall be zero-initialized prior to calling their instance

constructor.

[Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive,

especially on platforms that support thread-local storage and that allow threads to be created outside of the CLI

and then passed to the CLI for management. end rationale]

[Note: Boxed value types are classes and follow the rules for classes. end note]

The instruction initobj (see Partition III) performs zero-initialization under program control. If a value type has

a constructor, an instance of its unboxed type can be created as is done with classes. The newobj instruction
(see Partition III) is used along with the initializer and its parameters to allocate and initialize the instance. The

instance of the value type will be allocated on the stack. The Base Class Library provides the method

System.Array.Initialize (see Partition IV) to zero all instances in an array of unboxed value types.

[Example: The following code declares and initializes three value type variables. The first variable is zero-

initialized, the second is initialized by calling an instance constructor, and the third by creating the object on the

stack and storing it into the local.

.assembly Test { }

.assembly extern System.Drawing {

 .ver 1:0:3102:0

 .publickeytoken = (b03f5f7f11d50a3a)

}

.method public static void Start()

{ .maxstack 3

 .entrypoint

 .locals init (valuetype [System.Drawing]System.Drawing.Size Zero,

 valuetype [System.Drawing]System.Drawing.Size Init,

 valuetype [System.Drawing]System.Drawing.Size Store)

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc
Partition%20IV%20Library.doc

64 Partition II

 // Zero initialize the local named Zero

 ldloca Zero // load address of local variable

 initobj valuetype [System.Drawing]System.Drawing.Size

 // Call the initializer on the local named Init

 ldloca Init // load address of local variable

 ldc.i4 425 // load argument 1 (width)

 ldc.i4 300 // load argument 2 (height)

 call instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)

 // Create a new instance on the stack and store into Store. Note that

 // stobj is used here – but one could equally well use stloc, stfld, etc.

 ldloca Store

 ldc.i4 425 // load argument 1 (width)

 ldc.i4 300 // load argument 2 (height)

 newobj instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)

 stobj valuetype [System.Drawing]System.Drawing.Size

 ret

}

end example]

13.3 Methods of value types

Value types can have static, instance and virtual methods. Static methods of value types are defined and called

the same way as static methods of class types. As with classes, both instance and virtual methods of a boxed or

unboxed value type can be called using the call instruction. The callvirt instruction shall not be used with
unboxed value types (see Partition I), but it can be used on boxed value types.

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the

this pointer. By contrast, instance and virtual methods of value types shall be coded to expect a managed

pointer (see Partition I) to an unboxed instance of the value type. The CLI shall convert a boxed value type

into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a

virtual method whose implementation is provided by the unboxed value type.

[Note: This operation is the same as unboxing the instance, since the unbox instruction (see Partition III) is
defined to return a managed pointer to the value type that shares memory with the original boxed instance.

The following diagrams are intended to help the reader understand the relationship between the boxed and

unboxed representations of a value type.

Partition%20I%20Architecture.doc#CallingMethods
Partition%20I%20Architecture.doc#DataTypes
Partition%20III%20CIL.doc

 Partition II 65

end note]

[Rationale: An important use of instance methods on value types is to change internal state of the instance.

This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be

operating on a copy of the value, not the original value: unboxed value types are copied when they are passed

as arguments.

Virtual methods are used to allow multiple types to share implementation code, and this requires that all classes

that implement the virtual method share a common representation defined by the class that first introduces the

method. Since value types can (and in the Base Class Library do) implement interfaces and virtual methods

defined on System.Object, it is important that the virtual method be callable using a boxed value type so it
can be manipulated as would any other type that implements the interface. This leads to the requirement that

the EE automatically unbox value types on virtual calls. end rationale]

Table 1: Type of this given the CIL instruction and the declaring type of instance method.

 Value Type (Boxed or Unboxed) Interface Object Type

call managed pointer to value type invalid object reference

callvirt managed pointer to value type object reference object reference

[Example: The following converts an integer of the value type int32 into a string. Recall that int32

corresponds to the unboxed value type System.Int32 defined in the Base Class Library. Suppose the integer is

declared as:

.locals init (int32 x)

Then the call is made as shown below:

ldloca x // load managed pointer to local variable

call instance string valuetype [mscorlib]System.Int32::ToString()

However, if System.Object (a class) is used as the type reference rather than System.Int32 (a value type), the

value of x shall be boxed before the call is made and the code becomes:

ldloc x

box valuetype [mscorlib]System.Int32

callvirt instance string [mscorlib]System.Object::ToString()

end example]

66 Partition II

14 Semantics of special types

Special types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies

the definitions automatically based on information available from the reference.

14.1 Vectors

Type ::= …

 | Type „[‟ „]‟

Vectors are single-dimension arrays with a zero lower bound. They have direct support in CIL instructions

(newarr, ldelem, stelem, and ldelema, see Partition III). The CIL Framework also provides methods that
deal with multidimensional arrays and single-dimension arrays with a non-zero lower bound (§14.2). Two

vectors have the same type if their element types are the same, regardless of their actual upper bounds.

Vectors have a fixed size and element type, determined when they are created. All CIL instructions shall
respect these values. That is, they shall reliably detect attempts to do the following: index beyond the end of

the vector, store the incorrect type of data into an element of a vector, and take the address of elements of a

vector with an incorrect data type. See Partition III.

[Example: Declare a vector of Strings:

.field string[] errorStrings

Declare a vector of function pointers:

.field method instance void*(int32) [] myVec

Create a vector of 4 strings, and store it into the field errorStrings. The 4 strings lie at errorStrings[0]

through errorStrings[3]:

ldc.i4.4

newarr string

stfld string[] CountDownForm::errorStrings

Store the string "First" into errorStrings[0]:

ldfld string[] CountDownForm::errorStrings

ldc.i4.0

ldstr "First"

stelem

end example]

Vectors are subtypes of System.Array, an abstract class pre-defined by the CLI. It provides several methods

that can be applied to all vectors. See Partition IV.

14.2 Arrays

While vectors (§14.1) have direct support through CIL instructions, all other arrays are supported by the VES

by creating subtypes of the abstract class System.Array (see Partition IV)

Type ::= …

 | Type „[‟ [Bound [„,‟ Bound]*] „]‟

The rank of an array is the number of dimensions. The CLI does not support arrays with rank 0. The type of

an array (other than a vector) shall be determined by the type of its elements and the number of dimensions.

Bound ::= Description

 „...‟ Lower and upper bounds unspecified. In the case of

multi-dimensional arrays, the ellipsis can be omitted

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc
Partition%20IV%20Library.doc
Partition%20IV%20Library.doc

 Partition II 67

| Int32 Zero lower bound, Int32 upper bound

| Int32 „...‟ Lower bound only specified

| Int32 „...‟ Int32 Both bounds specified

The class that the VES creates for arrays contains several methods whose implementation is supplied by the

VES:

 A constructor that takes a sequence of int32 arguments, one for each dimension of the array, that specify
the number of elements in each dimension beginning with the first dimension. A lower bound of zero is

assumed.

 A constructor that takes twice as many int32 arguments as there are dimensions of the array. These
arguments occur in pairs—one pair per dimension—with the first argument of each pair specifying the

lower bound for that dimension, and the second argument specifying the total number of elements in that

dimension. Note that vectors are not created with this constructor, since a zero lower bound is assumed for
vectors.

 A Get method that takes a sequence of int32 arguments, one for each dimension of the array, and returns
a value whose type is the element type of the array. This method is used to access a specific element of the

array where the arguments specify the index into each dimension, beginning with the first, of the element

to be returned.

 A Set method that takes a sequence of int32 arguments, one for each dimension of the array, followed by

a value whose type is the element type of the array. The return type of Set is void. This method is used to

set a specific element of the array where the arguments specify the index into each dimension, beginning

with the first, of the element to be set and the final argument specifies the value to be stored into the target

element.

 An Address method that takes a sequence of int32 arguments, one for each dimension of the array, and
has a return type that is a managed pointer to the array‘s element type. This method is used to return a

managed pointer to a specific element of the array where the arguments specify the index into each

dimension, beginning with the first, of the element whose address is to be returned.

[Example: The following creates an array, MyArray, of strings with two dimensions, with indexes 5…10 and

3…7. It then stores the string "One" into MyArray[5, 3], retrieves it and prints it out. Then it computes the

address of MyArray[5, 4], stores "Test" into it, retrieves it, and prints it out.

.assembly Test { }

.assembly extern mscorlib { }

.method public static void Start()

{ .maxstack 5

 .entrypoint

 .locals (class [mscorlib]System.String[,] myArray)

 ldc.i4.5 // load lower bound for dim 1

 ldc.i4.6 // load (upper bound - lower bound + 1) for dim 1

 ldc.i4.3 // load lower bound for dim 2

 ldc.i4.5 // load (upper bound - lower bound + 1) for dim 2

 newobj instance void string[,]::.ctor(int32, int32, int32, int32)

 stloc myArray

 ldloc myArray

 ldc.i4.5

 ldc.i4.3

 ldstr "One"

 call instance void string[,]::Set(int32, int32, string)

68 Partition II

 ldloc myArray

 ldc.i4.5

 ldc.i4.3

 call instance string string[,]::Get(int32, int32)

 call void [mscorlib]System.Console::WriteLine(string)

 ldloc myArray

 ldc.i4.5

 ldc.i4.4

 call instance string & string[,]::Address(int32, int32)

 ldstr "Test"

 stind.ref

 ldloc myArray

 ldc.i4.5

 ldc.i4.4

 call instance string string[,]::Get(int32, int32)

 call void [mscorlib]System.Console::WriteLine(string)

 ret

}

end example]

The following text is informative

Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of

arrays are different – each dimension (except the last) holds an array reference. The following picture

illustrates the difference:

On the left is a [6, 10] rectangular array. On the right is not one, but a total of five arrays. The vertical array is

an array of arrays, and references the four horizontal arrays. Note how the first and second elements of the

vertical array both reference the same horizontal array.

Note that all dimensions of a multi-dimensional array shall have the same size. But in an array of arrays, it is

possible to reference arrays of different sizes. For example, the figure on the right shows the vertical array
referencing arrays of lengths 8, 8, 3, null (i.e., no array), 6 and 1, respectively.

There is no special support for these so-called jagged arrays in either the CIL instruction set or the VES. They

are simply vectors whose elements reference other (recursively) jagged arrays.

End of informative text

14.3 Enums

An enum (short for enumeration) defines a set of symbols that all have the same type. A type shall be an enum

if and only if it has an immediate base type of System.Enum. Since System.Enum itself has an immediate base

type of System.ValueType, (see Partition IV) enums are value types (§13) The symbols of an enum are

represented by an underlying integer type: one of { bool, char, int8, unsigned int8, int16, unsigned int16,

int32, unsigned int32, int64, unsigned int64, native int, unsigned native int }

[Note: Unlike Pascal, the CLI does not provide a guarantee that values of the enum type are integers
corresponding to one of the symbols. In fact, the CLS (see Partition I, CLS) defines a convention for using

Partition%20IV%20Library.doc
Partition%20I%20Architecture.doc

 Partition II 69

enums to represent bit flags which can be combined to form integral value that are not named by the enum type

itself. end note]

Enums obey additional restrictions beyond those on other value types. Enums shall contain only fields as

members (they shall not even define type initializers or instance constructors); they shall not implement any

interfaces; they shall have auto field layout (§10.1.2); they shall have exactly one instance field and it shall be

of the underlying type of the enum; all other fields shall be static and literal (§16.1); and they shall not be

initialized with the initobj instruction.

[Rationale: These restrictions allow a very efficient implementation of enums. end rationale]

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an

enum declare the mapping of the symbols of the enum to the underlying values. All of these fields shall have

the type of the enum and shall have field init metadata that assigns them a value (§16.2).

For binding purposes (e.g., for locating a method definition from the method reference used to call it) enums

shall be distinct from their underlying type. For all other purposes, including verification and execution of

code, an unboxed enum freely interconverts with its underlying type. Enums can be boxed (§13) to a

corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so

boxing does not lose the original type of the enum.

[Example: Declare an enum type and then create a local variable of that type. Store a constant of the

underlying type into the enum (showing automatic coersion from the underlying type to the enum type). Load

the enum back and print it as the underlying type (showing automatic coersion back). Finally, load the address

of the enum and extract the contents of the instance field and print that out as well.

.assembly Test { }

.assembly extern mscorlib { }

.class sealed public ErrorCodes extends [mscorlib]System.Enum

{ .field public unsigned int8 MyValue

 .field public static literal valuetype ErrorCodes no_error = int8(0)

 .field public static literal valuetype ErrorCodes format_error = int8(1)

 .field public static literal valuetype ErrorCodes overflow_error = int8(2)

 .field public static literal valuetype ErrorCodes nonpositive_error = int8(3)

}

.method public static void Start()

{ .maxstack 5

 .entrypoint

 .locals init (valuetype ErrorCodes errorCode)

 ldc.i4.1 // load 1 (= format_error)

 stloc errorCode // store in local, note conversion to enum

 ldloc errorCode

 call void [mscorlib]System.Console::WriteLine(int32)

 ldloca errorCode // address of enum

 ldfld unsigned int8 valuetype ErrorCodes::MyValue

 call void [mscorlib]System.Console::WriteLine(int32)

 ret

}

end example]

14.4 Pointer types

Type ::= … Clause

 | Type „&‟ 14.4.2

 | Type „*‟ 14.4.1

A pointer type shall be defined by specifying a signature that includes the type of the location at which it

points. A pointer can be managed (reported to the CLI garbage collector, denoted by &, see §14.4.2) or

unmanaged (not reported, denoted by *, see §14.4.1)

70 Partition II

Pointers can contain the address of a field (of an object or value type) or of an element of an array. Pointers

differ from object references in that they do not point to an entire type instance, but, rather, to the interior of an

instance. The CLI provides two type-safe operations on pointers:

 Loading the value from the location referenced by the pointer.

 Storing an assignment-compatible value into the location referenced by the pointer .

For pointers into the same array or object (see Partition I) the following arithmetic operations are supported:

 Adding an integer value to a pointer (where that value is interpreted as a number of bytes), which

results in a pointer of the same kind

 Subtracting an integer value from a pointer (where that value is interpreted as a number of bytes),

which results in a pointer of the same kind. Note that subtracting a pointer from an integer value

is not permitted.

 Two pointers, regardless of kind, can be subtracted from one another, producing an integer value

that specifies the number of bytes between the addresses they reference.

The following is informative text

Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on

64-bit architectures. They are best considered as unsigned int, whose size varies depending upon the

runtime machine architecture.

The CIL instruction set (see Partition III) contains instructions to compute addresses of fields, local variables,

arguments, and elements of vectors:

Instruction Description

ldarga Load address of argument

ldelema Load address of vector element

ldflda Load address of field

ldloca Load address of local variable

ldsflda Load address of static field

Once a pointer is loaded onto the stack, the ldind class of instructions can be used to load the data item to

which it points. Similarly, the stind family of instructions can be used to store data into the location.

Note that the CLI will throw an InvalidOperationException for an ldflda instruction if the address is not
within the current application domain. This situation arises typically only from the use of objects with a base

type of System.MarshalByRefObject (see Partition IV).

14.4.1 Unmanaged pointers

Unmanaged pointers (*) are the traditional pointers used in languages like C and C++. There are no restrictions

on their use, although, for the most part, they result in code that cannot be verified. While it is perfectly valid to

mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how

they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data.

This is done by using *in a signature for a return value, local variable, or an argument, or by using a pointer

type for a field or array element.

 Unmanaged pointers are not reported to the garbage collector and can be used in any way that an

integer can be used.

 Verifiable code cannot dereference unmanaged pointers.

 Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This

is safe only if one of the following is true:

Partition%20I%20Architecture.doc
Partition%20III%20CIL.doc
Partition%20IV%20Library.doc

 Partition II 71

a. The unmanaged pointer refers to memory that is not in memory used by the CLI for

storing instances of objects (―garbage-collected memory‖ or ―managed memory‖).

b. The unmanaged pointer contains the address of a field within an object.

c. The unmanaged pointer contains the address of an element within an array.

d. The unmanaged pointer contains the address where the element following the last

element in an array would be located.

14.4.2 Managed pointers

Managed pointers (&) can point to an instance of a value type, a field of an object, a field of a value type, an

element of an array, or the address where an element just past the end of an array would be stored (for pointer

indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage

collector even if they do not point to managed memory.

Managed pointers are specified by using & in a signature for a return value, local variable or an argument, or by

using a byref type for a field or array element.

 Managed pointers can be passed as arguments, stored in local variables, and returned as values.

 If a parameter is passed by reference, the corresponding argument is a managed pointer.

 Managed pointers cannot be stored in static variables, array elements, or fields of objects or value
types.

 Managed pointers are not interchangeable with object references.

 A managed pointer cannot point to another managed pointer, but it can point to an object

reference or a value type.

 A managed pointer can point to a local variable, or a method argument

 Managed pointers that do not point to managed memory can be converted (using conv.u or

conv.ovf.u) into unmanaged pointers, but this is not verifiable.

 Unverified code that erroneously converts a managed pointer into an unmanaged pointer can

seriously compromise the integrity of the CLI. See Partition III (Managed Pointers) for more

details.

End informative text

14.5 Method pointers

Type ::= …

 | method CallConv Type „*‟ „(‟ Parameters „)‟

Variables of type method pointer shall store the address of the entry point to a method with compatible

signature. A pointer to a static or instance method is obtained with the ldftn instruction, while a pointer to a

virtual method is obtained with the ldvirtftn instruction. A method can be called by using a method pointer

with the calli instruction. See Partition III for the specification of these instructions.

[Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures,

and with unsigned int32 and on 32-bit architectures. The preferred usage, however, is unsigned

native int, which works on both 32- and 64-bit architectures. end note]

[Example: Call a method using a pointer. The method MakeDecision::Decide returns a method pointer to

either AddOne or Negate, alternating on each call. The main program calls MakeDecision::Decide three times,

and after each call uses a calli instruction to call the method specified. The output printed is "-1 2 –1"
indicating successful alternating calls.

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc

72 Partition II

.assembly Test { }

.assembly extern mscorlib { }

.method public static int32 AddOne(int32 Input)

{ .maxstack 5

 ldarg Input

 ldc.i4.1

 add

 ret

}

.method public static int32 Negate(int32 Input)

{ .maxstack 5

 ldarg Input

 neg

 ret

}

.class value sealed public MakeDecision extends

 [mscorlib]System.ValueType

{ .field static bool Oscillate

 .method public static method int32 *(int32) Decide()

 { ldsfld bool valuetype MakeDecision::Oscillate

 dup

 not

 stsfld bool valuetype MakeDecision::Oscillate

 brfalse NegateIt

 ldftn int32 AddOne(int32)

 ret

NegateIt:

 ldftn int32 Negate(int32)

 ret

 }

}

.method public static void Start()

{ .maxstack 2

 .entrypoint

 ldc.i4.1

 call method int32 *(int32) valuetype MakeDecision::Decide()

 calli int32(int32)

 call void [mscorlib]System.Console::WriteLine(int32)

 ldc.i4.1

 call method int32 *(int32) valuetype MakeDecision::Decide()

 calli int32(int32)

 call void [mscorlib]System.Console::WriteLine(int32)

 ldc.i4.1

 call method int32 *(int32) valuetype MakeDecision::Decide()

 calli int32(int32)

 call void [mscorlib]System.Console::WriteLine(int32)

 ret

}

end example]

14.6 Delegates

Delegates (see Partition I) are the object-oriented equivalent of function pointers. Unlike function pointers,

delegates are object-oriented, type-safe, and secure. Delegates are reference types, and are declared in the form

of classes. Delegates shall have a base type of System.Delegate (see Partition IV).

Delegates shall be declared sealed, and the only members a delegate shall have are either the first two or all

four methods as specified here. These methods shall be declared runtime and managed (§15.4.3). They

shall not have a body, since that body shall be created automatically by the VES. Other methods available on

Partition%20I%20Architecture.doc
Partition%20IV%20Library.doc

 Partition II 73

delegates are inherited from the class System.Delegate in the Base Class Library (see Partition IV). The

delegate methods are:

 The instance constructor (named .ctor and marked specialname and rtspecialname,

see §10.5.1) shall take exactly two parameters, the first having type System.Object, and the second having

type System.IntPtr. When actually called (via a newobj instruction, see Partition III), the first argument
shall be an instance of the class (or one of its derived classes) that defines the target method, and the

second argument shall be a method pointer to the method to be called.

 The Invoke method shall be virtual and its signature constrains the target method to which it can be

bound; see §14.6.1. The verifier treats calls to the Invoke method on a delegate just like it treats calls to

any other method.

 The BeginInvoke method (§14.6.3.1), if present, shall be virtual and have a signature related to, but

not the same as, that of the Invoke method. There are two differences in the signature. First, the return

type shall be System.IAsyncResult (see Partition IV). Second, there shall be two additional parameters

that follow those of Invoke: the first of type System.AsyncCallback and the second of type

System.Object.

 The EndInvoke method (§14.6.3) shall be virtual and have the same return type as the Invoke method.

It shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order

they occur in the signature for Invoke. In addition, there shall be an additional parameter of type

System.IAsyncResult.

Unless stated otherwise, a standard delegate type shall provide the two optional asynchronous methods,

BeginInvoke and EndInvoke.

[Example: The following declares a Delegate used to call functions that take a single integer and return

nothing. It provides all four methods so it can be called either synchronously or asynchronously. Because no

parameters are passed by reference (i.e., as managed pointers) there are no additional arguments to EndInvoke.

.assembly Test { }

.assembly extern mscorlib { }

.class private sealed StartStopEventHandler extends [mscorlib]System.Delegate

 { .method public specialname rtspecialname instance void .ctor(object Instance,

 native int Method) runtime managed {}

 .method public virtual void Invoke(int32 action) runtime managed {}

 .method public virtual class [mscorlib]System.IAsyncResult

 BeginInvoke(int32 action, class [mscorlib]System.AsyncCallback callback,

 object Instance) runtime managed {}

 .method public virtual void EndInvoke(class

 [mscorlib]System.IAsyncResult result) runtime managed {}

}

end example]

As with any class, an instance is created using the newobj instruction in conjunction with the instance
constructor. The first argument to the constructor shall be the object on which the method is to be called, or it

shall be null if the method is a static method. The second argument shall be a method pointer to a method on

the corresponding class and with a signature that matches that of the delegate class being instantiated.

14.6.1 Delegate signature compatibi l i ty

Delegates can only be bound to target methods where the signatures of the delegate and the target method are

compatible. Compatibility is determined by examining the parameter types, return type and calling convention.

(Custom modifiers are not considered significant and do not impact compatibility.)

For a delegate and target method to be compatible, the calling conventions shall match exactly.

For a delegate and target method to be compatible, the parameter types shall be compatible per the following

rules:

Partition%20IV%20Library.doc
Partition%20III%20CIL.doc
Partition%20IV%20Library.doc

74 Partition II

Use D and T to denote the types of parameters to a delegate and a target method (respectively), use D := T to

indicate that the types of the parameters are compatible, use D != T to indicate the types of the parameters are

incompatible, use D[] to indicate an array of type D, and for instantiation D of generic type G<V> use VD to

indicate the type parameter used for V.

1. [:= is reflexive] For all parameter types D, D := D.

2. [:= is transitive] For all parameter types D, T and U, if D := U and U := T then D := T.
3. D := T if T is the base class of D or an interface implemented by D and D is not a value type

(includes primitives, pointers, function pointers)

4. D := T if D and T are both interfaces and the implementation of D requires the implementation

of T.

5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a

vector and both have the same rank.

6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling

convention, custom modifiers) are compatible per these rules.

7. D := T if D and T are instantiations of the generic type G<+V> and VD is a subtype of VT.

8. D := T if D and T are instantiations of the generic type G<-V> and V
T
 is a subtype of V

D
.

9. D := T if D and T are instantiations of the generic type G<V> and VD == VT.

10. Otherwise, D != T.

For a delegate and target method to be compatible, the return type shall be compatible per the following rules:

Use D and T to denote the return type of a delegate and a target method (respectively), use D := T to indicate

that the return types are compatible, use D !:= T to indicate that the return types are incompatible, use D[] to

indicate an array of type D, and for instantiation D of generic type G<V> use VD to indicate the type parameter

used for V.

1. [:= is reflexive] For all return types D, D := D.

2. [:= is transitive] For all return types D, T and U, if D := U and U := T then D := U.

3. D := T if D is the base class of T or an interface implemented by T and T is not a value type

(includes primitives, pointers, function pointers)

4. D := T if D and T are both interfaces and the implementation of T requires the implementation

of D.
5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a

vector and both have the same rank.

6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling

convention, custom modifiers) are compatible per these rules.

7. D := T if D and T are instantiations of the generic type G<+V> and VT is a subtype of VD.

8. D := T if D and T are instantiations of the generic type G<-V> and VD is a subtype of VT.

9. D := T if D and T are instantiations of the generic type G<V> and VD == VT.

10. Otherwise D != T.

14.6.2 Synchronous cal ls to delegates

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the

virtual method named Invoke on the delegate. The delegate itself is the first argument to this call (it serves as

the this pointer), followed by the other arguments as specified in the signature. When this call is made, the
caller shall block until the called method returns. The called method shall be executed on the same thread as the

caller.

[Example: Continuing the previous example, define a class Test that declares a method, onStartStop,

appropriate for use as the target for the delegate.

 Partition II 75

.class public Test

{ .field public int32 MyData

 .method public void onStartStop(int32 action)

 { ret // put your code here

 }

 .method public specialname rtspecialname

 instance void .ctor(int32 Data)

 { ret // call base class constructor, store state, etc.

 }

}

Then define a main program. This one constructs an instance of Test and then a delegate that targets the

onStartStop method of that instance. Finally, call the delegate.

.method public static void Start()

{ .maxstack 3

 .entrypoint

 .locals (class StartStopEventHandler DelegateOne,

 class Test InstanceOne)

 // Create instance of Test class

 ldc.i4.1

 newobj instance void Test::.ctor(int32)

 stloc InstanceOne

 // Create delegate to onStartStop method of that class

 ldloc InstanceOne

 ldftn instance void Test::onStartStop(int32)

 newobj void StartStopEventHandler::.ctor(object, native int)

 stloc DelegateOne

 // Invoke the delegate, passing 100 as an argument

 ldloc DelegateOne

 ldc.i4 100

 callvirt instance void StartStopEventHandler::Invoke(int32)

 ret

}

Note that the example above creates a delegate to a non-virtual function. If onStartStop had been a virtual

function, use the following code sequence instead:

ldloc InstanceOne

dup

ldvirtftn instance void Test::onStartStop(int32)

newobj void StartStopEventHandler::.ctor(object, native int)

stloc DelegateOne

// Invoke the delegate, passing 100 as an argument

ldloc DelegateOne

end example]

[Note: The code sequence above shall use dup – not ldloc InstanceOne twice. The dup code sequence is
easily recognized as type-safe, whereas alternatives would require more complex analysis. Verifiability of

code is discussed in Partition III end note]

14.6.3 Asynchr onous cal ls to delegates

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the

method to return. The called method shall be executed on a separate thread.

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used.

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected. The callee

thread continues execution and terminates silently

Note: the callee can throw exceptions. Any unhandled exception propagates to the caller via the EndInvoke

method.

Partition%20III%20CIL.doc

76 Partition II

14.6.3.1 The BeginInvoke method

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method.

BeginInvoke is similar to the Invoke method (§14.6.1), but has two differences:

 It has two additional parameters, appended to the list, of type System.AsyncCallback, and

System.Object.

 The return type of the method is System.IAsyncResult.

Although the BeginInvoke method therefore includes parameters that represent return values, these values are

not updated by this method. The results instead are obtained from the EndInvoke method (see below).

Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call

has been completed. The CLI provides two such mechanisms. The first is through the result returned from the

call. This object, an instance of the interface System.IAsyncResult, can be used to wait for the result to be

computed, it can be queried for the current status of the method call, and it contains the System.Object value

that was passed to the call to BeginInvoke. See Partition IV.

The second mechanism is through the System.AsyncCallback delegate passed to BeginInvoke. The VES

shall call this delegate when the value is computed or an exception has been raised indicating that the result will

not be available. The value passed to this callback is the same value passed to the call to BeginInvoke. A

value of null can be passed for System.AsyncCallback to indicate that the VES need not provide the callback.

[Rationale: This model supports both a polling approach (by checking the status of the returned

System.IAsyncResult) and an event-driven approach (by supplying a System.AsyncCallback) to

asynchronous calls. end rationale]

A synchronous call returns information both through its return value and through output parameters. Output

parameters are represented in the CLI as parameters with managed pointer type. Both the returned value and

the values of the output parameters are not available until the VES signals that the asynchronous call has

completed successfully. They are retrieved by calling the EndInvoke method on the delegate that began the

asynchronous call.

14.6.3.2 The EndInvoke method

The EndInvoke method can be called at any time after BeginInvoke. It shall suspend the thread that calls it

until the asynchronous call completes. If the call completes successfully, EndInvoke will return the value that
would have been returned had the call been made synchronously, and its managed pointer arguments will point

to values that would have been returned to the out parameters of the synchronous call.

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different

calls to the same delegate can be distinguished, since they can execute concurrently) as well as any managed

pointers that were passed as arguments (so their return values can be provided).

Partition%20IV%20Library.doc

 Partition II 77

15 Defining, referencing, and calling methods

Methods can be defined at the global level (outside of any type):

Decl ::= …

 | .method MethodHeader „{‟ MethodBodyItem* „}‟

as well as inside a type:

ClassMember ::= …

 | .method MethodHeader „{‟ MethodBodyItem* „}‟

15.1 Method descriptors

There are four constructs in ILAsm connected with methods. These correspond with different metadata

constructs, as described in §23.

15.1.1 Method declarations

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types),

but not its body. That is, a method declaration provides a MethodHeader but no MethodBodyItems. These are

used at call sites to specify the call target (call or callvirt instructions, see Partition III) or to declare an abstract
method. A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a

MethodRef.

15.1.2 Method definit ions

A Method, or method definition, supplies the method name, attributes, signature, and body. That is, a method

definition provides a MethodHeader as well as one or more MethodBodyItems. The body includes the method's

CIL instructions, exception handlers, local variable information, and additional runtime or custom metadata

about the method. See §10.

15.1.3 Method references

A MethodRef, or method reference, is a reference to a method. It is used when a method is called and that

method‘s definition lies in another module or assembly. A MethodRef shall be resolved by the VES into a

Method before the method is called at runtime. If a matching Method cannot be found, the VES shall throw a

System.MissingMethodException. See §22.25.

15.1.4 Method imple mentations

A MethodImpl, or method implementation, supplies the executable body for an existing virtual method. It

associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method). A

MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an

interface when the default mechanism (matching by name and signature) would not provide the correct result.

See §22.27.

15.2 Static, instance, and v irtual methods

Static methods are methods that are associated with a type, not with its instances.

Instance methods are associated with an instance of a type: within the body of an instance method it is possible

to reference the particular instance on which the method is operating (via the this pointer). It follows that

instance methods shall only be defined in classes or value types, but not in interfaces or outside of a type (i.e.,

globally). However, notice

1. Instance methods on classes (including boxed value types), have a this pointer that is by default

an object reference to the class on which the method is defined.

Partition%20III%20CIL.doc

78 Partition II

2. Instance methods on (unboxed) value types, have a this pointer that is by default a managed

pointer to an instance of the type on which the method is defined.

3. There is a special encoding (denoted by the syntactic item explicit in the calling convention,

see §15.3) to specify the type of the this pointer, overriding the default values specified here.

4. The this pointer can be null.

Virtual methods are associated with an instance of a type in much the same way as for instance methods.

However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation

of the method shall be chosen at runtime by the VES depending upon the type of object used for the this

pointer. The particular Method that implements a virtual method is determined dynamically at runtime (a

virtual call) when invoked via the callvirt instruction; whilst the binding is decided at compile time when

invoked via the call instruction (see Partition III).

With virtual calls (only), the notion of inheritance becomes important. A derived class can override a virtual

method inherited from its base classes, providing a new implementation of the method. The method attribute

newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat
the new definition as an independent virtual method definition.

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with

a callvirt instruction. Similarly, the address of an abstract virtual method shall be computed with the ldvirtftn

instruction, and the ldftn instruction shall not be used.

[Rationale: With a concrete virtual method there is always an implementation available from the class that

contains the definition, thus there is no need at runtime to have an instance of a class available. Abstract virtual

methods, however, receive their implementation only from a subtype or a class that implements the appropriate

interface, hence an instance of a class that actually implements the method is required. end rationale]

15.3 Calling convention

CallConv ::= [instance [explicit]] [CallKind]

A calling convention specifies how a method expects its arguments to be passed from the caller to the called

method. It consists of two parts: the first deals with the existence and type of the this pointer, while the second

relates to the mechanism for transporting the arguments.

If the attribute instance is present, it indicates that a this pointer shall be passed to the method. This

attribute shall be used for both instance and virtual methods.

Normally, a parameter list (which always follows the calling convention) does not provide information about

the type of the this pointer, since this can be deduced from other information. When the combination

instance explicit is specified, however, the first type in the subsequent parameter list specifies the type

of the this pointer and subsequent entries specify the types of the parameters themselves.

CallKind ::=

 default

| unmanaged cdecl

| unmanaged fastcall

| unmanaged stdcall

| unmanaged thiscall

| vararg

Managed code shall have only the default or vararg calling kind. default shall be used in all cases

except when a method accepts an arbitrary number of arguments, in which case vararg shall be used.

Partition%20III%20CIL.doc

 Partition II 79

When dealing with methods implemented outside the CLI it is important to be able to specify the calling

convention required. For this reason there are 16 possible encodings of the calling kind. Two are used for the

managed calling kinds. Four are reserved with defined meaning across many platforms, as follows:

 unmanaged cdecl is the calling convention used by Standard C

 unmanaged stdcall specifies a standard C++ call

 unmanaged fastcall is a special optimized C++ calling convention

 unmanaged thiscall is a C++ call that passes a this pointer to the method

Four more are reserved for existing calling conventions, but their use is not maximally portable. Four more are

reserved for future standardization, and two are available for non-standard experimental use.

(In this context, "portable" means a feature that is available on all conforming implementations of the CLI.)

15.4 Defining methods

MethodHeader ::=

 MethAttr* [CallConv] Type

 [marshal „(‟ [NativeType] „)‟]

 MethodName [„<‟ GenPars„>‟] „(‟ Parameters „)‟ ImplAttr*

The method head (see also §10) consists of

 the calling convention (CallConv, see §15.3)

 any number of predefined method attributes (MethAttr, see §15.4.1.5)

 a return type with optional attributes

 optional marshalling information (§7.4)

 a method name

 optional generic parameters (when defining generic methods, see §10.1.7)

 a signature

 and any number of implementation attributes (ImplAttr, see §15.4.3)

Methods that do not have a return value shall use void as the return type.

MethodName ::=

 .cctor

| .ctor

| DottedName

Method names are either simple names or the special names used for instance constructors and type initializers.

Parameters ::= [Param [„,‟ Param]*]

Param ::=

 ...

| [ParamAttr*] Type [marshal „(‟ [NativeType] „)‟] [Id]

80 Partition II

The Id, if present, is the name of the parameter. A parameter can be referenced either by using its name or the

zero-based index of the parameter. In CIL instructions it is always encoded using the zero-based index (the

name is for ease of use in ILAsm).

Note that, in contrast to calling a vararg method, the definition of a vararg method does not include any

ellipsis (―…‖)

ParamAttr ::=

 „[‟ in „]‟

| „[‟ opt „]‟

| „[‟ out „]‟

The parameter attributes shall be attached to the parameters (§22.33) and hence are not part of a method

signature.

[Note: Unlike parameter attributes, custom modifiers (modopt and modreq) are part of the signature. Thus,

modifiers form part of the method‘s contract while parameter attributes do not. end note]

in and out shall only be attached to parameters of pointer (managed or unmanaged) type. They specify

whether the parameter is intended to supply input to the method, return a value from the method, or both. If

neither is specified in is assumed. The CLI itself does not enforce the semantics of these bits, although they

can be used to optimize performance, especially in scenarios where the call site and the method are in different

application domains, processes, or computers.

opt specifies that this parameter is intended to be optional from an end-user point of view. The value to be

supplied is stored using the .param syntax (§15.4.1.4).

15.4.1 Method body

The method body shall contain the instructions of a program. However, it can also contain labels, additional

syntactic forms and many directives that provide additional information to ilasm and are helpful in the

compilation of methods of some languages.

MethodBodyItem ::= Description Clause

 .custom CustomDecl Definition of custom attributes. 21

| .data DataDecl Emits data to the data section 16.3

| .emitbyte Int32 Emits an unsigned byte to the code section

of the method.

15.4.1.1

| .entrypoint Specifies that this method is the entry point

to the application (only one such method is

allowed).

15.4.1.2

| .locals [init]

 „(‟ LocalsSignature „)‟

Defines a set of local variables for this

method.

15.4.1.3

| .maxstack Int32 The int32 specifies the maximum number

of elements on the evaluation stack during

the execution of the method.

15.4.1

| .override TypeSpec „::‟ MethodName Use current method as the implementation

for the method specified.

10.3.2

| .override method CallConv Type

TypeSpec „::‟ MethodName GenArity „(‟

Parameters „)‟

Use current method as the implementation

for the method specified.

10.3.2

 Partition II 81

MethodBodyItem ::= Description Clause

| .param „[‟ Int32 „]‟ [„=‟ FieldInit] Store a constant FieldInit value for

parameter Int32

15.4.1.4

| .param type „[‟ Int32 „]‟ Specifies a type parameter for a generic

method

15.4.1.5

| ExternSourceDecl .line or #line 5.7

| Instr An instruction Partition VI

| Id „:‟ A label 5.4

| ScopeBlock Lexical scope of local variables 15.4.4

| SecurityDecl .permission or .permissionset 20

| SEHBlock An exception block 19

15.4.1.1 The .emitbyte directive

MethodBodyItem ::= …

 | .emitbyte Int32

This directive causes an unsigned 8-bit value to be emitted directly into the CIL stream of the method, at the

point at which the directive appears.

[Note: The .emitbyte directive is used for generating tests. It is not required in generating regular

programs. end note]

15.4.1.2 The .entrypoint directive

MethodBodyItem ::= …

 | .entrypoint

The .entrypoint directive marks the current method, which shall be static, as the entry point to an

application. The VES shall call this method to start the application. An executable shall have exactly one entry

point method. This entry point method can be a global method or it can appear inside a type. (The effect of the

directive is to place the metadata token for this method into the CLI header of the PE file)

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings,

the strings shall represent the arguments to the executable, with index 0 containing the first argument. The
mechanism for specifying these arguments is platform-specific and is not specified here.

The return type of the entry point method shall be void, int32, or unsigned int32. If an int32 or

unsigned int32 is returned, the executable can return an exit code to the host environment. A value of 0

shall indicate that the application terminated ordinarily.

The accessibility of the entry point method shall not prevent its use in starting execution. Once started the VES

shall treat the entry point as it would any other method.

The entry point method cannot be defined in a generic class.

 [Example: The following prints the first argument and returns successfully to the operating system:

Partition%20VI%20Annexes.doc
Partition%20V%20Annexes.doc#_ilasmGrammar
Partition%20V%20Annexes.doc#_ilasmGrammar

82 Partition II

.method public static int32 MyEntry(string[] s) cil managed

{ .entrypoint

 .maxstack 2

 ldarg.0 // load and print the first argument

 ldc.i4.0

 ldelem.ref

 call void [mscorlib]System.Console::WriteLine(string)

 ldc.i4.0 // return success

 ret

}

end example]

15.4.1.3 The . locals directive

The .locals statement declares one or more local variables (see Partition I) for the current method.

MethodBodyItem ::= …

 | .locals [init] „(‟ LocalsSignature „)‟

LocalsSignature ::= Local [„,‟ Local]*

Local ::= Type [Id]

If present, the Id is the name of the corresponding local variable.

If init is specified, the variables are initialized to their default values according to their type: reference types

are initialized to null and value types are zeroed out.

[Note: Verifiable methods shall include the init keyword. See Partition III. end note]

[Example: The following declares 4 local variables, each of which is to be initialized to its default value:

.locals init (int32 i, int32 j, float32 f, int64[] vect)

end example]

15.4.1.4 The .param directive

MethodBodyItem ::= …

 | .param „[‟ Int32 „]‟ [„=‟ FieldInit]

This directive stores in the metadata a constant value associated with method parameter number Int32,

see §22.9. While the CLI requires that a value be supplied for the parameter, some tools can use the presence

of this attribute to indicate that the tool rather than the user is intended to supply the value of the parameter.

Unlike CIL instructions, .param uses index 0 to specify the return value of the method, index 1 to specify the

first parameter of the method, index 2 to specify the second parameter of the method, and so on.

[Note: The CLI attaches no semantic whatsoever to these values—it is entirely up to compilers to implement

any semantic they wish (e.g., so-called default argument values). end note]

15.4.1.5 The .param type directive

MethodBodyItem ::= …

 | .param type „[‟ Int32 „]‟

This directive allows type parameters for a generic type or method to be specified. Int32 is the 1-based ordinal

of the type or method parameter to which the directive applies. [Note: This directive is used in conjunction with

a .custom directive to associate a custom attribute with a type parameter. end note]

Partition%20I%20Architecture.doc
Partition%20III%20CIL.doc

 Partition II 83

When a .param type directive is used within class scope, it refers to a type parameter of that class. When the

directive is used within method scope inside a class definition, it refers to a type parameter of that method.

Otherwise, the program is ill-formed.

[Example:

.class public G<T,U> {

 .param type [1] // refers to T

 .custom instance void TypeParamAttribute::.ctor() = (01 00 ...)

 .method public void Foo<M>(!!0 m) {

 .param type [1] // refers to M

 .custom instance void AnotherTypeParamAttribute::.ctor() = (01 00 ...)

 …

 }

 …

}

end example]

15.4.2 Predefined attr ibutes on methods

MethAttr ::= Description Clause

 abstract The method is abstract (shall also be

virtual).

15.4.2.4

| assembly Assembly accessibility 15.4.2.1

| compilercontrolled Compiler-controlled accessibility. 15.4.2.1

| famandassem Family and Assembly accessibility 15.4.2.1

| family Family accessibility 15.4.2.1

| famorassem Family or Assembly accessibility 15.4.2.1

| final This virtual method cannot be overridden by

derived classes.

15.4.2.2

| hidebysig Hide by signature. Ignored by the runtime. 15.4.2.2

| newslot Specifies that this method shall get a new slot

in the virtual method table.

15.4.2.3

| pinvokeimpl „(‟

 QSTRING [as QSTRING]

 PinvAttr* „)‟

Method is actually implemented in native

code on the underlying platform

15.4.2.5

| private Private accessibility 15.4.2.1

| public Public accessibility. 15.4.2.1

| rtspecialname The method name needs to be treated in a

special way by the runtime.

15.4.2.6

| specialname The method name needs to be treated in a

special way by some tool.

15.4.2.6

| static Method is static. 15.4.2.2

| virtual Method is virtual. 15.4.2.2

| strict Check accessibility on override 15.4.2.2

The following combinations of predefined attributes are invalid:

 static combined with any of final, newslot, or virtual

84 Partition II

 abstract combined with any of final or pinvokeimpl

 compilercontrolled combined with any of final, rtspecialname, specialname, or

virtual

15.4.2.1 Accessibi l i ty information

MethAttr ::= …

| assembly

| compilercontrolled

| famandassem

| family

| famorassem

| private

| public

Only one of these attributes shall be applied to a given method. See Partition I.

15.4.2.2 Method contract attr ibutes

MethAttr ::= …

| final

| hidebysig

| static

| virtual

| strict

These attributes can be combined, except a method shall not be both static and virtual; only virtual

methods shall be final or strict; and abstract methods shall not be final.

final methods shall not be overridden by derived classes of this type.

hidebysig is supplied for the use of tools and is ignored by the VES. It specifies that the declared method

hides all methods of the base class types that have a matching method signature; when omitted, the method

should hide all methods of the same name, regardless of the signature.

[Rationale: Some languages (such as C++) use a hide-by-name semantics while others (such as C#, Java™) use

a hide-by-name-and-signature semantics. end rationale]

static and virtual are described in §15.2.

strict virtual methods can only be overridden if they are also accessible. See §23.1.10.

15.4.2.3 Overriding behavior

MethAttr ::= …

 | newslot

newslot shall only be used with virtual methods. See 10.3.

Partition%20I%20Architecture.doc

 Partition II 85

15.4.2.4 Method attr ibutes

MethAttr ::= …

 | abstract

abstract shall only be used with virtual methods that are not final. It specifies that an implementation

of the method is not provided but shall be provided by a derived class. abstract methods shall only appear

in abstract types (§10.1.4).

15.4.2.5 Interoperation attr ibutes

MethAttr ::= …

 | pinvokeimpl „(‟ QSTRING [as QSTRING] PinvAttr* „)‟

See §15.5.2and §22.20.

15.4.2.6 Special handling attr ibutes

MethAttr ::= …

 | rtspecialname

 | specialname

The attribute rtspecialname specifies that the method name shall be treated in a special way by the

runtime. Examples of special names are .ctor (object constructor) and .cctor (type initializer).

specialname indicates that the name of this method has special meaning to some tools.

15.4.3 Implementati on attr ibutes of methods

ImplAttr ::= Description Clause

 cil The method contains standard CIL code. 15.4.3.1

| forwardref The body of this method is not specified

with this declaration.

15.4.3.3

| internalcall Denotes the method body is provided by

the CLI itself

15.4.3.3

| managed The method is a managed method. 15.4.3.2

| native The method contains native code. 15.4.3.1

| noinlining The runtime shall not expand the method

inline.

15.4.3.3

| nooptimization The runtime shall not optimize the

method when generating native code.

15.4.3.3

| runtime The body of the method is not defined,

but is produced by the runtime.

15.4.3.1

| synchronized The method shall be executed in a single

threaded fashion.

15.4.3.3

| unmanaged Specifies that the method is unmanaged. 15.4.3.2

15.4.3.1 Code implementati on attr ibutes

ImplAttr ::= …

86 Partition II

 | cil

 | native

 | runtime

These attributes are mutually exclusive; they specify the type of code the method contains.

cil specifies that the method body consists of cil code. Unless the method is declared abstract, the body of

the method shall be provided if cil is used.

native specifies that a method was implemented using native code, tied to a specific processor for which it

was generated. native methods shall not have a body but instead refer to a native method that declares the

body. Typically, the PInvoke functionality (§15.5.2) of the CLI is used to refer to a native method.

runtime specifies that the implementation of the method is automatically provided by the runtime and is

primarily used for the methods of delegates (§14.6).

15.4.3.2 Managed or unmanaged

ImplAttr ::= …

 | managed

 | unmanaged

These shall not be combined. Methods implemented using CIL are managed. unmanaged is used primarily

with PInvoke (§15.5.2).

15.4.3.3 Implementati on informati on

ImplAttr ::= …

 | forwardref

 | internalcall

 | noinlining

 | nooptimization

 | synchronized

These attributes can be combined.

forwardref specifies that the body of the method is provided elsewhere. This attribute shall not be present

when an assembly is loaded by the VES. It is used for tools (like a static linker) that will combine separately

compiled modules and resolve the forward reference.

internalcall specifies that the method body is provided by this CLI (and is typically used by low-level

methods in a system library). It shall not be applied to methods that are intended for use across

implementations of the CLI.

noinlining specifies that the body of this method should not be included into the code of any caller

methods, by a CIL-to-native-code compiler; it shall be kept as a separate routine.

nooptimization specifies that a CIL-to-native-code compiler should not perform code optimizations.

[Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (e.g.,

displaying stack traces) and profiling. It also provides a mechanism for the programmer to override the default

heuristics a CIL-to-native-code compiler uses for inlining. end rationale]

synchronized specifies that the whole body of the method shall be single-threaded. If this method is an

instance or virtual method, a lock on the object shall be obtained before the method is entered. If this method is

a static method, a lock on the closed type shall be obtained before the method is entered. If a lock cannot be

 Partition II 87

obtained, the requesting thread shall not proceed until it is granted the lock. This can cause deadlocks. The lock

is released when the method exits, either through a normal return or an exception. Exiting a synchronized

method using a tail. call shall be implemented as though the tail. had not been specified. noinlining

specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call
instruction with the body of the called method. This can be done by the runtime for optimization purposes.

15.4.4 Scope bl ocks

 ScopeBlock ::= „{‟ MethodBodyItem* „}‟

A ScopeBlock is used to group elements of a method body together. For example, it is used to designate the

code sequence that constitutes the body of an exception handler.

15.4.5 vararg methods

vararg methods accept a variable number of arguments. They shall use the vararg calling convention

(§15.3).

At each call site, a method reference shall be used to describe the types of the fixed and variable arguments that

are passed. The fixed part of the argument list shall be separated from the additional arguments with an ellipsis

(see Partition I). [Note: The method reference is represented by either a MethodRef (§22.25) or MethodDef

(§22.26). A MethodRef might be needed even if the method is defined in the same assembly, because the

MethodDef only describes the fixed part of the argument list. If the call site does not pass any additional

arguments, then it can use the MethodDef for vararg methods defined in the same assembly. end note]

The vararg arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction

arglist (see Partition III). The handle can be used to create an instance of the value type System.ArgIterator
which provides a type-safe mechanism for accessing the arguments (see Partition IV).

[Example: The following example shows how a vararg method is declared and how the first vararg

argument is accessed, assuming that at least one additional argument was passed to the method:

.method public static vararg void MyMethod(int32 required) {

 .maxstack 3

 .locals init (valuetype [mscorlib]System.ArgIterator it, int32 x)

 ldloca it // initialize the iterator

 initobj valuetype [mscorlib]System.ArgIterator

 ldloca it

 arglist // obtain the argument handle

 call instance void [mscorlib]System.ArgIterator::.ctor(valuetype

 [mscorlib]System.RuntimeArgumentHandle) // call constructor of iterator

 /* argument value will be stored in x when retrieved, so load

 address of x */

 ldloca x

 ldloca it

 // retrieve the argument, the argument for required does not matter

 call instance typedref [mscorlib]System.ArgIterator::GetNextArg()

 call object [mscorlib]System.TypedReference::ToObject(typedref) /* retrieve

the

 object */

 castclass [mscorlib]System.Int32 // cast and unbox

 unbox int32

 cpobj int32 // copy the value into x

 // first vararg argument is stored in x

 ret

}

end example]

Partition%20I%20Architecture.doc
Partition%20III%20CIL.doc
Partition%20IV%20Library.doc

88 Partition II

15.5 Unmanaged methods

In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-

existing native code from the underlying platform, known as unmanaged code. These facilities are, by

necessity, platform-specific and hence are only partially specified here.

This Standard specifies:

 A mechanism in the file format for providing function pointers to managed code that can be called

from unmanaged code (§15.5.1).

 A mechanism for marking certain method definitions as being implemented in unmanaged code

(called platform invoke, see §15.5.2).

 A mechanism for marking call sites used with method pointers to indicate that the call is to an

unmanaged method (§15.5.3).

 A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on

all implementations of the CLI (§15.5.4). The set of types is extensible through the use of custom

attributes and modifiers, but these extensions are platform-specific.

15.5.1 Method transit ion thunks

[Note: As this mechanism is not part of the Kernel Profile, it might not be present in all conforming

implementations of the CLI. See Partition IV. end note]

In order to call managed code from unmanaged code, some platforms require a specific transition sequence to

be performed. In addition, some platforms require that the representation of data types be converted (data

marshaling). Both of these problems are solved by the .vtfixup directive. This directive can appear several

times, but only at the top level of a CIL assembly file, as shown by the following grammar:

Decl ::= Clause

 .vtfixup VTFixupDecl

| … 5.10

The .vtfixup directive declares that at a certain memory location there is a table that contains metadata

tokens referring to methods that shall be converted into method pointers. The CLI will do this conversion

automatically when the file containing the .vtfixup directive is loaded into memory for execution. The

declaration specifies the number of entries in the table, the kind of method pointer that is required, the width of

an entry in the table, and the location of the table:

VTFixupDecl ::=

 [Int32] VTFixupAttr* at DataLabel

VTFixupAttr ::=

 fromunmanaged

| int32

| int64

The attributes int32 and int64 are mutually exclusive, with int32 being the default. These attributes

specify the width of each slot in the table. Each slot contains a 32-bit metadata token (zero-padded if the table

has 64-bit slots), and the CLI converts it into a method pointer of the same width as the slot.

If fromunmanaged is specified, the CLI will generate a thunk that will convert the unmanaged method call

to a managed call, call the method, and return the result to the unmanaged environment. The thunk will also

perform data marshalling in the platform-specific manner described for platform invoke.

Partition%20IV%20Library.doc

 Partition II 89

The ILAsm syntax does not specify a mechanism for creating the table of tokens, but a compiler can simply

emit the tokens as byte literals into a block specified using the .data directive.

15.5.2 Platfor m invoke

Methods defined in native code can be invoked using the platform invoke (also know as PInvoke or p/invoke)

functionality of the CLI. Platform invoke will switch from managed to unmanaged state and back, and also

handle necessary data marshalling. Methods that need to be called using PInvoke are marked as

pinvokeimpl. In addition, the methods shall have the implementation attributes native and unmanaged

(§15.4.2.4).

MethAttr ::= Description Clause

 pinvokeimpl „(‟ QSTRING [as QSTRING]

PinvAttr* „)‟

Implemented in native code

| … 15.4.1.5

The first quoted string is a platform-specific description indicating where the implementation of the method is

located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the

method). The second (optional) string is the name of the method as it exists on that platform, since the

platform can use name-mangling rules that force the name as it appears to a managed program to differ from

the name as seen in the native implementation (this is common, for example, when the native code is generated

by a C++ compiler).

Only static methods, defined at global scope (i.e., outside of any type), can be marked pinvokeimpl. A

method declared with pinvokeimpl shall not have a body specified as part of the definition.

PinvAttr ::= Description (platform-specific, suggestion only)

 ansi ANSI character set.

| autochar Determine character set automatically.

| cdecl Standard C style call

| fastcall C style fastcall.

| stdcall Standard C++ style call.

| thiscall The method accepts an implicit this pointer.

| unicode Unicode character set.

| platformapi Use call convention appropriate to target platform.

The attributes ansi, autochar, and unicode are mutually exclusive. They govern how strings will be

marshaled for calls to this method: ansi indicates that the native code will receive (and possibly return) a

platform-specific representation that corresponds to a string encoded in the ANSI character set (typically this

would match the representation of a C or C++ string constant); autochar indicates a platform-specific

representation that is ―natural‖ for the underlying platform; and unicode indicates a platform-specific

representation that corresponds to a string encoded for use with Unicode methods on that platform.

The attributes cdecl, fastcall, stdcall, thiscall, and platformapi are mutually exclusive.

They are platform-specific and specify the calling conventions for native code.

 [Example: The following shows the declaration of the method MessageBeep located in the Microsoft

Windows™ DLL user32.dll:

.method public static pinvokeimpl("user32.dll" stdcall) int8

 MessageBeep(unsigned int32) native unmanaged {}

end example]

90 Partition II

15.5.3 Method cal ls via function pointers

Unmanaged methods can also be called via function pointers. There is no difference between calling managed

or unmanaged methods with pointers. However, the unmanaged method needs to be declared with

pinvokeimpl as described in §15.5.2. Calling managed methods with function pointers is described

in §14.5.

15.5.4 Data type marshal ing

While data type marshaling is necessarily platform-specific, this Standard specifies a minimum set of data

types that shall be supported by all conforming implementations of the CLI. Additional data types can be

supported in a platform-specific manner, using custom attributes and/or custom modifiers to specify any special

handling required on the particular implementation.

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type

to which they conform is implementation-specific:

 All integer data types (int8, int16, unsigned int8, bool, char, etc.) including the

native integer types.

 Enumerations, as their underlying data type.

 All floating-point data types (float32 and float64), if they are supported by the CLI

implementation for managed code.

 The type string.

 Unmanaged pointers to any of the above types.

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but

need not be supported in the reverse direction (i.e., as return types when calling unmanaged methods or as

parameters when calling from unmanaged methods into managed methods):

 One-dimensional zero-based arrays of any of the above

 Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it

should not be assumed that marshaling a delegate will produce a function pointer that can be used

directly from unmanaged code).

Finally, the type System.Runtime.InteropServices.GCHandle can be used to marshal an object to unmanaged

code. The unmanaged code receives a platform-specific data type that can be used as an ―opaque handle‖ to a

specific object. See Partition IV.

Partition%20IV%20Library.doc

 Partition II 91

16 Defining and referencing fields

Fields are typed memory locations that store the data of a program. The CLI allows the declaration of both

instance and static fields. While static fields are associated with a type, and are shared across all instances of

that type, instance fields are associated with a particular instance of that type. Once instantiated, an instance

has its own copy of each instance field.

The CLI also supports global fields, which are fields declared outside of any type definition. Global fields shall

be static.

A field is defined by the .field directive: (§22.15)

Field ::= .field FieldDecl

FieldDecl ::=

 [„[‟ Int32 „]‟] FieldAttr* Type Id [„=‟ FieldInit | at DataLabel]

The FieldDecl has the following parts:

 An optional integer specifying the byte offset of the field within an instance (§10.7). If present,

the type containing this field shall have the explicit layout attribute. An offset shall not be

supplied for global or static fields.

 Any number of field attributes (§16.2).

 Type.

 Name.

 Optionally, either a FieldInit clause (§16.2) or a DataLabel (§5.4) clause.

Global fields shall have a data label associated with them. This specifies where, in the PE file, the data for that

field is located. Static fields of a type can, but need not, be assigned a data label.

[Example:

.field private class [.module Counter.dll]Counter counter

.field public static initonly int32 pointCount

.field private int32 xOrigin

.field public static int32 count at D_0001B040

end example]

16.1 Attributes of fie lds

Attributes of a field specify information about accessibility, contract information, interoperation attributes, as

well as information on special handling.

The following subclauses contain additional information on each group of predefined attributes of a field.

FieldAttr ::= Description Clause

 assembly Assembly accessibility. 16.1.1

| famandassem Family and Assembly accessibility. 16.1.1

| family Family accessibility. 16.1.1

| famorassem Family or Assembly accessibility. 16.1.1

| initonly Marks a constant field. 16.1.2

| literal Specifies metadata field. No memory is allocated

at runtime for this field.

16.1.2

92 Partition II

FieldAttr ::= Description Clause

| marshal „(‟ NativeType „)‟ Marshaling information. 16.1.3

| notserialized Reserved (indicates this field is not to be

serialized).

16.1.2

| private Private accessibility. 16.1.1

| compilercontrolled Compiler controlled accessibility. 16.1.1

| public Public accessibility. 16.1.1

| rtspecialname Special treatment by runtime. 16.1.4

| specialname Special name for other tools. 16.1.4

| static Static field. 16.1.2

16.1.1 Accessibi l i ty information

The accessibility attributes are assembly, famandassem, family, famorassem, private,

compilercontrolled, and public. These attributes are mutually exclusive.

Accessibility attributes are described in §8.2.

16.1.2 Field contract attr ibutes

Field contract attributes are initonly, literal, static and notserialized. These attributes can be

combined; however, only static fields shall be literal. The default is an instance field that can be

serialized.

static specifies that the field is associated with the type itself rather than with an instance of the type. Static

fields can be accessed without having an instance of a type, e.g., by static methods. As a consequence, within
an application domain, a static field is shared between all instances of a type, and any modification of this field

will affect all instances. If static is not specified, an instance field is created.

initonly marks fields which are constant after they are initialized. These fields shall only be mutated inside

a constructor. If the field is a static field, then it shall be mutated only inside the type initializer of the type in

which it was declared. If it is an instance field, then it shall be mutated only in one of the instance constructors

of the type in which it was defined. It shall not be mutated in any other method or in any other constructor,

including constructors of derived classes.

[Note: The use of ldflda or ldsflda on an initonly field makes code unverifiable. In unverifiable code, the

VES need not check whether initonly fields are mutated outside the constructors. The VES need not report

any errors if a method changes the value of a constant. However, such code is not valid. end note]

literal specifies that this field represents a constant value; such fields shall be assigned a value. In contrast

to initonly fields, literal fields do not exist at runtime. There is no memory allocated for them.

literal fields become part of the metadata, but cannot be accessed by the code. literal fields are

assigned a value by using the FieldInit syntax (§16.2).

[Note: It is the responsibility of tools generating CIL to replace source code references to the literal with its

actual value. Hence changing the value of a literal requires recompilation of any code that references the

literal. Literal values are, thus, not version-resilient. end note]

16.1.3 Interoperation attr ibutes

There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall

not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal and

specifies that the field‘s contents should be converted to and from a specified native data type when passed to

unmanaged code. Every conforming implementation of the CLI will have default marshaling rules as well as

restrictions on what automatic conversions can be specified using the marshal attribute. See also §15.5.4.

 Partition II 93

[Note: Marshaling of user-defined types is not required of all implementations of the CLI. It is specified in this

standard so that implementations which choose to provide it will allow control over its behavior in a consistent

manner. While this is not sufficient to guarantee portability of code that uses this feature, it does increase the

likelihood that such code will be portable. end note]

16.1.4 Other attributes

The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.

[Rationale: There are currently no field names that are required to be marked with rtspecialname. It is

provided for extensions, future standardization, and to increase consistency between the declaration of fields

and methods (instance and type initializer methods shall be marked with this attribute). By convention, the

single instance field of an enumeration is named ―value__‖ and marked with rtspecialname. end

rationale]

The attribute specialname indicates that the field name has special meaning to tools other than the runtime,

typically because it marks a name that has meaning for the CLS (see Partition I).

16.2 Field init metadata

The FieldInit metadata can optionally be added to a field declaration. The use of this feature shall not be
combined with a data label.

The FieldInit information is stored in metadata and this information can be queried from metadata. But the CLI

does not use this information to automatically initialize the corresponding fields. The field initializer is

typically used with literal fields (§16.1.2) or parameters with default values. See §22.9.

The following table lists the options for a field initializer. Note that while both the type and the field initializer

are stored in metadata there is no requirement that they match. (Any importing compiler is responsible for
coercing the stored value to the target field type). The description column in the table below provides

additional information.

FieldInit ::= Description

 bool „(‟ true | false „)‟ Boolean value, encoded as true or false

| bytearray „(‟ Bytes „)‟ String of bytes, stored without conversion. Can be

padded with one zero byte to make the total byte-count

an even number

| char „(‟ Int32 „)‟ 16-bit unsigned integer (Unicode character)

| float32 „(‟ Float64 „)‟ 32-bit floating-point number, with the floating-point

number specified in parentheses.

| float32 „(‟ Int32 „)‟ Int32 is binary representation of float

| float64 „(‟ Float64 „)‟ 64-bit floating-point number, with the floating-point

number specified in parentheses.

| float64 „(‟ Int64 „)‟ Int64 is binary representation of double

| [unsigned] int8 „(‟ Int32 „)‟ 8-bit integer with the value specified in parentheses.

| [unsigned] int16 „(‟ Int32 „)‟ 16-bit integer with the value specified in parentheses.

| [unsigned] int32 „(‟ Int32 „)‟ 32-bit integer with the value specified in parentheses.

| [unsigned] int64 „(‟ Int64 „)‟ 64-bit integer with the value specified in parentheses.

| QSTRING String. QSTRING is stored as Unicode

| nullref Null object reference

Partition%20I%20Architecture.doc

94 Partition II

[Example: The following shows a typical use of this:

.field public static literal valuetype ErrorCodes no_error = int8(0)

The field named no_error is a literal of type ErrorCodes (a value type) for which no memory is

allocated. Tools and compilers can look up the value and detect that it is intended to be an 8-bit signed integer

whose value is 0. end example]

16.3 Embedding data in a PE fi le

There are several ways to declare a data field that is stored in a PE file. In all cases, the .data directive is

used.

Data can be embedded in a PE file by using the .data directive at the top-level.

Decl ::= Clause

 .data DataDecl

| … 6.6

Data can also be declared as part of a type:

ClassMember ::= Clause

 .data DataDecl

| … 10.2

Yet another alternative is to declare data inside a method:

MethodBodyItem ::= Clause

 .data DataDecl

| … 15.4.1

16.3.1 Data declaration

A .data directive contains an optional data label and the body which defines the actual data. A data label

shall be used if the data is to be accessed by the code.

DataDecl ::= [DataLabel „=‟] DdBody

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an

array.

DdBody ::=

 DdItem

| „{‟ DdItemList „}‟

A list of items consists of any number of items:

DdItemList ::= DdItem [„,‟ DdItemList]

The list can be used to declare multiple data items associated with one label. The items will be laid out in the

order declared. The first data item is accessible directly through the label. To access the other items, pointer

arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer

arithmetic will make the application non-verifiable. (Each data item shall have a DataLabel if it is to be

referenced afterwards; missing a DataLabel is useful in order to insert alignment padding between data items)

 Partition II 95

A data item declares the type of the data and provides the data in parentheses. If a list of data items contains

items of the same type and initial value, the grammar below can be used as a short cut for some of the types:

the number of times the item shall be replicated is put in brackets after the declaration.

DdItem ::= Description

 „&‟ „(‟ Id „)‟ Address of label

| bytearray „(‟ Bytes „)‟ Array of bytes

| char „*‟ „(‟ QSTRING „)‟ Array of (Unicode) characters

| float32 [„(‟ Float64 „)‟] [„[‟ Int32 „]‟] 32-bit floating-point number, can be

replicated

| float64 [„(‟ Float64 „)‟] [„[‟ Int32 „]‟] 64-bit floating-point number, can be

replicated

| int8 [„(‟ Int32 „)‟] [„[‟ Int32 „]‟] 8-bit integer, can be replicated

| int16 [„(‟ Int32 „)‟] [„[‟ Int32 „]‟] 16-bit integer, can be replicated

| int32 [„(‟ Int32 „)‟] [„[‟ Int32 „]‟] 32-bit integer, can be replicated

| int64 [„(‟ Int64 „)‟] [„[‟ Int32 „]‟] 64-bit integer, can be replicated

[Example:

The following declares a 32-bit signed integer with value 123:

.data theInt = int32(123)

The following declares 10 replications of an 8-bit unsigned integer with value 3:

.data theBytes = int8 (3) [10]

end example]

16.3.2 Accessing data from the PE fi le

The data stored in a PE File using the .data directive can be accessed through a static variable, either

global or a member of a type, declared at a particular position of the data:

FieldDecl ::= FieldAttr* Type Id at DataLabel

The data is then accessed by a program as it would access any other static variable, using instructions such as

ldsfld, ldsflda, and so on (see Partition III).

The ability to access data from within the PE File can be subject to platform-specific rules, typically related to

section access permissions within the PE File format itself.

[Example: The following accesses the data declared in the example of §16.3.1. First a static variable needs to

be declared for the data, e.g., a global static variable:

.field public static int32 myInt at theInt

Then the static variable can be used to load the data:

ldsfld int32 myInt

// data on stack

end example]

16.4 Init ializat ion of non-literal stat ic data

This subclause and its subclauses contain only informative text.

Partition%20III%20CIL.doc

96 Partition II

Many languages that support static data provide for a means to initialize that data before the program begins

execution. There are three common mechanisms for doing this, and each is supported in the CLI.

16.4.1 Data known at l ink t ime

When the correct value to be stored into the static data is known at the time the program is linked (or compiled

for those languages with no linker step), the actual value can be stored directly into the PE file, typically into

the data area (§16.3). References to the variable are made directly to the location where this data has been
placed in memory, using the OS-supplied fix-up mechanism to adjust any references to this area if the file loads

at an address other than the one assumed by the linker.

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is

a value type with explicit type layout and no embedded references to managed objects. In this case the data is

laid out in the data area as usual and the static variable is assigned a particular RVA (i.e., offset from the start

of the PE file) by using a data label with the field declaration (using the at syntax).

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I).

An application domain is intended to isolate two applications running in the same OS process from one another

by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data

accessed via this mechanism is visible to all application domains in the process, thus violating the application

domain isolation boundary.

16.5 Data known at load t ime

When the correct value is not known until the PE file is loaded (for example, if it contains values computed

based on the load addresses of several PE files) it can be possible to supply arbitrary code to run as the PE file

is loaded, but this mechanism is platform-specific and might not be available in all conforming
implementations of the CLI.

16.5.1 Data known at run t ime

When the correct value cannot be determined until type layout is computed, the user shall supply code as part

of a type initializer to initialize the static data. The guarantees about type initialization are covered in §10.5.3.1.

As will be explained below, global statics are modeled in the CLI as though they belonged to a type, so the

same guarantees apply to both global and type statics.

Because the layout of managed types need not occur until a type is first referenced, it is not possible to

statically initialize managed types by simply laying out the data in the PE file. Instead, there is a type

initialization process that proceeds in the following steps:

1. All static variables are zeroed.

2. The user-supplied type initialization procedure, if any, is invoked as described in §10.5.3.

Within a type initialization procedure there are several techniques:

 Generate explicit code that stores constants into the appropriate fields of the static variables. For

small data structures this can be efficient, but it requires that the initializer be converted to native

code, which can prove to be both a code space and an execution time problem.

 Box value types. When the static variable is simply a boxed version of a primitive numeric type or

a value type with explicit layout, introduce an additional static variable with known RVA that

holds the unboxed instance and then simply use the box instruction to create the boxed copy.

 Create a managed array from a static native array of data. This can be done by marshaling the

native array to a managed array. The specific marshaler to be used depends on the native array.

e.g., it can be a safearray.

 Default initialize a managed array of a value type. The Base Class Library provides a method that

zeroes the storage for every element of an array of unboxed value types

(System.Runtime.CompilerServices.InitializeArray)

Partition%20I%20Architecture.doc

 Partition II 97

End informative text

98 Partition II

17 Defining properties

A Property is declared by the using the .property directive. Properties shall only be declared inside of

types (i.e., global properties are not supported).

ClassMember ::=

 .property PropHeader „{‟ PropMember* „}‟

See §22.34 and §22.35 for how property information is stored in metadata.

PropHeader ::=

 [specialname][rtspecialname] CallConv Type Id „(‟ Parameters „)‟

The .property directive specifies a calling convention (§15.3), type, name, and parameters in parentheses.

specialname marks the property as special to other tools, while rtspecialname marks the property as

special to the CLI. The signature for the property (i.e., the PropHeader production) shall match the signature

of the property's .get method (see below)

[Rationale: There are currently no property names that are required to be marked with rtspecialname. It is

provided for extensions, future standardization, and to increase consistency between the declaration of

properties and methods (instance and type initializer methods shall be marked with this attribute). end

rationale]

While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I) specifies

a set of consistency constraints.

A property can contain any number of methods in its body. The following table shows how these methods are

identified, and provides short descriptions of each kind of item:

PropMember ::= Description Clause

| .custom CustomDecl Custom attribute. 21

| .get CallConv Type [TypeSpec „::‟] MethodName

„(‟ Parameters „)‟

Specifies the getter for the

property.

| .other CallConv Type [TypeSpec „::‟]

MethodName „(‟ Parameters „)‟

Specifies a method for the

property other than the getter or

setter.

| .set CallConv Type [TypeSpec „::‟] MethodName

„(‟ Parameters „)‟

Specifies the setter for the
property.

| ExternSourceDecl .line or #line 5.7

.get specifies the getter for this property. The TypeSpec defaults to the current type. Only one getter can be

specified for a property. To be CLS-compliant, the definition of getter shall be marked specialname.

.set specifies the setter for this property. The TypeSpec defaults to the current type. Only one setter can be

specified for a property. To be CLS-compliant, the definition of setter shall be marked specialname.

.other is used to specify any other methods that this property comprises.

In addition, custom attributes (§21) or source line declarations can be specified.

[Example: This shows the declaration of the property called count.

.class public auto autochar MyCount extends [mscorlib]System.Object {

 .method virtual hidebysig public specialname instance int32 get_Count() {

 // body of getter

 }

Partition%20I%20Architecture.doc

 Partition II 99

 .method virtual hidebysig public specialname instance void set_Count(

 int32 newCount) {

 // body of setter

 }

 .method virtual hidebysig public instance void reset_Count() {

 // body of refresh method

 }

 // the declaration of the property

 .property int32 Count() {

 .get instance int32 MyCount::get_Count()

 .set instance void MyCount::set_Count(int32)

 .other instance void MyCount::reset_Count()

 }

}

end example]

100 Partition II

18 Defining events

Events are declared inside types, using the .event directive; there are no global events.

ClassMember ::= Clause

 .event EventHeader „{‟ EventMember* „}‟

| … 9

See §22.13 and §22.11

EventHeader ::=

 [specialname] [rtspecialname] [TypeSpec] Id

In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed

to the event‘s fire method.

The event head can contain the keywords specialname or rtspecialname. specialname marks the

name of the property for other tools, while rtspecialname marks the name of the event as special for the

runtime.

[Rationale: There are currently no event names that are required to be marked with rtspecialname. It is

provided for extensions, future standardization, and to increase consistency between the declaration of events

and methods (instance and type initializer methods shall be marked with this attribute). end rationale]

EventMember ::= Description Clause

 .addon CallConv Type [TypeSpec „::‟] MethodName

„(‟ Parameters „)‟

Add method for event.

| .custom CustomDecl Custom attribute. 21

| .fire CallConv Type [TypeSpec „::‟] MethodName „(‟

Parameters „)‟

Fire method for event.

| .other CallConv Type [TypeSpec „::‟] MethodName

„(‟ Parameters „)‟

Other method.

| .removeon CallConv Type [TypeSpec „::‟] MethodName

„(‟ Parameters „)‟

Remove method for event.

| ExternSourceDecl .line or #line 5.7

The .addon directive specifies the add method, and the TypeSpec defaults to the same type as the event. The

CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the

add method be marked with specialname.

The .removeon directive specifies the remove method, and the TypeSpec defaults to the same type as the

event. The CLS specifies naming conventions and consistency constraints for events, and requires that the

definition of the remove method be marked with specialname.

The .fire directive specifies the fire method, and the TypeSpec defaults to the same type as the event. The

CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the

fire method be marked with specialname.

An event can contain any number of other methods specified with the .other directive. From the point of

view of the CLI, these methods are only associated with each other through the event. If they have special

semantics, this needs to be documented by the implementer.

Events can also have custom attributes (§21) associated with them and they can declare source line information.

 Partition II 101

[Example: This shows the declaration of an event, its corresponding delegate, and typical implementations of

the add, remove, and fire method of the event. The event and the methods are declared in a class called

Counter.

// the delegate

.class private sealed auto autochar TimeUpEventHandler extends

 [mscorlib]System.Delegate {

 .method public hidebysig specialname rtspecialname instance void .ctor(object

 'object', native int 'method') runtime managed {}

 .method public hidebysig virtual instance void Invoke() runtime managed {}

 .method public hidebysig newslot virtual instance class

 [mscorlib]System.IAsyncResult BeginInvoke(class

 mscorlib]System.AsyncCallback callback, object 'object') runtime managed {}

 .method public hidebysig newslot virtual instance void EndInvoke(class

 [mscorlib]System.IAsyncResult result) runtime managed {}

}

// the class that declares the event

.class public auto autochar Counter extends [mscorlib]System.Object {

 // field to store the handlers, initialized to null

 .field private class TimeUpEventHandler timeUpEventHandler

 // the event declaration

 .event TimeUpEventHandler startStopEvent {

 .addon instance void Counter::add_TimeUp(class TimeUpEventHandler 'handler')

 .removeon instance void Counter::remove_TimeUp(class TimeUpEventHandler

'handler')

 .fire instance void Counter::fire_TimeUpEvent()

 }

 // the add method, combines the handler with existing delegates

 .method public hidebysig virtual specialname instance void add_TimeUp(class

 TimeUpEventHandler 'handler') {

 .maxstack 4

 ldarg.0

 dup

 ldfld class TimeUpEventHandler Counter::TimeUpEventHandler

 ldarg 'handler'

 call class[mscorlib]System.Delegate

 [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class

 [mscorlib]System.Delegate)

 castclass TimeUpEventHandler

 stfld class TimeUpEventHandler Counter::timeUpEventHandler

 ret

 }

 // the remove method, removes the handler from the delegate

 .method virtual public specialname void remove_TimeUp(class TimeUpEventHandler

 'handler') {

 .maxstack 4

 ldarg.0

 dup

 ldfld class TimeUpEventHandler Counter::timeUpEventHandler

 ldarg 'handler'

 call class[mscorlib]System.Delegate

 [mscorlib]System.Delegate::Remove(class

 [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

 castclass TimeUpEventHandler

 stfld class TimeUpEventHandler Counter::timeUpEventHandler

 ret

 }

102 Partition II

 // the fire method

 .method virtual family specialname void fire_TimeUpEvent() {

 .maxstack 3

 ldarg.0

 ldfld class TimeUpEventHandler Counter::timeUpEventHandler

 callvirt instance void TimeUpEventHandler::Invoke()

 ret

 }

} // end of class Counter

end example]

 Partition II 103

19 Exception handling

In the CLI, a method can define a range of CIL instructions that are said to be protected. This is called a try

block. It can then associate one or more handlers with that try block. If an exception occurs during execution

anywhere within the try block, an exception object is created that describes the problem. The CLI then takes

over, transferring control from the point at which the exception was thrown, to the block of code that is willing

to handle that exception. See Partition I.

No two handlers (fault, filter, catch, or finally) can have the same starting address. When an exception occurs it

is necessary to convert the execution address to the correct most lexically nested try block in which the

exception occurred.

SEHBlock ::=

 TryBlock SEHClause [SEHClause*]

The next few subclauses expand upon this simple description, by describing the five kinds of code block that

take part in exception processing: try, catch, filter, finally, and fault. (Note that there are

restrictions upon how many, and what kinds of SEHClause a given TryBlock can have; see Partition I for

details.)

The remaining syntax items are described in detail below; they are collected here for reference.

TryBlock ::= Description

.try Label to Label Protect region from first label to prior to second

| .try ScopeBlock ScopeBlock is protected

SEHClause ::= Description

 catch TypeReference HandlerBlock Catch all objects of the specified type

| fault HandlerBlock Handle all exceptions but not normal exit

| filter Label HandlerBlock Enter handler only if filter succeeds

| finally HandlerBlock Handle all exceptions and normal exit

HandlerBlock::= Description

handler Label to Label Handler range is from first label to prior to second

| ScopeBlock ScopeBlock is the handler block

19.1 Protected blocks

A try, or protected, or guarded, block is declared with the .try directive.

TryBlock ::= Descriptions

.try Label to Label Protect region from first label to prior to second.

| .try ScopeBlock ScopeBlock is protected

In the first case, the protected block is delimited by two labels. The first label is the first instruction to be

protected, while the second label is the instruction just beyond the last one to be protected. Both labels shall be

defined prior to this point.

The second case uses a scope block (§15.4.4) after the .try directive—the instructions within that scope are

the ones to be protected.

Partition%20I%20Architecture.doc
Partition%20I%20Architecture.doc

104 Partition II

19.2 Handler blocks

HandlerBlock ::= Description

| handler Label to Label Handler range is from first label to prior to second

| ScopeBlock ScopeBlock is the handler block

In the first case, the labels enclose the instructions of the handler block, the first label being the first instruction

of the handler while the second is the instruction immediately after the handler. In the second case, the handler

block is just a scope block.

19.3 Catch blocks

A catch block is declared using the catch keyword. This specifies the type of exception object the clause is

designed to handle, and the handler code itself.

SEHClause ::=

 catch TypeReference HandlerBlock

[Example:

.try {

 … // protected instructions

 leave exitSEH // normal exit

} catch [mscorlib]System.FormatException {

 … // handle the exception

 pop // pop the exception object

 leave exitSEH // leave catch handler

}

exitSEH: // continue here

end example]

19.4 Filter blocks

A filter block is declared using the filter keyword.

SEHClause ::= …

| filter Label HandlerBlock

| filter Scope HandlerBlock

The filter code begins at the specified label and ends at the first instruction of the handler block. (Note that the

CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler

block.)

[Example:

.method public static void m () {

 .try {

 … // protected instructions

 leave exitSEH // normal exit

 }

 filter {

 … // decide whether to handle

 pop // pop exception object

 ldc.i4.1 // EXCEPTION_EXECUTE_HANDLER

 endfilter // return answer to CLI

 }

 Partition II 105

 {

 … // handle the exception

 pop // pop the exception object

 leave exitSEH // leave filter handler

 }

exitSEH:

 …

}

end example]

19.5 Finally blocks

A finally block is declared using the finally keyword. This specifies the handler code, with this grammar:

SEHClause ::= …

| finally HandlerBlock

The last possible CIL instruction that can be executed in a finally handler shall be endfinally.

[Example:

.try {

 … // protected instructions

 leave exitTry // shall use leave

} finally {

 … // finally handler

 endfinally

}

exitTry: // back to normal

19.6 Fault handlers

end example]

A fault block is declared using the fault keyword. This specifies the handler code, with this grammar:

SEHClause ::= …

| fault HandlerBlock

The last possible CIL instruction that can be executed in a fault handler shall be endfault.

[Example:

.method public static void m() {

 startTry:

 … // protected instructions

 leave exitSEH // shall use leave

 endTry:

startFault:

 … // fault handler instructions

 endfault

endFault:

 .try startTry to endTry fault handler startFault to endFault

exitSEH: // back to normal

}

end example]

106 Partition II

20 Declarative security

Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the

metadata. This information is actually converted by the compiler into an XML-based representation that is

stored in the metadata, see §22.11. By contrast, ilasm requires the conversion information to be represented in

its input.

SecurityDecl ::=

 .permissionset SecAction = „(‟ Bytes „)‟

| .permission SecAction TypeReference „(‟ NameValPairs „)‟

NameValPairs ::= NameValPair [„,‟ NameValPair]*

NameValPair ::= SQSTRING „=‟ SQSTRING

In .permission, TypeReference specifies the permission class and NameValPairs specifies the settings.

See §22.11

In .permissionset the bytes specify the encoded version of the security settings:

SecAction ::= Description

 assert Assert permission so that callers do not need it.

| demand Demand permission of all callers.

| deny Deny permission so checks will fail.

| inheritcheck Demand permission of a derived class.

| linkcheck Demand permission of caller.

| permitonly Reduce permissions so check will fail.

| reqopt Request optional additional permissions.

| reqrefuse Refuse to be granted these permissions.

| request Hint that permission might be required.

 Partition II 107

21 Custom attributes

Custom attributes add user-defined annotations to the metadata. Custom attributes allow an instance of a type

to be stored with any element of the metadata. This mechanism can be used to store application-specific

information at compile time, and to access it either at runtime or when another tool reads the metadata. While

any user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of

types whose base class is System.Attribute. The CLI predefines some attribute types and uses them to control

runtime behavior. Some languages predefine attribute types to represent language features not directly

represented in the CTS. Users or other tools are welcome to define and use additional attribute types.

Custom attributes are declared using the directive .custom, followed by the method declaration for a type

constructor, optionally followed by a Bytes in parentheses:

CustomDecl ::=

 Ctor [„=‟ „(‟ Bytes „)‟]

The Ctor item represents a method declaration (§15.4), specific for the case where the method's name is

.ctor. [Example:

.custom instance void myAttribute::.ctor(bool, bool) = (01 00 00 01 00

00)

end example]

Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly, custom
attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties,

generic parameters, and events (the custom attribute is attached to the immediately preceding declaration)

The Bytes item is not required if the constructor takes no arguments. In such cases, all that matters is the

presence of the custom attribute.

If the constructor takes parameters, their values shall be specified in the Bytes item. The format for this ‗blob‘

is defined in §23.3.

[Example: The following shows a class that is marked with the attribute called

System.CLSCompliantAttribute and a method that is marked with the attribute called

System.ObsoleteAttribute.

.class public MyClass extends [mscorlib]System.Object

{ .custom instance void [mscorlib]System.CLSCompliantAttribute::.ctor(bool) =

 (01 00 01 00 00)

 .method public static void CalculateTotals() cil managed

{ .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor() =

 (01 00 00 00)
 ret

}

end example]

21.1 CLS conventions: custom attribute usage

CLS imposes certain conventions upon the use of custom attributes in order to improve cross-language
operation. See Partition I for details.

21.2 Attributes used by the CLI

There are two kinds of custom attributes, called genuine custom attributes, and pseudo custom attributes.

Custom attributes and pseudo custom attributes are treated differently, at the time they are defined, as follows:

 A custom attribute is stored directly into the metadata; the‗blob‘ which holds its defining data is

stored as-is. That ‗blob‘ can be retrieved later.

Partition%20I%20Architecture.doc

108 Partition II

 A pseudo custom attribute is recognized because its name is one of a short list. Rather than store

its ‗blob‘ directly in metadata, that ‗blob‘ is parsed, and the information it contains is used to set

bits and/or fields within metadata tables. The ‗blob‘ is then discarded; it cannot be retrieved

later.

Pseudo custom attributes therefore serve to capture user directives, using the same familiar syntax the compiler

provides for genuine custom attributes, but these user directives are then stored into the more space-efficient
form of metadata tables. Tables are also faster to check at runtime than are genuine custom attributes.

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI,

without its knowing or caring what they ‗mean‘. But all pseudo custom attributes, plus a collection of genuine

custom attributes, are of special interest to compilers and to the CLI. An example of such custom attributes is

System.Reflection.DefaultMemberAttribute. This is stored in metadata as a genuine custom attribute

‗blob‘, but reflection uses this custom attribute when called to invoke the default member (property) for a type.

The following subclauses list all of the pseudo custom attributes and distinguished custom attributes, where

distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in

some way.

In order to prevent name collisions into the future, all custom attributes in the System namespace are reserved

for standardization.

21.2.1 Pse udo c ustom attr ibutes

The following table lists the CLI pseudo custom attributes. (Not all of these attributes are specified in this

Standard, but all of their names are reserved and shall not be used for other purposes. For details on these

attributes, see the documentation for the corresponding class in Partition IV.) They are defined in the

namespaces System.Reflection, System.Runtime.CompilerServices, and

System.Runtime.InteropServices namespaces.

Attribute Description

AssemblyAlgorithmIDAttribute Records the ID of the hash algorithm used (reserved only)

AssemblyFlagsAttribute Records the flags for this assembly (reserved only)

DllImportAttribute Provides information about code implemented within an unmanaged

library

FieldOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type

InAttribute Indicates that a method parameter is an [in] argument

MarshalAsAttribute Specifies how a data item should be marshalled between managed and

unmanaged code (see §23.4).

MethodImplAttribute Specifies details of how a method is implemented

OutAttribute Indicates that a method parameter is an [out] argument

StructLayoutAttribute Allows the caller to control how the fields of a class or value type are laid

out in managed memory

These attributes affect bits and fields in metadata, as follows:

AssemblyAlgorithmIDAttribute: sets the Assembly.HashAlgId field.

AssemblyFlagsAttribute: sets the Assembly.Flags field.

DllImportAttribute: sets the Method.Flags.PinvokeImpl bit for the attributed method; also, adds a new row

into the ImplMap table (setting MappingFlags, MemberForwarded, ImportName and ImportScope columns).

FieldOffsetAttribute: sets the FieldLayout.OffSet value for the attributed field.

InAttribute: sets the Param.Flags.In bit for the attributed parameter.

Partition%20IV%20Library.doc

 Partition II 109

MarshalAsAttribute: sets the Field.Flags.HasFieldMarshal bit for the attributed field (or the

Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal

table for both Parent and NativeType columns.

MethodImplAttribute: sets the Method.ImplFlags field of the attributed method.

OutAttribute: sets the Param.Flags.Out bit for the attributed parameter.

StructLayoutAttribute: sets the TypeDef.Flags.LayoutMask sub-field for the attributed type, and, optionally,
the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSize,and ClassLayout.ClassSize fields

for that type.

21.2.2 Custom attr ibutes defined by the CLS

 The CLS specifies certain Custom Attributes and requires that conformant languages support them. These

attributes are located under System.

Attribute Description

AttributeUsageAttribute Used to specify how an attribute is intended to be used.

ObsoleteAttribute Indicates that an element is not to be used.

CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant

through an instance field on the attribute object.

21.2.3 Custom attr ibutes for sec urity

The following custom attributes are defined in the System.Net and System.Security.Permissions

namespaces. Note that these are all base classes; the actual instances of security attributes found in assemblies

will be sub-classes of these.

Attribute Description

CodeAccessSecurityAttribute This is the base attribute class for declarative security using

custom attributes.

DnsPermissionAttribute Custom attribute class for declarative security with

DnsPermission

EnvironmentPermissionAttribute Custom attribute class for declarative security with

EnvironmentPermission.

FileIOPermissionAttribute Custom attribute class for declarative security with

FileIOPermission.

ReflectionPermissionAttribute Custom attribute class for declarative security with

ReflectionPermission.

SecurityAttribute This is the base attribute class for declarative security from

which CodeAccessSecurityAttribute is derived.

SecurityPermissionAttribute Indicates whether the attributed method can affect security

settings

SocketPermissionAttribute Custom attribute class for declarative security with

SocketPermission.

WebPermissionAttribute Custom attribute class for declarative security with

WebPermission.

Note that any other security-related custom attributes (i.e., any custom attributes that derive from

System.Security.Permissions.SecurityAttribute) included into an assembly, can cause a conforming

110 Partition II

implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any

attempt is made to access those security-related custom attributes. (This statement holds true for any custom

attributes that cannot be resolved; security-related custom attributes are just one particular case)

21.2.4 Custom attr ibutes for TLS

A custom attribute that denotes a TLS (thread-local storage, see §Error! Reference source not found.) field is

defined in the System namespace.

Attribute Description

ThreadStaticAttribute Provides for type member fields that are relative for the thread.

21.2.5 Custom attr ibutes, various

The following custom attributes control various aspects of the CLI:

Attribute Namespace Description

ConditionalAttribute System.Diagnostics Used to mark methods as callable,

based on some compile-time condition.
If the condition is false, the method will

not be called

DecimalConstantAttribute System.Runtime.CompilerServices Stores the value of a decimal constant

in metadata

DefaultMemberAttribute System.Reflection Defines the member of a type that is the

default member used by reflection‘s

InvokeMember.

FaultModeAttribute System.Runtime.CompilerServices Indicates whether exceptions from

instruction checks are precise or

imprecise.

FlagsAttribute System Custom attribute indicating an

enumeration should be treated as a

bitfield; that is, a set of flags

IndexerNameAttribute System.Runtime.CompilerServices Indicates the name by which a property

having one or more parameters will be

known in programming languages that

do not support such a facility directly

ParamArrayAttribute System Indicates that the method will allow a

variable number of arguments in its

invocation

 Partition II 111

22 Metadata logical format: tables

This clause defines the structures that describe metadata, and how they are cross-indexed. This corresponds to

how metadata is laid out, after being read into memory from a PE file. (For a description of metadata layout

inside the PE file itself, see §24)

Metadata is stored in two kinds of structure: tables (arrays of records) and heaps. There are four heaps in any

module: String, Blob, Userstring, and Guid. The first three are byte arrays (so valid indexes into these heaps

might be 0, 23, 25, 39, etc). The Guid heap is an array of GUIDs, each 16 bytes wide. Its first element is

numbered 1, its second 2, and so on.

Each entry in each column of each table is either a constant or an index.

Constants are either literal values (e.g., ALG_SID_SHA1 = 4, stored in the HashAlgId column of the Assembly

table), or, more commonly, bitmasks. Most bitmasks (they are almost all called Flags) are 2 bytes wide (e.g.,

the Flags column in the Field table), but there are a few that are 4 bytes (e.g., the Flags column in the TypeDef

table).

Each index is either 2 or 4 bytes wide. The index points into the same or another table, or into one of the four

heaps. The size of each index column in a table is only made 4 bytes if it needs to be for that particular

module. So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-byte value,

the indexer column need only be 2 bytes wide. Conversely, for tables containing 64K or more rows, an indexer

of that table will be 4 bytes wide.

Indexes to tables begin at 1, so index 1 means the first row in any given metadata table. (An index value of

zero denotes that it does not index a row at all; that is, it behaves like a null reference.)

There are two kinds of columns that index a metadata table. (For details of the physical representation of these

tables, see §24.2.6):

 Simple – such a column indexes one, and only one, table. For example, the FieldList column in

the TypeDef table always indexes the Field table. So all values in that column are simple
integers, giving the row number in the target table

 Coded – such a column indexes any of several tables. For example, the Extends column in the

TypeDef table can index into the TypeDef or TypeRef table. A few bits of that index value are

reserved to define which table it targets. For the most part, this specification talks of index

values after being decoded into row numbers within the target table. However, the specification

includes a description of these coded indexes in the section that describes the physical layout of

Metadata (§24).

Metadata preserves name strings, as created by a compiler or code generator, unchanged. Essentially, it treats

each string as an opaque blob. In particular, it preserves case. The CLI imposes no limit on the length of

names stored in metadata and subsequently processed by the CLI.

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed

case-blind (see Partition I). However, all other name matches (type, field, method, property, event) shall be
exact – so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not.

Tables are given both a name (e.g., "Assembly") and a number (e.g., 0x20). The number for each table is listed

immediately with its title in the following subclauses. The table numbers indicate the order in which their

corresponding table shall appear in the PE file, and there is a set of bits (§24.2.6) saying whether a given table

exists or not. The number of a table is the position within that set of bits.

A few of the tables represent extensions to regular CLI files. Specifically, ENCLog and ENCMap, which occur

in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios, whilst

debugging. Both table types are reserved for future use.

References to the methods or fields of a type are stored together in a metadata table called the MemberRef

table. However, sometimes, for clearer explanation, this standard distinguishes between these two kinds of
reference, calling them ―MethodRef‖ and ―FieldRef‖.

Certain tables are required to be sorted by a primary key, as follows:

Partition%20I%20Architecture.doc

112 Partition II

Table Primary Key Column

ClassLayout Parent

Constant Parent

CustomAttribute Parent

DeclSecurity Parent

FieldLayout Field

FieldMarshal Parent

FieldRVA Field

GenericParam Owner

GenericParamConstraint Owner

ImplMap MemberForwarded

InterfaceImpl Class

MethodImpl Class

MethodSemantics Association

NestedClass NestedClass

Furthermore, the InterfaceImpl table is sorted using the Interface column as a secondary key, and the

GenericParam table is sorted using the Number column as a secondary key.

Finally, the TypeDef table has a special ordering constraint: the definition of an enclosing class shall precede

the definition of all classes it encloses.

Metadata items (records in the metadata tables) are addressed by metadata tokens. Uncoded metadata tokens

are 4-byte unsigned integers, which contain the metadata table index in the most significant byte and a 1-based

record index in the three least-significant bytes. Metadata tables and their respective indexes are described in

§22.2 and later subclauses.

Coded metadata tokens also contain table and record indexes, but in a different format. For details on the

encoding, see §24.2.6.

22.1 Metadata validation rules

This contains informative text only

The subclauses that follow describe the schema for each kind of metadata table, and explain the detailed rules

that guarantee metadata emitted into any PE file is valid. Checking that metadata is valid ensures that later

processing (such as checking the CIL instruction stream for type safety, building method tables, CIL-to-native-

code compilation, and data marshalling) will not cause the CLI to crash or behave in an insecure fashion.

In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I) even

though these are not related to valid Metadata. These are marked with a trailing [CLS] tag.

The rules for valid metadata refer to an individual module. A module is any collection of metadata that could

typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script

compilers (where the metadata is often held only in memory, but never actually saved to a file on disk).

The rules address intra-module validation only. As such, software that checks conformance with this standard
need not resolve references or walk type hierarchies defined in other modules. However, even if two modules,

A and B, analyzed separately, contain only valid metadata, they can still be in error when viewed together (e.g.,

Partition%20I%20Architecture.doc

 Partition II 113

a call from Module A, to a method defined in module B, might specify a call site signature that does not match

the signatures defined for that method in B).

All checks are categorized as ERROR, WARNING, or CLS.

 An ERROR check reports something that might cause a CLI to crash or hang, it might run but

produce wrong answers; or it might be entirely benign. Conforming implementations of the CLI

can exist that will not accept metadata that violates an ERROR rule, and therefore such metadata
is invalid and is not portable.

 A WARNING check reports something, not actually wrong, but possibly a slip on the part of the

compiler. Normally, it indicates a case where a compiler could have encoded the same

information in a more compact fashion or where the metadata represents a construct that can have

no actual use at runtime. All conforming implementations shall support metadata that violate

only WARNING rules; hence such metadata is both valid and portable.

 A CLS check reports lack of compliance with the Common Language Specification (see

Partition I). Such metadata is both valid and portable, but programming languages might exist

that cannot process it, even though all conforming implementations of the CLI support the

constructs.

Validation rules fall into the following broad categories:

 Number of Rows: A few tables are allowed only one row (e.g., Module table). Most have no

such restriction.

 Unique Rows: No table shall contain duplicate rows, where ―duplicate‖ is defined in terms of its

key column, or combination of columns.

 Valid Indexes: Columns which are indexes shall point somewhere sensible, as follows:

o Every index into the String, Blob, or Userstring heaps shall point into that heap,

neither before its start (offset 0), nor after its end.

o Every index into the Guid heap shall lie between 1 and the maximum element number

in this module, inclusive.

o Every index (row number) into another metadata table shall lie between 0 and that

table‘s row count + 1 (for some tables, the index can point just past the end of any
target table, meaning it indexes nothing).

 Valid Bitmasks: Columns which are bitmasks shall have only valid permutations of bits set.

 Valid RVAs: There are restrictions upon fields and methods that are assigned RVAs (Relative

Virtual Addresses, which are byte offsets, expressed from the address at which the corresponding

PE file is loaded into memory).

Note that some of the rules listed below really don‘t say anything—for example, some rules state that a

particular table is allowed zero or more rows—in which case, there is no way that the check can fail. This is

done simply for completeness, to record that such details have indeed been addressed, rather than overlooked.

End informative text

The CLI imposes no limit on the length of names stored in metadata, and subsequently processed by a CLI

implementation.

22.2 Assembly : 0x20

The Assembly table has the following columns:

 HashAlgId (a 4-byte constant of type AssemblyHashAlgorithm, §23.1.1)

 MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)

 Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2)

Partition%20I%20Architecture.doc

114 Partition II

 PublicKey (an index into the Blob heap)

 Name (an index into the String heap)

 Culture (an index into the String heap)

The Assembly table is defined using the .assembly directive (§6.2); its columns are obtained from the

respective .hash algorithm, .ver, .publickey, and .culture (§6.2.1). (For an example, see §6.2.)

This contains informative text only

1. The Assembly table shall contain zero or one row [ERROR]

2. HashAlgId shall be one of the specified values [ERROR]

3. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value

4. Flags shall have only those values set that are specified [ERROR]

5. PublicKey can be null or non-null

6. Name shall index a non-empty string in the String heap [ERROR]

7. The string indexed by Name can be of unlimited length

8. Culture can be null or non-null

9. If Culture is non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

[Note: Name is a simple name (e.g., ―Foo‖, with no drive letter, no path, and no file extension); on POSIX-

compliant systems, Name contains no colon, no forward-slash, no backslash, and no period. end note]

End informative text

22.3 AssemblyOS : 0x22

The AssemblyOS table has the following columns:

 OSPlatformID (a 4-byte constant)

 OSMajorVersion (a 4-byte constant)

 OSMinorVersion (a 4-byte constant)

This record should not be emitted into any PE file. However, if present in a PE file, it shall be treated as if all

its fields were zero. It shall be ignored by the CLI.

22.4 AssemblyProcessor : 0x21

The AssemblyProcessor table has the following column:

 Processor (a 4-byte constant)

This record should not be emitted into any PE file. However, if present in a PE file, it should be treated as if its

field were zero. It should be ignored by the CLI.

22.5 AssemblyRef : 0x23

The AssemblyRef table has the following columns:

 MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)

 Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2)

 PublicKeyOrToken (an index into the Blob heap, indicating the public key or token that identifies

the author of this Assembly)

 Name (an index into the String heap)

 Partition II 115

 Culture (an index into the String heap)

 HashValue (an index into the Blob heap)

The table is defined by the .assembly extern directive (§6.3). Its columns are filled using directives

similar to those of the Assembly table except for the PublicKeyOrToken column, which is defined using the

.publickeytoken directive. (For an example, see §6.3.)

This contains informative text only

1. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value

2. Flags shall have only one bit set, the PublicKey bit (§23.1.2). All other bits shall be zero.

[ERROR]

3. PublicKeyOrToken can be null, or non-null (note that the Flags.PublicKey bit specifies

whether the 'blob' is a full public key, or the short hashed token)

4. If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR]

5. Name shall index a non-empty string, in the String heap (there is no limit to its length) [ERROR]

6. Culture can be null or non-null.

7. If non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

8. HashValue can be null or non-null

9. If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

10. The AssemblyRef table shall contain no duplicates (where duplicate rows are deemd to be those

having the same MajorVersion, MinorVersion, BuildNumber, RevisionNumber,

PublicKeyOrToken, Name, and Culture) [WARNING]

[Note: Name is a simple name (e.g., ―Foo‖, with no drive letter, no path, and no file extension); on POSIX-

compliant systems Name contains no colon, no forward-slash, no backslash, and no period. end note]

End informative text

22.6 AssemblyRefOS : 0x25

The AssemblyRefOS table has the following columns:

 OSPlatformId (a 4-byte constant)

 OSMajorVersion (a 4-byte constant)

 OSMinorVersion (a 4-byte constant)

 AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated

as-if their fields were zero. They should be ignored by the CLI.

22.7 AssemblyRefProcessor : 0x24

The AssemblyRefProcessor table has the following columns:

 Processor (a 4-byte constant)

 AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated

as-if their fields were zero. They should be ignored by the CLI.

116 Partition II

22.8 ClassLayout : 0x0F

The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI.

(Normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type.)

[Rationale: This feature is used to lay out a managed value type in exactly the same way as an unmanaged
C struct, allowing a managed value type to be handed to unmanaged code, which then accesses the fields

exactly as if that block of memory had been laid out by unmanaged code. end rationale]

The information held in the ClassLayout table depends upon the Flags value for {AutoLayout,

SequentialLayout, ExplicitLayout} in the owner class or value type.

A type has layout if it is marked SequentialLayout or ExplicitLayout. If any type within an inheritance chain

has layout, then so shall all its base classes, up to the one that descends immediately from System.ValueType

(if it exists in the type‘s hierarchy); otherwise, from System.Object.

This contains informative text only

Layout cannot begin part way down the chain. But it is valid to stop ―having layout‖ at any point down the

chain.

For example, in the diagrams below, Class A derives from System.Object; class B derives from A; class C

derives from B. System.Object has no layout. But A, B and C are all defined with layout, and that is valid.

The situation with classes E, F, and G is similar. G has no layout, and this too is valid. The following picture

shows two invalid setups:

On the left, the ―chain with layout‖ does not start at the ‗highest‘ class. And on the right, there is a ‗hole‘ in the

―chain with layout‖

 Partition II 117

Layout information for a class or value type is held in two tables (ClassLayout and FieldLayout), as shown in

the following diagram:

In this example, row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for a Class,

called ―MyClass‖). Rows 4–6 of the FieldLayout table point to corresponding rows in the Field table. This

illustrates how the CLI stores the explicit offsets for the three fields that are defined in ―MyClass‖ (there is

always one row in the FieldLayout table for each field in the owning class or value type) So, the ClassLayout

table acts as an extension to those rows of the TypeDef table that have layout info; since many classes do not

have layout info, overall, this design saves space.

End informative text

The ClassLayout table has the following columns:

 PackingSize (a 2-byte constant)

 ClassSize (a 4-byte constant)

 Parent (an index into the TypeDef table)

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of the type

declaration in which this type is declared (§10.2). When either of these directives is omitted, its corresponding

value is zero. (See §10.7.)

ClassSize of zero does not mean the class has zero size. It means that no .size directive was specified at

definition time, in which case, the actual size is calculated from the field types, taking account of packing size

(default or specified) and natural alignment on the target, runtime platform.

This contains informative text only

1. A ClassLayout table can contain zero or more rows

2. Parent shall index a valid row in the TypeDef table, corresponding to a Class or ValueType (but

not to an Interface) [ERROR]

3. The Class or ValueType indexed by Parent shall be SequentialLayout or ExplicitLayout

(§23.1.15). (That is, AutoLayout types shall not own any rows in the ClassLayout table.)

[ERROR]

4. If Parent indexes a SequentialLayout type, then:

o PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128}. (0 means use the default

pack size for the platform on which the application is running.) [ERROR]

o If Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000

bytes). [ERROR]

5. If Parent indexes an ExplicitLayout type, then

o if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000

bytes) [ERROR]

o PackingSize shall be 0. (It makes no sense to provide explicit offsets for each field, as

well as a packing size.) [ERROR]

118 Partition II

6. Note that an ExplicitLayout type might result in a verifiable type, provided the layout does not

create a type whose fields overlap.

7. Layout along the length of an inheritance chain shall follow the rules specified above (start ing at

‗highest‘ Type, with no ‗holes‘, etc.) [ERROR]

End informative text

22.9 Constant : 0x0B

The Constant table is used to store compile-time, constant values for fields, parameters, and properties.

The Constant table has the following columns:

 Type (a 1-byte constant, followed by a 1-byte padding zero); see §23.1.16 . The encoding of Type

for the nullref value for FieldInit in ilasm (§16.2) is ELEMENT_TYPE_CLASS with a Value of a 4-

byte zero. Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed by a type

token.

 Parent (an index into the Param, Field, or Property table; more precisely, a HasConstant

(§24.2.6) coded index)

 Value (an index into the Blob heap)

Note that Constant information does not directly influence runtime behavior, although it is visible via

Reflection (and hence can be used to implement functionality such as that provided by

System.Enum.ToString). Compilers inspect this information, at compile time, when importing metadata, but
the value of the constant itself, if used, becomes embedded into the CIL stream the compiler emits. There are

no CIL instructions to access the Constant table at runtime.

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent.

(For an example, see §16.2.)

This contains informative text only

1. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1,

ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4,

ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, or

ELEMENT_TYPE_STRING; or ELEMENT_TYPE_CLASS with a Value of zero (§23.1.16) [ERROR]

2. Type shall not be any of: ELEMENT_TYPE_I1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4, or

ELEMENT_TYPE_U8 (§23.1.16) [CLS]

3. Parent shall index a valid row in the Field, Property, or Param table. [ERROR]

4. There shall be no duplicate rows, based upon Parent [ERROR]

5. Type shall match exactly the declared type of the Param, Field, or Property identified by Parent
(in the case where the parent is an enum, it shall match exactly the underlying type of that enum).

[CLS]

End informative text

22.10 Custo mAttribute : 0x0C

The CustomAttribute table has the following columns:

 Parent (an index into any metadata table, except the CustomAttribute table itself; more precisely,

a HasCustomAttribute (§24.2.6) coded index)

 Type (an index into the MethodDef or MemberRef table; more precisely, a CustomAttributeType

(§24.2.6) coded index)

 Value (an index into the Blob heap)

Partition%20II%20Metadata.doc#SignatureElementTypes
Partition%20II%20Metadata.doc#SignatureElementTypes
Partition%20II%20Metadata.doc#SignatureElementTypes
Partition%20II%20Metadata.doc#SignatureElementTypes

 Partition II 119

The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an

object of the specified Custom Attribute class) at runtime. The column called Type is slightly misleading—it

actually indexes a constructor method—the owner of that constructor method is the Type of the Custom

Attribute.

A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of

the Type column and optionally that of the Value column (§21).

This contains informative text only

All binary values are stored in little-endian format (except for PackedLen items, which are used only as a count

for the number of bytes to follow in a UTF8 string).

1. No CustomAttribute is required; that is, Value is permitted to be null.

2. Parent can be an index into any metadata table, except the CustomAttribute table itself [ERROR]

3. Type shall index a valid row in the Method or MemberRef table. That row shall be a constructor

method (for the class of which this information forms an instance) [ERROR]

4. Value can be null or non-null.

5. If Value is non-null, it shall index a 'blob' in the Blob heap [ERROR]

6. The following rules apply to the overall structure of the Value 'blob' (§23.3):

o Prolog shall be 0x0001 [ERROR]

o There shall be as many occurrences of FixedArg as are declared in the Constructor

method [ERROR]

o NumNamed can be zero or more

o There shall be exactly NumNamed occurrences of NamedArg [ERROR]

o Each NamedArg shall be accessible by the caller [ERROR]

o If NumNamed = 0 then there shall be no further items in the CustomAttrib [ERROR]

7. The following rules apply to the structure of FixedArg (§23.3):

o If this item is not for a vector (a single-dimension array with lower bound of 0), then

there shall be exactly one Elem [ERROR]

o If this item is for a vector, then:

o NumElem shall be 1 or more [ERROR]

o This shall be followed by NumElem occurrences of Elem [ERROR]

8. The following rules apply to the structure of Elem (§23.3):

o If this is a simple type or an enum (see §23.3 for how this is defined), then Elem

consists simply of its value [ERROR]

o If this is a string or a Type, then Elem consists of a SerString – PackedLen count of

bytes, followed by the UTF8 characters [ERROR]

o If this is a boxed simple value type (bool, char, float32, float64, int8, int16,

int32, int64, unsigned int8, unsigned int16, unsigned int32, or unsigned

int64), then Elem consists of the corresponding type denoter (ELEMENT_TYPE_BOOLEAN,

ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2,

ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8,

ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, or ELEMENT_TYPE_R8), followed by its value.

[ERROR]

9. The following rules apply to the structure of NamedArg (§23.3):

o The single byte FIELD (0x53) or PROPERTY (0x54) [ERROR]

120 Partition II

o The type of the Field or Property is one of ELEMENT_TYPE_BOOLEAN,

ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2,

ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8,

ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING, or the

constant 0x50 (for an argument of type System.Type) [ERROR]

o The name of the Field or Property, respectively with the previous item, as a SerString
– PackedLen count of bytes, followed by the UTF8 characters of the name [ERROR]

o A FixedArg (see above) [ERROR]

End informative text

22.11 DeclSecurity : 0x0E

Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition IV),

can be attached to a TypeDef, a Method, or an Assembly. All constructors of this class shall take a

System.Security.Permissions.SecurityAction value as their first parameter, describing what should be

done with the permission on the type, method or assembly to which it is attached. Code access security

attributes, which derive from System.Security.Permissions. CodeAccessSecurityAttribute, can have any

of the security actions.

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below). All

security custom attributes for a given security action on a method, type, or assembly shall be gathered together,

and one System.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced

from the DeclSecurity table.

[Note: The general flow from a compiler‘s point of view is as follows. The user specifies a custom attribute

through some language-specific syntax that encodes a call to the attribute‘s constructor. If the attribute‘s type is

derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security

custom attribute and requires special treatment, as follows (other custom attributes are handled by simply

recording the constructor in the metadata as described in §22.10). The attribute object is constructed, and

provides a method (CreatePermission) to convert it into a security permission object (an object derived from

System.Security.Permission). All the permission objects attached to a given metadata item with the same

security action are combined together into a System.Security.PermissionSet. This permission set is

converted into a form that is ready to be stored in XML using its ToXML method to create a

System.Security.SecurityElement. Finally, the XML that is required for the metadata is created using the

ToString method on the security element. end note]

The DeclSecurity table has the following columns:

 Action (a 2-byte value)

 Parent (an index into the TypeDef, MethodDef, or Assembly table; more precisely, a

HasDeclSecurity (§24.2.6) coded index)

 PermissionSet (an index into the Blob heap)

Action is a 2-byte representation of Security Actions (see System.Security.SecurityAction in Partition IV).

The values 0–0xFF are reserved for future standards use. Values 0x20–0x7F and 0x100–0x07FF are for uses

where the action can be ignored if it is not understood or supported. Values 0x80–0xFF and 0x0800–0xFFFF

are for uses where the action shall be implemented for secure operation; in implementations where the action is
not available, no access to the assembly, type, or method shall be permitted.

Security Action Note Explanation of behavior Valid Scope

Assert 1 Without further checks, satisfy Demand for the

specified permission.

Method, Type

Demand 1 Check that all callers in the call chain have been

granted specified permission, throw

SecurityException (see Partition IV) on failure.

Method, Type

Partition%20IV%20Library.doc
Partition%20IV%20Library.doc
Partition%20IV%20Library.doc

 Partition II 121

Deny 1 Without further checks refuse Demand for the

specified permission.

Method, Type

InheritanceDemand 1 The specified permission shall be granted in order

to inherit from class or override virtual method.

Method, Type

LinkDemand 1 Check that the immediate caller has been granted

the specified permission; throw

SecurityException (see Partition IV) on failure.

Method, Type

NonCasDemand 2 Check that the current assembly has been granted

the specified permission; throw

SecurityException (see Partition IV) otherwise.

Method, Type

NonCasLinkDemand 2 Check that the immediate caller has been granted
the specified permission; throw

SecurityException (see Partition IV) otherwise.

Method, Type

PrejitGrant Reserved for implementation-specific use. Assembly

PermitOnly 1 Without further checks, refuse Demand for all

permissions other than those specified.

Method, Type

RequestMinimum Specify the minimum permissions required to run. Assembly

RequestOptional Specify the optional permissions to grant. Assembly

RequestRefuse Specify the permissions not to be granted. Assembly

Note 1: The specified attribute shall derive from System.Security.Permissions.CodeAccess-
SecurityAttribute

Note 2: The attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not

derive from System.Security.Permissions.CodeAccessSecurityAttribute

Parent is a metadata token that identifies the Method, Type, or Assembly on which security custom attributes

encoded in PermissionSet was defined.

PermissionSet is a 'blob' having the following format:

 A byte containing a period (.).

 A compressed int32 containing the number of attributes encoded in the blob.

 An array of attributes each containing the following:

o A String, which is the fully-qualified type name of the attribute. (Strings are encoded

as a compressed int to indicate the size followed by an array of UTF8 characters.)

o A set of properties, encoded as the named arguments to a custom attribute would be (as

in §23.3, beginning with NumNamed).

The permission set contains the permissions that were requested with an Action on a specific Method, Type, or

Assembly (see Parent). In other words, the blob will contain an encoding of all the attributes on the Parent with

that particular Action.

[Note: The first edition of this standard specified an XML encoding of a permission set. Implementations
should continue supporting this encoding for backward compatibility. end note]

The rows of the DeclSecurity table are filled by attaching a .permission or .permissionset directive

that specifies the Action and PermissionSet on a parent assembly (§6.6) or parent type or method (§10.2).

This contains informative text only

1. Action shall have only those values set that are specified [ERROR]

Partition%20IV%20Library.doc
Partition%20IV%20Library.doc
Partition%20IV%20Library.doc

122 Partition II

2. Parent shall be one of TypeDef, MethodDef, or Assembly. That is, it shall index a valid row in

the TypeDef table, the MethodDef table, or the Assembly table. [ERROR]

3. If Parent indexes a row in the TypeDef table, that row should not define an Interface. The

security system ignores any such parent; compilers should not emit such permissions sets.

[WARNING]

4. If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit shall be set [ERROR]

5. If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit shall be set [ERROR]

6. PermissionSet shall index a 'blob' in the Blob heap [ERROR]

7. The format of the 'blob' indexed by PermissionSet shall represent a valid, encoded CLI object

graph. (The encoded form of all standardized permissions is specified in Partition IV.) [ERROR]

End informative text

22.12 EventMap : 0x12

The EventMap table has the following columns:

 Parent (an index into the TypeDef table)

 EventList (an index into the Event table). It marks the first of a contiguous run of Events owned

by this Type. That run continues to the smaller of:

o the last row of the Event table

o the next run of Events, found by inspecting the EventList of the next row in the
EventMap table

Note that EventMap info does not directly influence runtime behavior; what counts is the information stored for

each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (§18).

This contains informative text only

1. EventMap table can contain zero or more rows

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‗pointer‘ to the

start of its event list) [ERROR]

3. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the
Event table) [ERROR]

End informative text

22.13 Event : 0x14

Events are treated within metadata much like Properties; that is, as a way to associate a collection of methods

defined on a given class. There are two required methods (add_ and remove_) plus an optional one (raise_);

others are permitted. All of the methods gathered together as an Event shall be defined on the class.

The association between a row in the TypeDef table and the collection of methods that make up a given Event

is held in three separate tables (exactly analogous to the approach used for Properties), as follows:

Partition%20IV%20Library.doc

 Partition II 123

Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4

of the Event table on the right (the row for an Event called DocChanged). This setup establishes that MyClass
has an Event called DocChanged. But what methods in the MethodDef table are gathered together as

‗belonging‘ to event DocChanged? That association is contained in the MethodSemantics table – its row 2

indexes event DocChanged to the right, and row 2 in the MethodDef table to the left (a method called

add_DocChanged). Also, row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in

the MethodDef table to the left (a method called remove_DocChanged). As the shading suggests, MyClass has

another event, called TimedOut, with two methods, add_TimedOut and remove_TimedOut.

Event tables do a little more than group together existing rows from other tables. The Event table has columns

for EventFlags, Name (e.g., DocChanged and TimedOut in the example here), and EventType. In addition, the

MethodSemantics table has a column to record whether the method it indexes is an add_, a remove_, a raise_,

or other function.

The Event table has the following columns:

 EventFlags (a 2-byte bitmask of type EventAttributes, §23.1.4)

 Name (an index into the String heap)

 EventType (an index into a TypeDef, a TypeRef, or TypeSpec table; more precisely, a

TypeDefOrRef (§24.2.6) coded index) (This corresponds to the Type of the Event; it is not the

Type that owns this event.)

Note that Event information does not directly influence runtime behavior; what counts is the information stored

for each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (§18).

This contains informative text only

1. The Event table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the EventMap table [ERROR]

3. EventFlags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Name shall index a non-empty string in the String heap [ERROR]

5. The Name string shall be a valid CLS identifier [CLS]

6. EventType can be null or non-null

7. If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table

[ERROR]

124 Partition II

8. If EventType is non-null, then the row in the TypeDef, TypeRef, or TypeSpec table that it indexes

shall be a Class (not an Interface or a ValueType) [ERROR]

9. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table

[ERROR]

10. For each row, there can be zero or one raise_ row, as well as zero or more other rows in the

MethodSemantics table [ERROR]

11. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based

upon Name [ERROR]

12. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS

conflicting-identifier-rules [CLS]

End informative text

22.14 ExportedType : 0x27

The ExportedType table holds a row for each type:

a. Defined within other modules of this Assembly; that is exported out of this Assembly. In essence, it

stores TypeDef row numbers of all types that are marked public in other modules that this Assembly

comprises.

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row

number) and Implementation (in effect, the module that holds the target TypeDef table). Note that this
is the only occurrence in metadata of foreign tokens; that is, token values that have a meaning in

another module. (A regular token value is an index into a table in the current module); OR

b. Originally defined in this Assembly but now moved to another Assembly. Flags must have

IsTypeForwarder set and Implementation is an AssemblyRef indicating the Assembly the type may

now be found in.

The full name of the type need not be stored directly. Instead, it can be split into two parts at any included ―.‖

(although typically this is done at the last ―.‖ in the full name). The part preceding the ―.‖ is stored as the

TypeNamespace and that following the ―.‖ is stored as the TypeName. If there is no ―.‖ in the full name, then

the TypeNamespace shall be the index of the empty string.

The ExportedType table has the following columns:

 Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15)

 TypeDefId (a 4-byte index into a TypeDef table of another module in this Assembly). This

column is used as a hint only. If the entry in the target TypeDef table matches the TypeName and

TypeNamespace entries in this table, resolution has succeeded. But if there is a mismatch, the

CLI shall fall back to a search of the target TypeDef table. Ignored and should be zero if Flags

has IsTypeForwarder set.

 TypeName (an index into the String heap)

 TypeNamespace (an index into the String heap)

 Implementation. This is an index (more precisely, an Implementation (§24.2.6) coded index) into

either of the following tables:

o File table, where that entry says which module in the current assembly holds the

TypeDef

o ExportedType table, where that entry is the enclosing Type of the current nested Type

o AssemblyRef table, where that entry says in which assembly the type may now be

found (Flags must have the IsTypeForwarder flag set).

 Partition II 125

The rows in the ExportedType table are the result of the .class extern directive (§6.7).

This contains informative text only

 The term ―FullName‖ refers to the string created as follows: if the TypeNamespace is null, then use the

TypeName, otherwise use the concatenation of Typenamespace, ―.‖, and TypeName.

1. The ExportedType table can contain zero or more rows

2. There shall be no entries in the ExportedType table for Types that are defined in the current

module—just for Types defined in other modules within the Assembly [ERROR]

3. Flags shall have only those values set that are specified [ERROR]

4. If Implementation indexes the File table, then Flags.VisibilityMask shall be public (§23.1.15)

[ERROR]

5. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be

NestedPublic (§23.1.15) [ERROR]

6. If non-null, TypeDefId should index a valid row in a TypeDef table in a module somewhere within

this Assembly (but not this module), and the row so indexed should have its Flags.Public = 1

(§23.1.15) [WARNING]

7. TypeName shall index a non-empty string in the String heap [ERROR]

8. TypeNamespace can be null, or non-null

9. If TypeNamespace is non-null, then it shall index a non-empty string in the String heap [ERROR]

10. FullName shall be a valid CLS identifier [CLS]

11. If this is a nested Type, then TypeNamespace should be null, and TypeName should represent the

unmangled, simple name of the nested Type [ERROR]

12. Implementation shall be a valid index into either of the following: [ERROR]

o the File table; that file shall hold a definition of the target Type in its TypeDef table

o a different row in the current ExportedType table—this identifies the enclosing Type of

the current, nested Type

13. FullName shall match exactly the corresponding FullName for the row in the TypeDef table
indexed by TypeDefId [ERROR]

14. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR]

15. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type

[ERROR]

16. The complete list of Types exported from the current Assembly is given as the catenation of the

ExportedType table with all public Types in the current TypeDef table, where ―public‖ means a

Flags.VisibilityMask of either Public or NestedPublic. There shall be no duplicate rows, in this

concatenated table, based upon FullName (add Enclosing Type into the duplicates check if this is

a nested Type) [ERROR]

End informative text

22.15 Field : 0x04

The Field table has the following columns:

 Flags (a 2-byte bitmask of type FieldAttributes, §23.1.5)

 Name (an index into the String heap)

 Signature (an index into the Blob heap)

126 Partition II

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However,

the owner of any row in the Field table is not stored anywhere in the Field table itself. There is merely a

‗forward-pointer‘ from each row in the TypeDef table (the FieldList column), as shown in the following

illustration.

The TypeDef table has rows 1–4. The first row in the TypeDef table corresponds to a pseudo type, inserted

automatically by the CLI. It is used to denote those rows in the Field table corresponding to global variables.

The Field table has rows 1–6. Type 1 (pseudo type for ‗module‘) owns rows 1 and 2 in the Field table. Type 2

owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table. Type 3 owns
rows 3–5 in the Field table. Type 4 owns row 6 in the Field table. So, in the Field table, rows 1 and 2 belong

to Type 1 (global variables); rows 3–5 belong to Type 3; row 6 belongs to Type 4.

Each row in the Field table results from a top-level .field directive (§5.10), or a .field directive inside a

Type (§10.2). (For an example, see §14.5.)

This contains informative text only

1. The Field table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]

3. The owner row in the TypeDef table shall not be an Interface [CLS]

4. Flags shall have only those values set that are specified [ERROR]

5. The FieldAccessMask subfield of Flags shall contain precisely one of CompilerControlled,

Private, FamANDAssem, Assembly, Family, FamORAssem, or Public (§23.1.5) [ERROR]

6. Flags can set either or neither of Literal or InitOnly, but not both (§23.1.5) [ERROR]

7. If Flags.Literal = 1 then Flags.Static shall also be 1 (§23.1.5) [ERROR]

8. If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1 (§23.1.5) [ERROR]

9. If Flags.HasFieldMarshal = 1, then this row shall ‗own‘ exactly one row in the FieldMarshal

table (§23.1.5) [ERROR]

10. If Flags.HasDefault = 1, then this row shall ‗own‘ exactly one row in the Constant table

(§23.1.5) [ERROR]

11. If Flags.HasFieldRVA = 1, then this row shall ‗own‘ exactly one row in the Field’s RVA table

(§23.1.5) [ERROR]

12. Name shall index a non-empty string in the String heap [ERROR]

13. The Name string shall be a valid CLS identifier [CLS]

14. Signature shall index a valid field signature in the Blob heap [ERROR]

15. If Flags.CompilerControlled = 1 (§23.1.5), then this row is ignored completely in duplicate

checking.

16. If the owner of this field is the internally-generated type called <Module>, it denotes that this field

is defined at module scope (commonly called a global variable). In this case:

o Flags.Static shall be 1 [ERROR]

 Partition II 127

o Flags.MemberAccessMask subfield shall be one of Public, CompilerControlled, or

Private (§23.1.5) [ERROR]

o module-scope fields are not allowed [CLS]

17. There shall be no duplicate rows in the Field table, based upon owner+Name+Signature (where

owner is the owning row in the TypeDef table, as described above) (Note however that if

Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking)
[ERROR]

18. There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields

are compared using CLS conflicting-identifier-rules. So, for example,"int i" and "float i"

would be considered CLS duplicates. (Note however that if Flags.CompilerControlled = 1, then

this row is completely excluded from duplicate checking, as noted above) [CLS]

19. If this is a field of an Enum then:

a. owner row in TypeDef table shall derive directly from System.Enum [ERROR]

b. the owner row in TypeDef table shall have no other instance fields [CLS]

c. its Signature shall be one of ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_I4, or

ELEMENT_TYPE_I8 (§23.1.16): [CLS]

20. its Signature shall be an integral type. [ERROR]

End informative text

22.16 FieldLayout : 0x10

The FieldLayout table has the following columns:

 Offset (a 4-byte constant)

 Field (an index into the Field table)

Note that each Field in any Type is defined by its Signature. When a Type instance (i.e., an object) is laid out

by the CLI, each Field is one of four kinds:

 Scalar: for any member of built-in type, such as int32. The size of the field is given by the size

of that intrinsic, which varies between 1 and 8 bytes

 ObjectRef: for ELEMENT_TYPE_CLASS, ELEMENT_TYPE_STRING, ELEMENT_TYPE_OBJECT,

ELEMENT_TYPE_ARRAY, ELEMENT_TYPE_SZARRAY

 Pointer: for ELEMENT_TYPE_PTR, ELEMENT_TYPE_FNPTR

 ValueType: for ELEMENT_TYPE_VALUETYPE. The instance of that ValueType is actually laid out in

this object, so the size of the field is the size of that ValueType

Note that metadata specifying explicit structure layout can be valid for use on one platform but not on another,

since some of the rules specified here are dependent on platform-specific alignment rules.

A row in the FieldLayout table is created if the .field directive for the parent field has specified a field

offset (§16).

This contains informative text only

1. A FieldLayout table can contain zero or more or rows

2. The Type whose Fields are described by each row of the FieldLayout table shall have

Flags.ExplicitLayout (§23.1.15) set [ERROR]

3. Offset shall be zero or more [ERROR]

128 Partition II

4. Field shall index a valid row in the Field table [ERROR]

5. Flags.Static for the row in the Field table indexed by Field shall be non-static (i.e., zero 0)

[ERROR]

6. Among the rows owned by a given Type there shall be no duplicates, based upon Field. That is, a

given Field of a Type cannot be given two offsets. [ERROR]

7. Each Field of kind ObjectRef shall be naturally aligned within the Type [ERROR]

8. Among the rows owned by a given Type it is perfectly valid for several rows to have the same

value of Offset. ObjectRef and a valuetype cannot have the same offset [ERROR]

9. Every Field of an ExplicitLayout Type shall be given an offset; that is, it shall have a row in the

FieldLayout table [ERROR]

End informative text

22.17 FieldMarshal : 0x0D

The FieldMarshal table has two columns. It ‗links‘ an existing row in the Field or Param table, to information

in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as

parameter number 0) shall be marshalled when calling to or from unmanaged code via PInvoke dispatch.

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.

In order to execute such paths, the caller, on most platforms, would be installed with elevated security

permission. Once it invokes unmanaged code, it lies outside the regime that the CLI can check—it is simply
trusted not to violate the type system.

The FieldMarshal table has the following columns:

 Parent (an index into Field or Param table; more precisely, a HasFieldMarshal (§24.2.6) coded

index)

 NativeType (an index into the Blob heap)

For the detailed format of the 'blob', see §23.4

A row in the FieldMarshal table is created if the .field directive for the parent field has specified a

marshal attribute (§16.1).

This contains informative text only

1. A FieldMarshal table can contain zero or more rows

2. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say

which of these two tables each refers to) [ERROR]

3. NativeType shall index a non-null 'blob' in the Blob heap [ERROR]

4. No two rows shall point to the same parent. In other words, after the Parent values have been

decoded to determine whether they refer to the Field or the Param table, no two rows can point to
the same row in the Field table or in the Param table [ERROR]

5. The following checks apply to the MarshalSpec 'blob' (§23.4):

a. NativeIntrinsic shall be exactly one of the constant values in its production (§23.4)

[ERROR]

b. If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production

[ERROR]

c. If ARRAY, then ParamNum can be zero

d. If ARRAY, then ParamNum cannot be < 0 [ERROR]

 Partition II 129

e. If ARRAY, and ParamNum > 0, then Parent shall point to a row in the Param table, not in the

Field table [ERROR]

f. If ARRAY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters

supplied to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a

member [ERROR]

g. If ARRAY, then ElemMult shall be >= 1 [ERROR]

h. If ARRAY and ElemMult != 1 issue a warning, because it is probably a mistake [WARNING]

i. If ARRAY and ParamNum = 0, then NumElem shall be >= 1 [ERROR]

j. If ARRAY and ParamNum != 0 and NumElem != 0 then issue a warning, because it is

probably a mistake [WARNING]

End informative text

22.18 FieldRVA : 0x1D

The FieldRVA table has the following columns:

 RVA (a 4-byte constant)

 Field (an index into Field table)

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records

the RVA (Relative Virtual Address) within the image file at which this field‘s initial value is stored.

A row in the FieldRVA table is created for each static parent field that has specified the optional data

label §16). The RVA column is the relative virtual address of the data in the PE file (§16.3).

This contains informative text only

1. RVA shall be non-zero [ERROR]

2. RVA shall point into the current module‘s data area (not its metadata area) [ERROR]

3. Field shall index a valid row in the Field table [ERROR]

4. Any field with an RVA shall be a ValueType (not a Class or an Interface). Moreover, it shall not

have any private fields (and likewise for any of its fields that are themselves ValueTypes). (If

any of these conditions were breached, code could overlay that global static and access its private

fields.) Moreover, no fields of that ValueType can be Object References (into the GC heap)
[ERROR]

5. So long as two RVA-based fields comply with the previous conditions, the ranges of memory

spanned by the two ValueTypes can overlap, with no further constraints. This is not actually an

additional rule; it simply clarifies the position with regard to overlapped RVA-based fields

End informative text

22.19 File : 0x26

The File table has the following columns:

 Flags (a 4-byte bitmask of type FileAttributes, §23.1.6)

 Name (an index into the String heap)

 HashValue (an index into the Blob heap)

The rows of the File table result from .file directives in an Assembly (§6.2.3)

This contains informative text only

130 Partition II

1. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

2. Name shall index a non-empty string in the String heap. It shall be in the format

<filename>.<extension> (e.g., ―foo.dll‖, but not ―c:\utils\foo.dll‖) [ERROR]

3. HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

4. There shall be no duplicate rows; that is, rows with the same Name value [ERROR]

5. If this module contains a row in the Assembly table (that is, if this module ―holds the manifest‖)
then there shall not be any row in the File table for this module; i.e., no self-reference [ERROR]

6. If the File table is empty, then this, by definition, is a single-file assembly. In this case, the

ExportedType table should be empty [WARNING]

End informative text

22.20 GenericParam : 0x2A

The GenericParam table has the following columns:

 Number (the 2-byte index of the generic parameter, numbered left-to-right, from zero)

 Flags (a 2-byte bitmask of type GenericParamAttributes, §23.1.7)

 Owner (an index into the TypeDef or MethodDef table, specifying the Type or Method to which

this generic parameter applies; more precisely, a TypeOrMethodDef (§24.2.6) coded index)

 Name (a non-null index into the String heap, giving the name for the generic parameter. This is

purely descriptive and is used only by source language compilers and by Reflection)

The GenericParam table stores the generic parameters used in generic type definitions and generic method

definitions. These generic parameters can be constrained (i.e., generic arguments shall extend some class

and/or implement certain interfaces) or unconstrained. (Such constraints are stored in the

GenericParamConstraint table.)

Conceptually, each row in the GenericParam table is owned by one, and only one, row in either the TypeDef or

MethodDef tables.

[Example:

.class Dict`2<([mscorlib]System.IComparable) K, V>

The generic parameter K of class Dict is constrained to implement System.IComparable.

.method static void ReverseArray<T>(!!0[] 'array')

There is no constraint on the generic parameter T of the generic method ReverseArray.

end example]

This contains informative text only

1. GenericParam table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef or MethodDef table (i.e., no

row sharing) [ERROR]

3. Every generic type shall own one row in the GenericParam table for each of its generic

parameters [ERROR]

4. Every generic method shall own one row in the GenericParam table for each of its generic

parameters [ERROR]

Flags:

 Partition II 131

 Can hold the value Covariant or Contravariant, but only if the owner row corresponds to a

generic interface, or a generic delegate class. [ERROR]

 Otherwise, shall hold the value None indicating nonvariant (i.e., where the parameter is

nonvariant or the owner is a non delegate class, a value-type, or a generic method) [ERROR]

If Flags == Covariant then the corresponding generic parameter can appear in a type definition only as

[ERROR]:

 The result type of a method

 A generic parameter to an inherited interface

If Flags == Contravariant then the corresponding generic parameter can appear in a type definition only

as the argument to a method [ERROR]

Number shall have a value >= 0 and < the number of generic parameters in owner type or method.

[ERROR]

Successive rows of the GenericParam table that are owned by the same method shall be ordered by

increasing Number value; there shall be no gaps in the Number sequence [ERROR]

Name shall be non-null and index a string in the String heap [ERROR]

[Rationale: Otherwise, Reflection output is not fully usable. end rationale]

There shall be no duplicate rows based upon Owner+Name [ERROR] [Rationale: Otherwise, code

using Reflection cannot disambiguate the different generic parameters. end rationale]

There shall be no duplicate rows based upon Owner+Number [ERROR]

End informative text

22.21 GenericParamConstraint : 0x2C

The GenericParamConstraint table has the following columns:

 Owner (an index into the GenericParam table, specifying to which generic parameter this row
refers)

 Constraint (an index into the TypeDef, TypeRef, or TypeSpec tables, specifying from which class

this generic parameter is constrained to derive; or which interface this generic parameter is

constrained to implement; more precisely, a TypeDefOrRef (§24.2.6) coded index)

The GenericParamConstraint table records the constraints for each generic parameter. Each generic parameter

can be constrained to derive from zero or one class. Each generic parameter can be constrained to implement

zero or more interfaces.

Conceptually, each row in the GenericParamConstraint table is ‗owned‘ by a row in the GenericParam table.

All rows in the GenericParamConstraint table for a given Owner shall refer to distinct constraints.

Note that if Constraint is a TypeRef to System.ValueType, then it means the constraint type shall be

System.ValueType, or one of its sub types. However, since System.ValueType itself is a reference type, this
particular mechanism does not guarantee that the type is a non-reference type.

This contains informative text only

1. The GenericParamConstraint table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the GenericParam table (i.e., no row sharing)

[ERROR]

3. Each row in the GenericParam table shall ‗own‘ a separate row in the GenericParamConstraint

table for each constraint that generic parameter has [ERROR]

132 Partition II

4. All of the rows in the GenericParamConstraint table that are owned by a given row in the

GenericParam table shall form a contiguous range (of rows) [ERROR]

5. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or one

row in the GenericParamConstraint table corresponding to a class constraint. [ERROR]

6. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or more

rows in the GenericParamConstraint table corresponding to an interface constraint. [ERROR]

7. There shall be no duplicate rows based upon Owner+Constraint [ERROR]

8. Constraint shall not reference System.Void. [ERROR]

End informative text

22.22 ImplMap : 0x1C

The ImplMap table holds information about unmanaged methods that can be reached from managed code,

using PInvoke dispatch.

Each row of the ImplMap table associates a row in the MethodDef table (MemberForwarded) with the name of

a routine (ImportName) in some unmanaged DLL (ImportScope).

[Note: A typical example would be: associate the managed Method stored in row N of the Method table (so
MemberForwarded would have the value N) with the routine called ―GetEnvironmentVariable‖ (the string

indexed by ImportName) in the DLL called ―kernel32‖ (the string in the ModuleRef table indexed by

ImportScope). The CLI intercepts calls to managed Method number N, and instead forwards them as calls to

the unmanaged routine called ―GetEnvironmentVariable‖ in ―kernel32.dll‖ (including marshalling any

arguments, as required)

The CLI does not support this mechanism to access fields that are exported from a DLL, only methods. end

note]

The ImplMap table has the following columns:

 MappingFlags (a 2-byte bitmask of type PInvokeAttributes, §23.1.7)

 MemberForwarded (an index into the Field or MethodDef table; more precisely, a

MemberForwarded (§24.2.6) coded index). However, it only ever indexes the MethodDef table,
since Field export is not supported.

 ImportName (an index into the String heap)

 ImportScope (an index into the ModuleRef table)

A row is entered in the ImplMap table for each parent Method (§15.5) that is defined with a .pinvokeimpl

interoperation attribute specifying the MappingFlags, ImportName, and ImportScope.

This contains informative text only

1. ImplMap can contain zero or more rows

2. MappingFlags shall have only those values set that are specified [ERROR]

3. MemberForwarded shall index a valid row in the MethodDef table [ERROR]

4. The MappingFlags.CharSetMask (§23.1.7) in the row of the MethodDef table indexed by

MemberForwarded shall have at most one of the following bits set: CharSetAnsi,

CharSetUnicode, or CharSetAuto (if none is set, the default is CharSetNotSpec) [ERROR]

5. ImportName shall index a non-empty string in the String heap [ERROR]

6. ImportScope shall index a valid row in the ModuleRef table [ERROR]

 Partition II 133

7. The row indexed in the MethodDef table by MemberForwarded shall have its Flags.PinvokeImpl

= 1, and Flags.Static = 1 [ERROR]

End informative text

22.23 InterfaceImpl : 0x09

The InterfaceImpl table has the following columns:

 Class (an index into the TypeDef table)

 Interface (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef
(§24.2.6) coded index)

The InterfaceImpl table records the interfaces a type implements explicitly. Conceptually, each row in the

InterfaceImpl table indicates that Class implements Interface.

This contains informative text only

1. The InterfaceImpl table can contain zero or more rows

2. Class shall be non-null [ERROR]

3. If Class is non-null, then:

a. Class shall index a valid row in the TypeDef table [ERROR]

b. Interface shall index a valid row in the TypeDef or TypeRef table [ERROR]

c. The row in the TypeDef, TypeRef, or TypeSpec table indexed by Interface shall be an

interface (Flags.Interface = 1), not a Class or ValueType [ERROR]

4. There should be no duplicates in the InterfaceImpl table, based upon non-null Class and Interface

values [WARNING]

5. There can be many rows with the same value for Class (since a class can implement many
interfaces)

6. There can be many rows with the same value for Interface (since many classes can implement the

same interface)

End informative text

22.24 ManifestResource : 0x28

The ManifestResource table has the following columns:

 Offset (a 4-byte constant)

 Flags (a 4-byte bitmask of type ManifestResourceAttributes, §23.1.9)

 Name (an index into the String heap)

 Implementation (an index into a File table, a AssemblyRef table, or null; more precisely, an

Implementation (§24.2.6) coded index)

The Offset specifies the byte offset within the referenced file at which this resource record begins. The

Implementation specifies which file holds this resource. The rows in the table result from .mresource

directives on the Assembly (§6.2.2).

This contains informative text only

1. The ManifestResource table can contain zero or more rows

134 Partition II

2. Offset shall be a valid offset into the target file, starting from the Resource entry in the CLI

header [ERROR]

3. Flags shall have only those values set that are specified [ERROR]

4. The VisibilityMask (§23.1.9) subfield of Flags shall be one of Public or Private [ERROR]

5. Name shall index a non-empty string in the String heap [ERROR]

6. Implementation can be null or non-null (if null, it means the resource is stored in the current file)

7. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the

Resource entry in the CLI header [ERROR]

8. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table

[ERROR]

9. There shall be no duplicate rows, based upon Name [ERROR]

10. If the resource is an index into the File table, Offset shall be zero [ERROR]

End informative text

22.25 MemberRef : 0x0A

The MemberRef table combines two sorts of references, to Methods and to Fields of a class, known as

‗MethodRef‘ and ‗FieldRef‘, respectively. The MemberRef table has the following columns:

 Class (an index into the MethodDef, ModuleRef,TypeDef, TypeRef, or TypeSpec tables; more

precisely, a MemberRefParent (§24.2.6) coded index)

 Name (an index into the String heap)

 Signature (an index into the Blob heap)

An entry is made into the MemberRef table whenever a reference is made in the CIL code to a method or field

which is defined in another module or assembly. (Also, an entry is made for a call to a method with a VARARG

signature, even when it is defined in the same module as the call site.)

This contains informative text only

1. Class shall be one of the following: [ERROR]

a. a TypeRef token, if the class that defines the member is defined in another module. (Note

that it is unusual, but valid, to use a TypeRef token when the member is defined in this same

module, in which case, its TypeDef token can be used instead.)

b. a ModuleRef token, if the member is defined, in another module of the same assembly, as a

global function or variable.

c. a MethodDef token, when used to supply a call-site signature for a vararg method that is

defined in this module. The Name shall match the Name in the corresponding MethodDef
row. The Signature shall match the Signature in the target method definition [ERROR]

d. a TypeSpec token, if the member is a member of a generic type

2. Class shall not be null (as this would indicate an unresolved reference to a global function or

variable) [ERROR]

3. Name shall index a non-empty string in the String heap [ERROR]

4. The Name string shall be a valid CLS identifier [CLS]

5. Signature shall index a valid field or method signature in the Blob heap. In particular, it shall

embed exactly one of the following ‗calling conventions‘: [ERROR]

a. DEFAULT (0x0)

 Partition II 135

b. VARARG (0x5)

c. FIELD (0x6)

d. GENERIC (0x10)

6. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class,

Name, and Signature [WARNING]

7. Signature shall not have the VARARG (0x5) calling convention [CLS]

8. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-

identifier-rules. (In particular, note that the return type and whether parameters are marked

ELEMENT_TYPE_BYREF (§23.1.16) are ignored in the CLS. For example, .method int32 M()and

.method float64 M() result in duplicate rows by CLS rules. Similarly, .method void

N(int32 i)and .method void N(int32& i)also result in duplicate rows by CLS rules.) [CLS]

9. If Class and Name resolve to a field, then that field shall not have a value of CompilerControlled

(§23.1.5) in its Flags.FieldAccessMask subfield [ERROR]

10. If Class and Name resolve to a method, then that method shall not have a value of

CompilerControlled in its Flags.MemberAccessMask (§23.1.10) subfield [ERROR]

11. The type containing the definition of a MemberRef shall be a TypeSpec representing an

instantiated type.

End informative text

22.26 MethodDef : 0x06

The MethodDef table has the following columns:

 RVA (a 4-byte constant)

 ImplFlags (a 2-byte bitmask of type MethodImplAttributes, §23.1.10)

 Flags (a 2-byte bitmask of type MethodAttributes, §23.1.10)

 Name (an index into the String heap)

 Signature (an index into the Blob heap)

 ParamList (an index into the Param table). It marks the first of a contiguous run of Parameters

owned by this method. The run continues to the smaller of:

o the last row of the Param table

o the next run of Parameters, found by inspecting the ParamList of the next row in the
MethodDef table

Conceptually, every row in the MethodDef table is owned by one, and only one, row in the TypeDef table.

The rows in the MethodDef table result from .method directives (§15). The RVA column is computed when

the image for the PE file is emitted and points to the COR_ILMETHOD structure for the body of the method

(§25.4)

[Note: If Signature is GENERIC (0x10), the generic arguments are described in the GenericParam table (§22.20).

end note]

This contains informative text only

1. The MethodDef table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]

3. ImplFlags shall have only those values set that are specified [ERROR]

136 Partition II

4. Flags shall have only those values set that are specified [ERROR]

5. If Name is .ctor and the method is marked SpecialName, there shall not be a row in the

GenericParam table which has this MethodDef as its owner. [ERROR]

6. The MemberAccessMask (§23.1.10) subfield of Flags shall contain precisely one of

CompilerControlled, Private, FamANDAssem, Assem, Family, FamORAssem, or Public [ERROR]

7. The following combined bit settings in Flags are invalid [ERROR]

a. Static | Final

b. Static | Virtual

c. Static | NewSlot

d. Final | Abstract

e. Abstract | PinvokeImpl

f. CompilerControlled | SpecialName

g. CompilerControlled | RTSpecialName

8. An abstract method shall be virtual. So, if Flags.Abstract = 1 then Flags.Virtual shall also be 1

[ERROR]

9. If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1 [ERROR]

10. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]

o this Method owns at least row in the DeclSecurity table

o this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute

11. If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall

be 1 [ERROR]

12. If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then

Flags.HasSecurity shall be 1 [ERROR]

13. A Method can have a custom attribute called DynamicSecurityMethodAttribute, but this has no

effect whatsoever upon the value of its Flags.HasSecurity

14. Name shall index a non-empty string in the String heap [ERROR]

15. Interfaces cannot have instance constructors. So, if this Method is owned by an Interface, then its

Name cannot be .ctor [ERROR]

16. The Name string shall be a valid CLS identifier (unless Flags.RTSpecialName is set - for

example, .cctor is valid) [CLS]

17. Signature shall index a valid method signature in the Blob heap [ERROR]

18. If Flags.CompilerControlled = 1, then this row is ignored completely in duplicate checking

19. If the owner of this method is the internally-generated type called <Module>, it denotes that this

method is defined at module scope. [Note: In C++, the method is called global and can be

referenced only within its compiland, from its point of declaration forwards. end note] In this
case:

a. Flags.Static shall be 1 [ERROR]

b. Flags.Abstract shall be 0 [ERROR]

c. Flags.Virtual shall be 0 [ERROR]

d. Flags.MemberAccessMask subfield shall be one of CompilerControlled, Public, or

Private [ERROR]

 Partition II 137

e. module-scope methods are not allowed [CLS]

20. It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless

they are boxed). So, if the owner of this method is a ValueType then the method cannot be

synchronized. That is, ImplFlags.Synchronized shall be 0 [ERROR]

21. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature

(where owner is the owning row in the TypeDef table). (Note that the Signature encodes whether
or not the method is generic, and for generic methods, it encodes the number of generic

parameters.) (Note, however, that if Flags.CompilerControlled = 1, then this row is excluded

from duplicate checking) [ERROR]

22. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature,

where Name fields are compared using CLS conflicting-identifier-rules; also, the Type defined in

the signatures shall be different. So, for example, "int i" and "float i" would be considered

CLS duplicates; also, the return type of the method is ignored (Note, however, that if

Flags.CompilerControlled = 1, this row is excluded from duplicate checking as explained above.)

[CLS]

23. If Final, NewSlot, or Strict are set in Flags, then Flags.Virtual shall also be set [ERROR]

24. If Flags.PInvokeImpl is set, then Flags.Virtual shall be 0 [ERROR]

25. If Flags.Abstract != 1 then exactly one of the following shall also be true: [ERROR]

o RVA != 0

o Flags.PInvokeImpl = 1

o ImplFlags.Runtime = 1

26. If the method is CompilerControlled, then the RVA shall be non-zero or marked with

PinvokeImpl = 1 [ERROR]

27. Signature shall have exactly one of the following managed calling conventions [ERROR]

a. DEFAULT (0x0)

b. VARARG (0x5)

c. GENERIC (0x10)

28. Signature shall have the calling convention DEFAULT (0x0) or GENERIC (0x10). [CLS]

29. Signature: If and only if the method is not Static then the calling convention byte in Signature

has its HASTHIS (0x20) bit set [ERROR]

30. Signature: If the method is static, then the HASTHIS (0x20) bit in the calling convention shall

be 0 [ERROR]

31. If EXPLICITTHIS (0x40) in the signature is set, then HASTHIS (0x20) shall also be set (note that if

EXPLICITTHIS is set, then the code is not verifiable) [ERROR]

32. The EXPLICITTHIS (0x40) bit can be set only in signatures for function pointers: signatures whose

MethodDefSig is preceded by FNPTR (0x1B) [ERROR]

33. If RVA = 0, then either: [ERROR]

o Flags.Abstract = 1, or

o ImplFlags.Runtime = 1, or

o Flags.PinvokeImpl = 1, or

34. If RVA != 0, then: [ERROR]

a. Flags.Abstract shall be 0, and

138 Partition II

b. ImplFlags.CodeTypeMask shall have exactly one of the following values: Native, CIL, or

Runtime, and

c. RVA shall point into the CIL code stream in this file

35. If Flags.PinvokeImpl = 1 then [ERROR]

o RVA = 0 and the method owns a row in the ImplMap table

36. If Flags.RTSpecialName = 1 then Name shall be one of: [ERROR]

a. .ctor (an object constructor method)

b. .cctor (a class constructor method)

37. Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set

[ERROR]

38. If Name = .ctor (an object constructor method) then:

a. return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16) [ERROR]

b. Flags.Static shall be 0 [ERROR]

c. Flags.Abstract shall be 0 [ERROR]

d. Flags.Virtual shall be 0 [ERROR]

e. ‗Owner‘ type shall be a valid Class or ValueType (not <Module> and not an Interface) in the

TypeDef table [ERROR]

f. there can be zero or more .ctors for any given ‗owner‘

39. If Name = .cctor (a class constructor method) then:

a. the return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16) [ERROR]

b. Signature shall have DEFAULT (0x0) for its calling convention [ERROR]

c. there shall be no parameters supplied in Signature [ERROR]

d. Flags.Static shall be set [ERROR]

e. Flags.Virtual shall be clear [ERROR]

f. Flags.Abstract shall be clear [ERROR]

40. Among the set of methods owned by any given row in the TypeDef table there can only be 0 or 1

methods named .cctor [ERROR]

End informative text

22.27 MethodImpl : 0x19

MethodImpl tables let a compiler override the default inheritance rules provided by the CLI. Their original use

was to allow a class C, that inherited method M from both interfaces I and J, to provide implementations for

both methods (rather than have only one slot for M in its vtable). However, MethodImpls can be used for other

reasons too, limited only by the compiler writer‘s ingenuity within the constraints defined in the Validation

rules below.

In the example above, Class specifies C, MethodDeclaration specifies I::M, MethodBody specifies the method

which provides the implementation for I::M (either a method body within C, or a method body implemented by

a base class of C).

The MethodImpl table has the following columns:

 Class (an index into the TypeDef table)

 Partition II 139

 MethodBody (an index into the MethodDef or MemberRef table; more precisely, a

MethodDefOrRef (§24.2.6) coded index)

 MethodDeclaration (an index into the MethodDef or MemberRef table; more precisely, a

MethodDefOrRef (§24.2.6) coded index)

ILAsm uses the .override directive to specify the rows of the MethodImpl table (§10.3.2 and §15.4.1).

This contains informative text only

1. The MethodImpl table can contain zero or more rows

2. Class shall index a valid row in the TypeDef table [ERROR]

3. MethodBody shall index a valid row in the MethodDef or MemberRef table [ERROR]

4. The method indexed by MethodDeclaration shall have Flags.Virtual set [ERROR]

5. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0

[ERROR]

6. The method indexed by MethodBody shall be a member of Class or some base class of Class

(MethodImpls do not allow compilers to ‗hook‘ arbitrary method bodies) [ERROR]

7. The method indexed by MethodBody shall be virtual [ERROR]

8. The method indexed by MethodBody shall have its Method.RVA != 0 (cannot be an unmanaged

method reached via PInvoke, for example) [ERROR]

9. MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends

chain) or in the interface tree of Class (reached via its InterfaceImpl entries) [ERROR]

10. The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)

[ERROR]

11. If MethodDeclaration has the Strict flag set, the method indexed by MethodDeclaration shall be

accessible to Class. [ERROR]

12. The method signature defined by MethodBody shall match those defined by MethodDeclaration

[ERROR]

13. There shall be no duplicate rows, based upon Class+MethodDeclaration [ERROR]

End informative text

22.28 MethodSemantics : 0x18

The MethodSemantics table has the following columns:

 Semantics (a 2-byte bitmask of type MethodSemanticsAttributes, §23.1.12)

 Method (an index into the MethodDef table)

 Association (an index into the Event or Property table; more precisely, a HasSemantics (§24.2.6)

coded index)

The rows of the MethodSemantics table are filled by .property (§17) and .event directives (§18).

(See §22.13 for more information.)

This contains informative text only

1. MethodSemantics table can contain zero or more rows

2. Semantics shall have only those values set that are specified [ERROR]

3. Method shall index a valid row in the MethodDef table, and that row shall be for a method defined

on the same class as the Property or Event this row describes [ERROR]

140 Partition II

4. All methods for a given Property or Event shall have the same accessibility (ie the

MemberAccessMask subfield of their Flags row) and cannot be CompilerControlled [CLS]

5. Semantics: constrained as follows:

o If this row is for a Property, then exactly one of Setter, Getter, or Other shall be set

[ERROR]

o If this row is for an Event, then exactly one of AddOn, RemoveOn, Fire, or Other shall
be set [ERROR]

6. If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the MethodDef

table indexed by Method shall take a Delegate as a parameter, and return void [ERROR]

7. If this row is for an Event, and its Semantics is Fire, then the row indexed in the MethodDef table

by Method can return any type

8. For each property, there shall be a setter, or a getter, or both [CLS]

9. Any getter method for a property whose Name is xxx shall be called get_xxx [CLS]

10. Any setter method for a property whose Name is xxx shall be called set_xxx [CLS]

11. If a property provides both getter and setter methods, then these methods shall have the same

value in the Flags.MemberAccessMask subfield [CLS]

12. If a property provides both getter and setter methods, then these methods shall have the same
value for their Method.Flags.Virtual [CLS]

13. Any getter and setter methods shall have Method.Flags.SpecialName = 1 [CLS]

14. Any getter method shall have a return type which matches the signature indexed by the

Property.Type field [CLS]

15. The last parameter for any setter method shall have a type which matches the signature indexed

by the Property.Type field [CLS]

16. Any setter method shall have return type ELEMENT_TYPE_VOID (§23.1.16) in Method.Signature

[CLS]

17. If the property is indexed, the indexes for getter and setter shall agree in number and type [CLS]

18. Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx

(<DelegateType> handler) [CLS]

19. Any RemoveOn method for an event whose Name is xxx shall have the signature: void

remove_xxx(<DelegateType> handler) [CLS]

20. Any Fire method for an event whose Name is xxx shall have the signature: void

raise_xxx(Event e) [CLS]

End informative text

22.29 MethodSpec : 0x2B

The MethodSpec table has the following columns:

 Method (an index into the MethodDef or MemberRef table, specifying to which generic method

this row refers; that is, which generic method this row is an instantiation of; more precisely, a

MethodDefOrRef (§24.2.6) coded index)

 Instantiation (an index into the Blob heap (§23.2.15), holding the signature of this instantiation)

The MethodSpec table records the signature of an instantiated generic method.

Each unique instantiation of a generic method (i.e., a combination of Method and Instantiation) shall be
represented by a single row in the table.

 Partition II 141

This contains informative text only

1. The MethodSpec table can contain zero or more rows

2. One or more rows can refer to the same row in the MethodDef or MemberRef table. (There can be

multiple instantiations of the same generic method.)

3. The signature stored at Instantiation shall be a valid instantiation of the signature of the generic

method stored at Method [ERROR]

4. There shall be no duplicate rows based upon Method+Instantiation [ERROR]

End informative text

22.30 Module : 0x00

The Module table has the following columns:

 Generation (a 2-byte value, reserved, shall be zero)

 Name (an index into the String heap)

 Mvid (an index into the Guid heap; simply a Guid used to distinguish between two versions of the

same module)

 EncId (an index into the Guid heap; reserved, shall be zero)

 EncBaseId (an index into the Guid heap; reserved, shall be zero)

The Mvid column shall index a unique GUID in the GUID heap (§24.2.5) that identifies this instance of the

module. The Mvid can be ignored on read by conforming implementations of the CLI. The Mvid should be
newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or another

compatible algorithm.

[Note: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using

its hexadecimal encoding. A GUID can be generated by several well-known algorithms including those used

for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in

COM. end note]

[Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside

the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another. end

rationale]

The Generation, EncId, and EncBaseId columns can be written as zero, and can be ignored by conforming

implementations of the CLI. The rows in the Module table result from .module directives in the Assembly

(§6.4).

This contains informative text only

1. The Module table shall contain one and only one row [ERROR]

2. Name shall index a non-empty string. This string should match exactly any corresponding

ModuleRef.Name string that resolves to this module. [ERROR]

3. Mvid shall index a non-null GUID in the Guid heap [ERROR]

End informative text

22.31 ModuleRef : 0x1A

The ModuleRef table has the following column:

 Name (an index into the String heap)

142 Partition II

The rows in the ModuleRef table result from .module extern directives in the Assembly (§6.5).

This contains informative text only

1. Name shall index a non-empty string in the String heap. This string shall enable the CLI to locate

the target module (typically, it might name the file used to hold the module) [ERROR]

2. There should be no duplicate rows [WARNING]

3. Name should match an entry in the Name column of the File table. Moreover, that entry shall

enable the CLI to locate the target module (typically it might name the file used to hold the

module) [ERROR]

End informative text

22.32 NestedClass : 0x29

The NestedClass table has the following columns:

 NestedClass (an index into the TypeDef table)

 EnclosingClass (an index into the TypeDef table)

NestedClass is defined as lexically ‗inside‘ the text of its enclosing Type.

This contains informative text only

The NestedClass table records which Type definitions are nested within which other Type definition. In a

typical high-level language, the nested class is defined as lexically ‗inside‘ the text of its enclosing Type

1. The NestedClass table can contain zero or more rows

2. NestedClass shall index a valid row in the TypeDef table [ERROR]

3. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to

index the TypeRef table) [ERROR]

4. There should be no duplicate rows (ie same values for NestedClass and EnclosingClass)

[WARNING]

5. A given Type can only be nested by one encloser. So, there cannot be two rows with the same

value for NestedClass, but different value for EnclosingClass [ERROR]

6. A given Type can ‗own‘ several different nested Types, so it is perfectly valid to have two or

more rows with the same value for EnclosingClass but different values for NestedClass

End informative text

22.33 Param : 0x08

The Param table has the following columns:

 Flags (a 2-byte bitmask of type ParamAttributes, §23.1.13)

 Sequence (a 2-byte constant)

 Name (an index into the String heap)

Conceptually, every row in the Param table is owned by one, and only one, row in the MethodDef table

The rows in the Param table result from the parameters in a method declaration (§15.4), or from a .param

attribute attached to a method (§15.4.1).

This contains informative text only

 Partition II 143

1. Param table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the MethodDef table [ERROR]

3. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Sequence shall have a value >= 0 and <= number of parameters in owner method. A Sequence

value of 0 refers to the owner method‘s return type; its parameters are then numbered from 1

onwards [ERROR]

5. Successive rows of the Param table that are owned by the same method shall be ordered by

increasing Sequence value - although gaps in the sequence are allowed [WARNING]

6. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table [ERROR]

7. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row

[ERROR]

8. parameters cannot be given default values, so Flags.HasDefault shall be 0 [CLS]

9. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table

[ERROR]

10. Name can be null or non-null

11. If Name is non-null, then it shall index a non-empty string in the String heap [WARNING]

End informative text

22.34 Property : 0x17

Properties within metadata are best viewed as a means to gather together collections of methods defined on a

class, give them a name, and not much else. The methods are typically get_ and set_ methods, already defined

on the class, and inserted like any other methods into the MethodDef table. The association is held together by

three separate tables, as shown below:

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing

row 4 of the Property table on the right – the row for a property called Foo. This setup establishes that

MyClass has a property called Foo. But what methods in the MethodDef table are gathered together as

‗belonging‘ to property Foo? That association is contained in the MethodSemantics table – its row 2 indexes

property Foo to the right, and row 2 in the MethodDef table to the left (a method called get_Foo). Also, row 3
of the MethodSemantics table indexes Foo to the right, and row 3 in the MethodDef table to the left (a method

called set_Foo). As the shading suggests, MyClass has another property, called Bar, with two methods,

get_Bar and set_Bar.

144 Partition II

Property tables do a little more than group together existing rows from other tables. The Property table has

columns for Flags, Name (eg Foo and Bar in the example here) and Type. In addition, the MethodSemantics

table has a column to record whether the method it points at is a set_, a get_ or other.

[Note: The CLS (see Partition I) refers to instance, virtual, and static properties. The signature of a property

(from the Type column) can be used to distinguish a static property, since instance and virtual properties will

have the ―HASTHIS‖ bit set in the signature (§23.2.1) while a static property will not. The distinction between
an instance and a virtual property depends on the signature of the getter and setter methods, which the CLS

requires to be either both virtual or both instance. end note]

The Property (0x17) table has the following columns:

 Flags (a 2-byte bitmask of type PropertyAttributes, §23.1.14)

 Name (an index into the String heap)

 Type (an index into the Blob heap) (The name of this column is misleading. It does not index a

TypeDef or TypeRef table—instead it indexes the signature in the Blob heap of the Property)

This contains informative text only

1. Property table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)

[ERROR]

3. PropFlags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Name shall index a non-empty string in the String heap [ERROR]

5. The Name string shall be a valid CLS identifier [CLS]

6. Type shall index a non-null signature in the Blob heap [ERROR]

7. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading
byte is 0x8). Apart from this leading byte, the signature is the same as the property‘s get_ method

[ERROR]

8. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based

upon Name+Type [ERROR]

9. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS

conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type – a class

cannot have two properties, "int Foo" and "String Foo", for example) [CLS]

End informative text

22.35 PropertyMap : 0x15

The PropertyMap table has the following columns:

 Parent (an index into the TypeDef table)

 PropertyList (an index into the Property table). It marks the first of a contiguous run of
Properties owned by Parent. The run continues to the smaller of:

o the last row of the Property table

o the next run of Properties, found by inspecting the PropertyList of the next row in this

PropertyMap table

The PropertyMap and Property tables result from putting the .property directive on a class (§17).

This contains informative text only

1. PropertyMap table can contain zero or more rows

Partition%20I%20Architecture.doc

 Partition II 145

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‗pointer‘ to the

start of its property list) [ERROR]

3. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in

the Property table) [ERROR]

End informative text

22.36 StandAloneSig : 0x11

Signatures are stored in the metadata Blob heap. In most cases, they are indexed by a column in some table—
Field.Signature, Method.Signature, MemberRef.Signature, etc. However, there are two cases that require a

metadata token for a signature that is not indexed by any metadata table. The StandAloneSig table fulfils this

need. It has just one column, which points to a Signature in the Blob heap.

The signature shall describe either:

 a method – code generators create a row in the StandAloneSig table for each occurrence of a calli
CIL instruction. That row indexes the call-site signature for the function pointer operand of the

calli instruction

 local variables – code generators create one row in the StandAloneSig table for each method, to

describe all of its local variables. The .locals directive (§15.4.1) in ILAsm generates a row in

the StandAloneSig table.

TheStandAloneSig table has the following column:

 Signature (an index into the Blob heap)

[Example:

// On encountering the calli instruction, ilasm generates a signature

// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Param1 = int32),

// indexed by the StandAloneSig table:

.assembly Test {}

.method static int32 AddTen(int32)

{ ldarg.0

 ldc.i4 10

 add

 ret

}

.class Test

{ .method static void main()

 { .entrypoint

 ldc.i4.1

 ldftn int32 AddTen(int32)

 calli int32(int32)

 pop

 ret

 }

}

end example]

This contains informative text only

1. The StandAloneSig table can contain zero or more rows

2. Signature shall index a valid signature in the Blob heap [ERROR]

3. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature [ERROR]

4. Duplicate rows are allowed

146 Partition II

End informative text

22.37 TypeDef : 0x02

The TypeDef table has the following columns:

 Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15)

 TypeName (an index into the String heap)

 TypeNamespace (an index into the String heap)

 Extends (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef
(§24.2.6) coded index)

 FieldList (an index into the Field table; it marks the first of a contiguous run of Fields owned by

this Type). The run continues to the smaller of:

o the last row of the Field table

o the next run of Fields, found by inspecting the FieldList of the next row in this

TypeDef table

 MethodList (an index into the MethodDef table; it marks the first of a continguous run of Methods

owned by this Type). The run continues to the smaller of:

o the last row of the MethodDef table

o the next run of Methods, found by inspecting the MethodList of the next row in this

TypeDef table

The first row of the TypeDef table represents the pseudo class that acts as parent for functions and variables

defined at module scope.

Note that any type shall be one, and only one, of

 Class (Flags.Interface = 0, and derives ultimately from System.Object)

 Interface (Flags.Interface = 1)

 Value type, derived ultimately from System.ValueType

For any given type, there are two separate and distinct chains of pointers to other types (the pointers are

actually implemented as indexes into metadata tables). The two chains are:

 Extension chain – defined via the Extends column of the TypeDef table. Typically, a derived

Class extends a base Class (always one, and only one, base Class)

 Interface chains – defined via the InterfaceImpl table. Typically, a Class implements zero, one or
more Interfaces

These two chains (extension and interface) are always kept separate in metadata. The Extends chain represents

one-to-one relations—that is, one Class extends (or ‗derives from‘) exactly one other Class (called its

immediate base class). The Interface chains can represent one-to-many relations—that is, one Class might well

implement two or more Interfaces.

An interface can also implement one or more other interfaces—metadata stores those links via the

InterfaceImpl table (the nomenclature is a little inappropriate here—there is no ―implementation‖ involved;

perhaps a clearer name might have been Interface table, or InterfaceInherit table)

Another slightly specialized type is a nested type which is declared in ILAsm as lexically nested within an

enclosing type declaration. Whether a type is nested can be determined by the value of its Flags.Visibility sub-

field – it shall be one of the set {NestedPublic, NestedPrivate, NestedFamily, NestedAssembly,
NestedFamANDAssem, NestedFamORAssem}.

 Partition II 147

If a type is generic, its parameters are defined in the GenericParam table (§22.20). Entries in the

GenericParam table reference entries in the TypeDef table; there is no reference from the TypeDef table to the

GenericParam table.

This contains informative text only

The roots of the inheritance hierarchies look like this:

There is one system-defined root, System.Object. All Classes and ValueTypes shall derive, ultimately, from

System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth

required. This Extends inheritance chain is shown with heavy arrows.

(See below for details of the System.Delegate Class)

Interfaces do not inherit from one another; however, they can have zero or more required interfaces, which

shall be implemented. The Interface requirement chain is shown as light, dashed arrows. This includes links

between Interfaces and Classes/ValueTypes – where the latter are said to implement that interface or interfaces.

Regular ValueTypes (i.e., excluding Enums – see later) are defined as deriving directly from

System.ValueType. Regular ValueTypes cannot be derived to a depth of more than one. (Another way to state

this is that user-defined ValueTypes shall be sealed.) User-defined Enums shall derive directly from

System.Enum. Enums cannot be derived to a depth of more than one below System.Enum. (Another way to
state this is that user-defined Enums shall be sealed.) System.Enum derives directly from System.ValueType.

User-defined delegates derive from System.Delegate. Delegates cannot be derived to a depth of more than

one.

For the directives to declare types see §9.

1. A TypeDef table can contain one or more rows.

2. Flags:

a. Flags shall have only those values set that are specified [ERROR]

b. can set 0 or 1 of SequentialLayout and ExplicitLayout (if none set, then defaults to

AutoLayout) [ERROR]

c. can set 0 or 1 of UnicodeClass and AutoClass (if none set, then defaults to AnsiClass)

[ERROR]

d. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:
[ERROR]

 this Type owns at least one row in the DeclSecurity table

148 Partition II

 this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute

e. If this Type owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall

be 1 [ERROR]

f. If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then

Flags.HasSecurity shall be 1 [ERROR]

g. Note that it is valid for an Interface to have HasSecurity set. However, the security system
ignores any permission requests attached to that Interface

3. Name shall index a non-empty string in the String heap [ERROR]

4. The TypeName string shall be a valid CLS identifier [CLS]

5. TypeNamespace can be null or non-null

6. If non-null, then TypeNamespace shall index a non-empty string in the String heap [ERROR]

7. If non-null, TypeNamespace‘s string shall be a valid CLS Identifier [CLS]

8. Every Class (with the exception of System.Object and the special class <Module>) shall extend

one, and only one, other Class - so Extends for a Class shall be non-null [ERROR]

9. System.Object shall have an Extends value of null [ERROR]

10. System.ValueType shall have an Extends value of System.Object [ERROR]

11. With the exception of System.Object and the special class <Module>, for any Class, Extends shall
index a valid row in the TypeDef, TypeRef, or TypeSpec table, where valid means 1 <= row <=

rowcount. In addition, that row itself shall be a Class (not an Interface or ValueType) In

addition, that base Class shall not be sealed (its Flags.Sealed shall be 0) [ERROR]

12. A Class cannot extend itself, or any of its children (i.e., its derived Classes), since this would

introduce loops in the hierarchy tree [ERROR] (For generic types, see §9.1 and §9.2.)

13. An Interface never extends another Type - so Extends shall be null (Interfaces do implement other

Interfaces, but recall that this relationship is captured via the InterfaceImpl table, rather than the

Extends column) [ERROR]

14. FieldList can be null or non-null

15. A Class or Interface can ‗own‘ zero or more fields

16. A ValueType shall have a non-zero size - either by defining at least one field, or by providing a

non-zero ClassSize [ERROR]

17. If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row

<= rowcount+1 [ERROR]

18. MethodList can be null or non-null

19. A Type can ‗own‘ zero or more methods

20. The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes) [ERROR]

21. If MethodList is non-null, it shall index a valid row in the MethodDef table, where valid means 1

<= row <= rowcount+1 [ERROR]

22. A Class which has one or more abstract methods cannot be instantiated, and shall have

Flags.Abstract = 1. Note that the methods owned by the class include all of those inherited from

its base class and interfaces it implements, plus those defined via its MethodList. (The CLI shall

analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but

has Flags.Abstract = 0, it will throw an exception) [ERROR]

23. An Interface shall have Flags.Abstract = 1 [ERROR]

24. It is valid for an abstract Type to have a constructor method (ie, a method named .ctor)

 Partition II 149

25. Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every

method its contract requires. Its methods can be inherited from its base class, from the interfaces

it implements, or defined by itself. The implementations can be inherited from its base class, or

defined by itself [ERROR]

26. An Interface (Flags.Interface = 1) can own static fields (Field.Static = 1) but cannot own instance

fields (Field.Static = 0) [ERROR]

27. An Interface cannot be sealed (if Flags.Interface = 1, then Flags.Sealed shall be 0) [ERROR]

28. All of the methods owned by an Interface (Flags.Interface = 1) shall be abstract (Flags.Abstract

= 1) [ERROR]

29. There shall be no duplicate rows in the TypeDef table, based on TypeNamespace+TypeName

(unless this is a nested type - see below) [ERROR]

30. If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon

TypeNamespace+TypeName+OwnerRowInNestedClassTable [ERROR]

31. There shall be no duplicate rows, where TypeNamespace+TypeName fields are compared using

CLS conflicting-identifier-rules (unless this is a nested type - see below) [CLS]

32. If this is a nested type, there shall be no duplicate rows, based upon

TypeNamespace+TypeName+OwnerRowInNestedClassTable and where

TypeNamespace+TypeName fields are compared using CLS conflicting-identifier-rules [CLS]

33. If Extends = System.Enum (i.e., type is a user-defined Enum) then:

a. shall be sealed (Sealed = 1) [ERROR]

b. shall not have any methods of its own (MethodList chain shall be zero length) [ERROR]

c. shall not implement any interfaces (no entries in InterfaceImpl table for this type)

[ERROR]

d. shall not have any properties [ERROR]

e. shall not have any events [ERROR]

f. any static fields shall be literal (have Flags.Literal = 1) [ERROR]

g. shall have one or more static, literal fields, each of which has the type of the Enum [CLS]

h. shall be exactly one instance field, of built-in integer type [ERROR]

i. the Name string of the instance field shall be "value__", the field shall be marked

RTSpecialName, and that field shall have one of the CLS integer types [CLS]

j. shall not have any static fields unless they are literal [ERROR]

34. A Nested type (defined above) shall own exactly one row in the NestedClass table, where ‗owns‘

means a row in that NestedClass table whose NestedClass column holds the TypeDef token for

this type definition [ERROR]

35. A ValueType shall be sealed [ERROR]

End informative text

22.38 TypeRef : 0x01

The TypeRef table has the following columns:

 ResolutionScope (an index into a Module, ModuleRef, AssemblyRef or TypeRef table, or null;

more precisely, a ResolutionScope (§24.2.6) coded index)

 TypeName (an index into the String heap)

 TypeNamespace (an index into the String heap)

150 Partition II

This contains informative text only

1. ResolutionScope shall be exactly one of:

a. null - in this case, there shall be a row in the ExportedType table for this Type - its

Implementation field shall contain a File token or an AssemblyRef token that says where the

type is defined [ERROR]

b. a TypeRef token, if this is a nested type (which can be determined by, for example,

inspecting the Flags column in its TypeDef table - the accessibility subfield is one of the

tdNestedXXX set) [ERROR]

c. a ModuleRef token, if the target type is defined in another module within the same
Assembly as this one [ERROR]

d. a Module token, if the target type is defined in the current module - this should not occur in

a CLI (―compressed metadata‖) module [WARNING]

e. an AssemblyRef token, if the target type is defined in a different Assembly from the current

module [ERROR]

2. TypeName shall index a non-empty string in the String heap [ERROR]

3. TypeNamespace can be null, or non-null

4. If non-null, TypeNamespace shall index a non-empty string in the String heap [ERROR]

5. The TypeName string shall be a valid CLS identifier [CLS]

6. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, TypeName and

TypeNamespace [ERROR]

7. There shall be no duplicate rows, where TypeName and TypeNamespace fields are compared
using CLS conflicting-identifier-rules [CLS]

End informative text

22.39 TypeSpec : 0x1B

The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.

This provides a metadata token for that Type (rather than simply an index into the Blob heap). This is required,

typically, for array operations, such as creating, or calling methods on the array class.

The TypeSpec table has the following column:

 Signature (index into the Blob heap, where the blob is formatted as specified in §23.2.14)

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token;

specifically, castclass, cpobj, initobj, isinst, ldelema, ldobj, mkrefany, newarr, refanyval, sizeof, stobj,
box, and unbox.

This contains informative text only

1. The TypeSpec table can contain zero or more rows

2. Signature shall index a valid Type specification in the Blob heap [ERROR]

3. There shall be no duplicate rows, based upon Signature [ERROR]

End informative text

 Partition II 151

23 Metadata logical format: other structures

23.1 Bitmasks and flags

This subclause explains the flags and bitmasks used in the metadata tables. When a conforming implementation

encounters a metadata structure (such as a flag) that is not specified in this standard, the behavior of the

implementation is unspecified.

23.1.1 Values for Asse mblyHashAlgorithm

Algorithm Value

None 0x0000

Reserved (MD5) 0x8003

SHA1 0x8004

23.1.2 Values for Asse mblyFlags

Flag Value Description

PublicKey 0x0001 The assembly reference holds the full (unhashed)

public key.

SideBySideCompatible 0x0000 The assembly is side-by-side compatible

<reserved> 0x0030 Reserved: both bits shall be zero

Retargetable 0x0100 The implementation of this assembly used at runtime is

not expected to match the version seen at compile time.

(See the text following this table.)

EnableJITcompileTracking 0x8000 Reserved (a conforming implementation of the CLI

can ignore this setting on read; some implementations
might use this bit to indicate that a CIL-to-native-code

compiler should generate CIL-to-native code map)

DisableJITcompileOptimizer 0x4000 Reserved (a conforming implementation of the CLI

can ignore this setting on read; some implementations

might use this bit to indicate that a CIL-to-native-code

compiler should not generate optimized code)

In portable programs, the Retargetable (0x100) bit shall be set on all references to assemblies specified in this

Standard.

23.1.3 Values for Culture

ar-SA ar-IQ ar-EG ar-LY

ar-DZ ar-MA ar-TN ar-OM

ar-YE ar-SY ar-JO ar-LB

ar-KW ar-AE ar-BH ar-QA

bg-BG ca-ES zh-TW zh-CN

zh-HK zh-SG zh-MO cs-CZ

da-DK de-DE de-CH de-AT

de-LU de-LI el-GR en-US

en-GB en-AU en-CA en-NZ

152 Partition II

en-IE en-ZA en-JM en-CB

en-BZ en-TT en-ZW en-PH

es-ES-Ts es-MX es-ES-Is es-GT

es-CR es-PA es-DO es-VE

es-CO es-PE es-AR es-EC

es-CL es-UY es-PY es-BO

es-SV es-HN es-NI es-PR

fi-FI fr-FR fr-BE fr-CA

fr-CH fr-LU fr-MC he-IL

hu-HU is-IS it-IT it-CH

ja-JP ko-KR nl-NL nl-BE

nb-NO nn-NO pl-PL pt-BR

pt-PT ro-RO ru-RU hr-HR

lt-sr-SP cy-sr-SP sk-SK sq-AL

sv-SE sv-FI th-TH tr-TR

ur-PK id-ID uk-UA be-BY

sl-SI et-EE lv-LV lt-LT

fa-IR vi-VN hy-AM lt-az-AZ

cy-az-AZ eu-ES mk-MK af-ZA

ka-GE fo-FO hi-IN ms-MY

ms-BN kk-KZ ky-KZ sw-KE

lt-uz-UZ cy-uz-UZ tt-TA pa-IN

gu-IN ta-IN te-IN kn-IN

mr-IN sa-IN mn-MN gl-ES

kok-IN syr-SY div-MV

Note on RFC 1766, Locale names: a typical string would be ―en-US‖. The first part (―en‖ in the example) uses

ISO 639 characters (―Latin-alphabet characters in lowercase. No diacritical marks of modified characters are

used‖). The second part (―US‖ in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase);

that is, the familiar ASCII characters a–z and A–Z, respectively. However, whilst RFC 1766 recommends the

first part be lowercase and the second part be uppercase, it allows mixed case. Therefore, the validation rule

checks only that Culture is one of the strings in the list above—but the check is totally case-blind—where case-

blind is the familiar fold on values less than U+0080

23.1.4 Flags for events [EventAttributes]

Flag Value Description

SpecialName 0x0200 Event is special.

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the
event

23.1.5 Flags for f ie lds [FieldAttributes]

Flag Value Description

FieldAccessMask 0x0007 These 3 bits contain one of the following values:

CompilerControlled 0x0000 Member not referenceable

 Partition II 153

Private 0x0001 Accessible only by the parent type

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly

Assembly 0x0003 Accessibly by anyone in the Assembly

Family 0x0004 Accessible only by type and sub-types

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly

Public 0x0006 Accessibly by anyone who has visibility to this scope field

contract attributes

Static 0x0010 Defined on type, else per instance

InitOnly 0x0020 Field can only be initialized, not written to after init

Literal 0x0040 Value is compile time constant

NotSerialized 0x0080 Reserved (to indicate this field should not be serialized when

type is remoted)

SpecialName 0x0200 Field is special

Interop Attributes

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke.

Additional flags

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the

field

HasFieldMarshal 0x1000 Field has marshalling information

HasDefault 0x8000 Field has default

HasFieldRVA 0x0100 Field has RVA

23.1.6 Flags for f i les [Fi leAttributes]

Flag Value Description

ContainsMetaData 0x0000 This is not a resource file

ContainsNoMetaData 0x0001 This is a resource file or other non-metadata-containing file

23.1.7 Flags for Generic Parameters [GenericParamAttributes]

Flag Value Description

VarianceMask 0x0003 These 2 bits contain one of the following values:

None 0x0000 The generic parameter is non-variant and has no special

constraints

Covariant 0x0001 The generic parameter is covariant

Contravariant 0x0002 The generic parameter is contravariant

SpecialConstraintMask 0x001C These 3 bits contain one of the following values:

ReferenceTypeConstraint 0x0004 The generic parameter has the class special constraint

NotNullableValueTypeConstraint 0x0008 The generic parameter has the valuetype special

constraint

DefaultConstructorConstraint 0x0010 The generic parameter has the .ctor special constraint

154 Partition II

23.1.8 Flags for ImplMap [PInvokeAttributes]

Flag Value Description

NoMangle 0x0001 PInvoke is to use the member name as specified

Character set

CharSetMask 0x0006 This is a resource file or other non-metadata-containing file.

These 2 bits contain one of the following values:

CharSetNotSpec 0x0000

CharSetAnsi 0x0002

CharSetUnicode 0x0004

CharSetAuto 0x0006

SupportsLastError 0x0040 Information about target function. Not relevant for fields

Calling convention

CallConvMask 0x0700 These 3 bits contain one of the following values:

CallConvWinapi 0x0100

CallConvCdecl 0x0200

CallConvStdcall 0x0300

CallConvThiscall 0x0400

CallConvFastcall 0x0500

23.1.9 Flags for ManifestResource [ManifestResourceAttributes]

Flag Value Description

VisibilityMask 0x0007 These 3 bits contain one of the following values:

Public 0x0001 The Resource is exported from the Assembly

Private 0x0002 The Resource is private to the Assembly

23.1.10 Flags for methods [MethodAttributes]

Flag Value Description

MemberAccessMask 0x0007 These 3 bits contain one of the following values:

CompilerControlled 0x0000 Member not referenceable

Private 0x0001 Accessible only by the parent type

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly

Assem 0x0003 Accessibly by anyone in the Assembly

Family 0x0004 Accessible only by type and sub-types

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly

Public 0x0006 Accessibly by anyone who has visibility to this scope

Static 0x0010 Defined on type, else per instance

Final 0x0020 Method cannot be overridden

 Partition II 155

Virtual 0x0040 Method is virtual

HideBySig 0x0080 Method hides by name+sig, else just by name

VtableLayoutMask 0x0100 Use this mask to retrieve vtable attributes. This bit contains

one of the following values:

ReuseSlot 0x0000 Method reuses existing slot in vtable

NewSlot 0x0100 Method always gets a new slot in the vtable

Strict 0x0200 Method can only be overriden if also accessible

Abstract 0x0400 Method does not provide an implementation

SpecialName 0x0800 Method is special

Interop attributes

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke

UnmanagedExport 0x0008 Reserved: shall be zero for conforming implementations

Additional flags

RTSpecialName 0x1000 CLI provides 'special' behavior, depending upon the name of

the method

HasSecurity 0x4000 Method has security associate with it

RequireSecObject 0x8000 Method calls another method containing security code.

23.1.11 Flags for methods [MethodImplAttributes]

Flag Value Description

CodeTypeMask 0x0003 These 2 bits contain one of the following values:

IL 0x0000 Method impl is CIL

Native 0x0001 Method impl is native

OPTIL 0x0002 Reserved: shall be zero in conforming implementations

Runtime 0x0003 Method impl is provided by the runtime

ManagedMask 0x0004 Flags specifying whether the code is managed or unmanaged.
This bit contains one of the following values:

Unmanaged 0x0004 Method impl is unmanaged, otherwise managed

Managed 0x0000 Method impl is managed

Implementation info and interop

ForwardRef 0x0010 Indicates method is defined; used primarily in merge

scenarios

PreserveSig 0x0080 Reserved: conforming implementations can ignore

InternalCall 0x1000 Reserved: shall be zero in conforming implementations

Synchronized 0x0020 Method is single threaded through the body

NoInlining 0x0008 Method cannot be inlined

MaxMethodImplVal 0xffff Range check value

NoOptimization 0x0040 Method will not be optimized when generating native code

156 Partition II

23.1.12 Flags for MethodSemantics [MethodSe manticsAttributes]

Flag Value Description

Setter 0x0001 Setter for property

Getter 0x0002 Getter for property

Other 0x0004 Other method for property or event

AddOn 0x0008 AddOn method for event

RemoveOn 0x0010 RemoveOn method for event

Fire 0x0020 Fire method for event

23.1.13 Flags for params [ParamAttributes]

Flag Value Description

In 0x0001 Param is [In]

Out 0x0002 Param is [out]

Optional 0x0010 Param is optional

HasDefault 0x1000 Param has default value

HasFieldMarshal 0x2000 Param has FieldMarshal

Unused 0xcfe0 Reserved: shall be zero in a conforming implementation

23.1.14 Flags for pr operties [PropertyAttributes]

Flag Value Description

SpecialName 0x0200 Property is special

RTSpecialName 0x0400 Runtime(metadata internal APIs) should check name

encoding

HasDefault 0x1000 Property has default

Unused 0xe9ff Reserved: shall be zero in a conforming implementation

23.1.15 Flags for types [TypeAttributes]

Flag Value Description

Visibility attributes

VisibilityMask 0x00000007 Use this mask to retrieve visibility information.

These 3 bits contain one of the following

values:

NotPublic 0x00000000 Class has no public scope

Public 0x00000001 Class has public scope

NestedPublic 0x00000002 Class is nested with public visibility

NestedPrivate 0x00000003 Class is nested with private visibility

NestedFamily 0x00000004 Class is nested with family visibility

NestedAssembly 0x00000005 Class is nested with assembly visibility

 Partition II 157

NestedFamANDAssem 0x00000006 Class is nested with family and assembly

visibility

NestedFamORAssem 0x00000007 Class is nested with family or assembly

visibility

Class layout attributes

LayoutMask 0x00000018 Use this mask to retrieve class layout

information. These 2 bits contain one of the

following values:

AutoLayout 0x00000000 Class fields are auto-laid out

SequentialLayout 0x00000008 Class fields are laid out sequentially

ExplicitLayout 0x00000010 Layout is supplied explicitly

Class semantics attributes

ClassSemanticsMask 0x00000020 Use this mask to retrive class semantics

information. This bit contains one of the

following values:

Class 0x00000000 Type is a class

Interface 0x00000020 Type is an interface

Special semantics in addition to class semantics

Abstract 0x00000080 Class is abstract

Sealed 0x00000100 Class cannot be extended

SpecialName 0x00000400 Class name is special

Implementation Attributes

Import 0x00001000 Class/Interface is imported

Serializable 0x00002000 Reserved (Class is serializable)

String formatting Attributes

StringFormatMask 0x00030000 Use this mask to retrieve string information for

native interop. These 2 bits contain one of the

following values:

AnsiClass 0x00000000 LPSTR is interpreted as ANSI

UnicodeClass 0x00010000 LPSTR is interpreted as Unicode

AutoClass 0x00020000 LPSTR is interpreted automatically

CustomFormatClass 0x00030000 A non-standard encoding specified by
CustomStringFormatMask

CustomStringFormatMask 0x00C00000 Use this mask to retrieve non-standard

encoding information for native interop. The

meaning of the values of these 2 bits is

unspecified.

Class Initialization Attributes

BeforeFieldInit 0x00100000 Initialize the class before first static field

access

Additional Flags

158 Partition II

RTSpecialName 0x00000800 CLI provides 'special' behavior, depending

upon the name of the Type

HasSecurity 0x00040000 Type has security associate with it

IsTypeForwarder 0x00200000 This ExportedType entry is a type forwarder

23.1.16 Element types used in signatures

The following table lists the values for ELEMENT_TYPE constants. These are used extensively in metadata

signature blobs – see §23.2

Name Value Remarks

ELEMENT_TYPE_END 0x00 Marks end of a list

ELEMENT_TYPE_VOID 0x01

ELEMENT_TYPE_BOOLEAN 0x02

ELEMENT_TYPE_CHAR 0x03

ELEMENT_TYPE_I1 0x04

ELEMENT_TYPE_U1 0x05

ELEMENT_TYPE_I2 0x06

ELEMENT_TYPE_U2 0x07

ELEMENT_TYPE_I4 0x08

ELEMENT_TYPE_U4 0x09

ELEMENT_TYPE_I8 0x0a

ELEMENT_TYPE_U8 0x0b

ELEMENT_TYPE_R4 0x0c

ELEMENT_TYPE_R8 0x0d

ELEMENT_TYPE_STRING 0x0e

ELEMENT_TYPE_PTR 0x0f Followed by type

ELEMENT_TYPE_BYREF 0x10 Followed by type

ELEMENT_TYPE_VALUETYPE 0x11 Followed by TypeDef or TypeRef token

ELEMENT_TYPE_CLASS 0x12 Followed by TypeDef or TypeRef token

ELEMENT_TYPE_VAR 0x13 Generic parameter in a generic type definition,

represented as number (compressed unsigned

integer)

ELEMENT_TYPE_ARRAY 0x14 type rank boundsCount bound1 … loCount lo1 …

ELEMENT_TYPE_GENERICINST 0x15 Generic type instantiation. Followed by type type-

arg-count type-1 ... type-n

ELEMENT_TYPE_TYPEDBYREF 0x16

ELEMENT_TYPE_I 0x18 System.IntPtr

ELEMENT_TYPE_U 0x19 System.UIntPtr

 Partition II 159

ELEMENT_TYPE_FNPTR 0x1b Followed by full method signature

ELEMENT_TYPE_OBJECT 0x1c System.Object

ELEMENT_TYPE_SZARRAY 0x1d Single-dim array with 0 lower bound

ELEMENT_TYPE_MVAR 0x1e Generic parameter in a generic method definition,

represented as number (compressed unsigned

integer)

ELEMENT_TYPE_CMOD_REQD 0x1f Required modifier : followed by a TypeDef or

TypeRef token

ELEMENT_TYPE_CMOD_OPT 0x20 Optional modifier : followed by a TypeDef or

TypeRef token

ELEMENT_TYPE_INTERNAL 0x21 Implemented within the CLI

ELEMENT_TYPE_MODIFIER 0x40 Or‘d with following element types

ELEMENT_TYPE_SENTINEL 0x41 Sentinel for vararg method signature

ELEMENT_TYPE_PINNED 0x45 Denotes a local variable that points at a pinned

object

 0x50 Indicates an argument of type System.Type.

 0x51 Used in custom attributes to specify a boxed object

(§23.3).

 0x52 Reserved

 0x53 Used in custom attributes to indicate a FIELD
(§22.10, 23.3).

 0x54 Used in custom attributes to indicate a PROPERTY

(§22.10, 23.3).

 0x55 Used in custom attributes to specify an enum

(§23.3).

23.2 Blobs and s ignatures

The word signature is conventionally used to describe the type info for a function or method; that is, the type of

each of its parameters, and the type of its return value. Within metadata, the word signature is also used to

describe the type info for fields, properties, and local variables. Each Signature is stored as a (counted) byte

array in the Blob heap. There are several kinds of Signature, as follows:

 MethodRefSig (differs from a MethodDefSig only for VARARG calls)

 MethodDefSig

 FieldSig

 PropertySig

 LocalVarSig

 TypeSpec

 MethodSpec

The value of the first byte of a Signature 'blob' indicates what kind of Signature it is. Its lowest 4 bits hold one

of the following: C, DEFAULT, FASTCALL, STDCALL, THISCALL, or VARARG (whose values are defined in §23.2.3),

which qualify method signatures; FIELD, which denotes a field signature (whose value is defined in §23.2.4); or

PROPERTY, which denotes a property signature (whose value is defined in §23.2.5). This subclause defines the

160 Partition II

binary 'blob' format for each kind of Signature. In the syntax diagrams that accompany many of the definitions,

shading is used to combine into a single diagram what would otherwise be multiple diagrams; the

accompanying text describes the use of shading.

Signatures are compressed before being stored into the Blob heap (described below) by compressing the

integers embedded in the signature. The maximum encodable unsigned integer is 29 bits long, 0x1FFFFFFF.

For signed integers, as occur in ArrayShape (§23.2.13), the range is -228 (0xF0000000) to 228-1 (0x0FFFFFFF).
The compression algorithm used is as follows (bit 0 is the least significant bit):

 For unsigned integers:

o If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte

integer (bit 7 is clear, value held in bits 6 through 0)

o If the value lies between 28 (0x80) and 214 – 1 (0x3FFF), inclusive, encode as a 2-byte

integer with bit 15 set, bit 14 clear (value held in bits 13 through 0)

o Otherwise, encode as a 4-byte integer, with bit 31 set, bit 30 set, bit 29 clear (value

held in bits 28 through 0)

 For signed integers:

o If the value lies between -64 (0xFFFFFFC0) and 63 (0x3F), inclusive, encode as a one-

byte integer: bit 7 clear, value bits 5 through 0 held in bits 6 through 1, sign bit (value
bit 31) in bit 0.

o If the value lies between -8192 (0xFFFFE000) and 8191 (0x1FFF), inclusive, encode

as a two-byte integer: 15 set, bit 14 clear, value bits 12 through 0 held in bits 13

through 1, sign bit (value bit 31) in bit 0.

o If the value lies between -268435456 (0xF000000) and 268435455 (0x0FFFFFFF),

inclusive, encode as a four-byte integer: 31 set, 30 set, bit 29 clear, value bits 27

through 0 held in bits 28 through 1, sign bit (value bit 31) in bit 0.

[Note: When uncompressing the sign bit is used to fill all the missing bits. end note]

 A null string should be represented with the reserved single byte 0xFF, and no following data

[Note: The tables below show several examples. The first column gives a value, expressed in familiar (C-like)

hex notation. The second column shows the corresponding, compressed result, as it would appear in a PE file,
with successive bytes of the result lying at successively higher byte offsets within the file. (This is the opposite

order from how regular binary integers are laid out in a PE file.)

Unsigned examples:

Original Value Compressed Representation

0x03 03

0x7F 7F (7 bits set)

0x80 8080

0x2E57 AE57

0x3FFF BFFF

0x4000 C000 4000

0x1FFF FFFF DFFF FFFF

Signed examples:

Original Value Compressed Representation

3 06

 Partition II 161

-3 7B

64 8080

-64 01

8192 C000 4000

-8192 8001

268435455 DFFF FFFE

-268435456 C000 0001

end note]

The most significant bits (the first ones encountered in a PE file) of a ―compressed‖ field, can reveal whether it

occupies 1, 2, or 4 bytes, as well as its value. For this to work, the ―compressed‖ value, as explained above, is

stored in big-endian order; i.e., with the most significant byte at the smallest offset within the file.

Signatures make extensive use of constant values called ELEMENT_TYPE_xxx – see §23.1.16. In particular,

signatures include two modifiers called:

ELEMENT_TYPE_BYREF – this element is a managed pointer (see Partition I). This modifier can only occur in the

definition of LocalVarSig (§23.2.6), Param (§23.2.10) or RetType (§23.2.11). It shall not occur within the

definition of a Field (§23.2.4)

ELEMENT_TYPE_PTR – this element is an unmanaged pointer (see Partition I). This modifier can occur in the
definition of LocalVarSig (§23.2.6), Param (§23.2.10), RetType (§23.2.11) or Field (§23.2.4)

23.2.1 MethodDefSig

A MethodDefSig is indexed by the Method.Signature column. It captures the signature of a method or global

function. The syntax diagram for a MethodDefSig is:

This diagram uses the following abbreviations:

Partition%20I%20Architecture.doc
Partition%20I%20Architecture.doc

162 Partition II

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see §15.3

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see §15.3

GENERIC = 0x10, used to indicate that the method has one or more generic parameters.

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention (DEFAULT, VARARG,

or GENERIC). These are ORed together.

GenParamCount is the number of generic parameters for the method. This is a compressed unsigned integer.

[Note: For generic methods, both MethodDef and MemberRef shall include the GENERIC calling convention,

together with GenParamCount; these are significant for binding—they enable the CLI to overload on generic

methods by the number of generic parameters they include. end note]

ParamCount is an unsigned integer that holds the number of parameters (0 or more). It can be any number

between 0 and 0x1FFFFFFF. The compiler compresses it too (see Partition II Metadata Validation) – before

storing into the 'blob' (ParamCount counts just the method parameters – it does not include the method‘s return

type)

The RetType item describes the type of the method‘s return value (§23.2.11)

The Param item describes the type of each of the method‘s parameters. There shall be ParamCount instances
of the Param item (§23.2.10).

23.2.2 MethodRefSig

A MethodRefSig is indexed by the MemberRef.Signature column. This provides the call site Signature for a

method. Normally, this call site Signature shall match exactly the Signature specified in the definition of the

target method. For example, if a method Foo is defined that takes two unsigned int32s and returns void; then

any call site shall index a signature that takes exactly two unsigned int32s and returns void. In this case, the

syntax diagram for a MethodRefSig is identical with that for a MethodDefSig – see §23.2.1

The Signature at a call site differs from that at its definition, only for a method with the VARARG calling

convention. In this case, the call site Signature is extended to include info about the extra VARARG arguments

(for example, corresponding to the ―...‖ in C syntax). The syntax diagram for this case is:

This diagram uses the following abbreviations:

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see 15.3

SENTINEL = 0x41 (§23.1.16), used to encode ―...‖ in the parameter list, see §15.3

Partition%20II%20Metadata.doc

 Partition II 163

 The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS, and the calling convention

VARARG. These are ORed together.

 ParamCount is an unsigned integer that holds the number of parameters (0 or more). It can be

any number between 0 and 0x1FFFFFFF The compiler compresses it (see Partition II Metadata

Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it

does not include the method‘s return type)

 The RetType item describes the type of the method‘s return value (§23.2.11)

 The Param item describes the type of each of the method‘s parameters. There shall be

ParamCount instances of the Param item (§23.2.10).

The Param item describes the type of each of the method‘s parameters. There shall be ParamCount instances

of the Param item.This starts just like the MethodDefSig for a VARARG method (§23.2.1). But then a SENTINEL

token is appended, followed by extra Param items to describe the extra VARARG arguments. Note that the

ParamCount item shall indicate the total number of Param items in the Signature – before and after the

SENTINEL byte (0x41).

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this

is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the MethodRefSig

definition).

23.2.3 StandAl oneMethodSig

A StandAloneMethodSig is indexed by the StandAloneSig.Signature column. It is typically created as

preparation for executing a calli instruction. It is similar to a MethodRefSig, in that it represents a call site

signature, but its calling convention can specify an unmanaged target (the calli instruction invokes either
managed, or unmanaged code). Its syntax diagram is:

This diagram uses the following abbreviations (§15.3):

HASTHIS for 0x20

EXPLICITTHIS for 0x40

DEFAULT for 0x0

Partition%20II%20Metadata.doc

164 Partition II

VARARG for 0x5

C for 0x1

STDCALL for 0x2

THISCALL for 0x3

FASTCALL for 0x4

SENTINEL for 0x41 (§23.1.16 and §15.3)

 The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention –

DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL. These are OR‘d together.

 ParamCount is an unsigned integer that holds the number of non-vararg and vararg parameters,

combined. It can be any number between 0 and 0x1FFFFFFF The compiler compresses it (see

Partition II Metadata Validation) – before storing into the blob (ParamCount counts just the

method parameters – it does not include the method‘s return type)

 The RetType item describes the type of the method‘s return value (§23.2.11)

 The first Param item describes the type of each of the method‘s non-vararg parameters. The

(optional) second Param item describes the type of each of the method‘s vararg parameters.

There shall be ParamCount instances of Param (§23.2.10).

This is the most complex of the various method signatures. Two separate diagrams have been combined into

one in this diagram, using shading to distinguish between them. Thus, for the following calling conventions:

DEFAULT (managed), STDCALL, THISCALL and FASTCALL (unmanaged), the signature ends just before the

SENTINEL item (these are all non vararg signatures). However, for the managed and unmanaged vararg calling

conventions:

VARARG (managed) and C (unmanaged), the signature can include the SENTINEL and final Param items (they are

not required, however). These options are indicated by the shading of boxes in the syntax diagram.

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this

is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the StandAloneMethodSig

definition).

23.2.4 FieldSig

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case

where it specifies a reference to a field, not a method, of course). The Signature captures the field‘s definition.

The field can be a static or instance field in a class, or it can be a global variable. The syntax diagram for a

FieldSig looks like this:

This diagram uses the following abbreviations:

FIELD for 0x6

CustomMod is defined in §23.2.7. Type is defined in §23.2.12

23.2.5 PropertySig

A PropertySig is indexed by the Property.Type column. It captures the type information for a Property –

essentially, the signature of its getter method:

Partition%20II%20Metadata.doc

 Partition II 165

the number of parameters supplied to its getter method

the base type of the Property (the type returned by its getter method)

type information for each parameter in the getter method (that is, the index parameters)

Note that the signatures of getter and setter are related precisely as follows:

 The types of a getter’s paramCount parameters are exactly the same as the first paramCount

parameters of the setter

 The return type of a getter is exactly the same as the type of the last parameter supplied to the

setter

The syntax diagram for a PropertySig looks like this:

The first byte of the Signature holds bits for HASTHIS and PROPERTY. These are OR‘d together.

Type specifies the type returned by the Getter method for this property. Type is defined in §23.2.12. Param is

defined in §23.2.10.

ParamCount is a compressed unsigned integer that holds the number of index parameters in the getter methods

(0 or more). (§23.2.1) (ParamCount counts just the method parameters – it does not include the method‘s base

type of the Property)

23.2.6 LocalVarSig

A LocalVarSig is indexed by the StandAloneSig.Signature column. It captures the type of all the local

variables in a method. Its syntax diagram is:

This diagram uses the following abbreviations:

LOCAL_SIG for 0x7, used for the .locals directive, see§15.4.1.3

BYREF for ELEMENT_TYPE_BYREF (§23.1.16)

Constraint is defined in §23.2.9.

Type is defined in §23.2.12

Count is a compressed unsigned integer that holds the number of local variables. It can be any number between

1 and 0xFFFE.

There shall be Count instances of the Type in the LocalVarSig

23.2.7 CustomMod

The CustomMod (custom modifier) item in Signatures has a syntax diagram like this:

166 Partition II

This diagram uses the following abbreviations:

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT (§23.1.16)

CMOD_REQD for ELEMENT_TYPE_CMOD_REQD (§23.1.16)

The CMOD_OPT or CMOD_REQD value is compressed, see §23.2.

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row in the TypeDef table or the

TypeRef table. However, these tokens are encoded and compressed – see §23.2.8 for details

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely ignore it entirely.

Conversely, if the CustomModifier is tagged CMOD_REQD, any importing compiler shall ‗understand‘ the

semantic implied by this CustomModifier in order to reference the surrounding Signature.

23.2.8 TypeDefOrRefEncoded

These items are compact ways to store a TypeDef, TypeRef, or TypeSpec token in a Signature (§23.2.12).

Consider a regular TypeRef token, such as 0x01000012. The top byte of 0x01 indicates that this is a TypeRef

token (see Partition VI for a list of the supported metadata token types). The lower 3 bytes (0x000012) index

row number 0x12 in the TypeRef table.

The encoded version of this TypeRef token is made up as follows:

1. encode the table that this token indexes as the least significant 2 bits. The bit values to use are 0,

1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively

2. shift the 3-byte row index (0x000012 in this example) left by 2 bits and OR into the 2-bit

encoding from step 1

3. compress the resulting value (§23.2). This example yields the following encoded value:

a) encoded = value for TypeRef table = 0x01 (from 1. above)

b) encoded = (0x000012 << 2) | 0x01

 = 0x48 | 0x01

 = 0x49

c) encoded = Compress (0x49)

 = 0x49

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the

Signature 'blob', this TypeRef token is encoded as a single byte.

23.2.9 Constraint

The Constraint item in Signatures currently has only one possible value, ELEMENT_TYPE_PINNED (§23.1.16),

which specifies that the target type is pinned in the runtime heap, and will not be moved by the actions of

garbage collection.

A Constraint can only be applied within a LocalVarSig (not a FieldSig). The Type of the local variable shall

either be a reference type (in other words, it points to the actual variable – for example, an Object, or a String);

or it shall include the BYREF item. The reason is that local variables are allocated on the runtime stack – they

Partition%20VI%20Annexes.doc
Partition%20V%20Annexes.doc#_ilasmGrammar
Partition%20V%20Annexes.doc#_ilasmGrammar

 Partition II 167

are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC

heap, pinning makes no sense.

23.2.10 Param

The Param (parameter) item in Signatures has this syntax diagram:

This diagram uses the following abbreviations:

BYREF for 0x10 (§23.1.16)

TYPEDBYREF for 0x16 (§23.1.16)

CustomMod is defined in §23.2.7. Type is defined in §23.2.12

23.2.11 RetType

The RetType (return type) item in Signatures has this syntax diagram:

RetType is identical to Param except for one extra possibility, that it can include the type VOID. This diagram

uses the following abbreviations:

BYREF for ELEMENT_TYPE_BYREF (§23.1.16)

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (§23.1.16)

VOID for ELEMENT_TYPE_VOID (§23.1.16)

23.2.12 Type

Type is encoded in signatures as follows (I1 is an abbreviation for ELEMENT_TYPE_I1, U1 is an abbreviation for

ELEMENT_TYPE_U1, and so on; see 23.1.16):

Type ::=

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I | U

| ARRAY Type ArrayShape (general array, see §23.2.13)

168 Partition II

| CLASS TypeDefOrRefEncoded

| FNPTR MethodDefSig

| FNPTR MethodRefSig

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type *

| MVAR number

| OBJECT

| PTR CustomMod* Type

| PTR CustomMod* VOID

| STRING

| SZARRAY CustomMod* Type (single dimensional, zero-based array i.e., vector)

| VALUETYPE TypeDefOrRefEncoded

| VAR number

The GenArgCount non-terminal is an int32 value (compressed) specifying the number of generic arguments in

this signature. The number non-terminal following MVAR or VAR is an unsigned integer value (compressed).

23.2.13 ArrayShape

An ArrayShape has the following syntax diagram:

Rank is an unsigned integer (stored in compressed form, see §23.2) that specifies the number of dimensions in

the array (shall be 1 or more). NumSizes is a compressed unsigned integer that says how many dimensions

have specified sizes (it shall be 0 or more). Size is a compressed unsigned integer specifying the size of that

dimension – the sequence starts at the first dimension, and goes on for a total of NumSizes items. Similarly,

NumLoBounds is a compressed unsigned integer that says how many dimensions have specified lower bounds
(it shall be 0 or more). And LoBound is a compressed signed integer specifying the lower bound of that

dimension – the sequence starts at the first dimension, and goes on for a total of NumLoBounds items. None of

the dimensions in these two sequences can be skipped, but the number of specified dimensions can be less than

Rank.

Here are a few examples, all for element type int32:

 Type Rank NumSizes Size NumLoBounds LoBound

[0...2] I4 1 1 3 0

[,,,,,,] I4 7 0 0

[0...3, 0...2,,,,] I4 6 2 4 3 2 0 0

[1...2, 6...8] I4 2 2 2 3 2 1 6

[5, 3...5, ,] I4 4 2 5 3 2 0 3

[Note: definitions can nest, since the Type can itself be an array. end note]

23.2.14 TypeSpec

The signature in the Blob heap indexed by a TypeSpec token has the following format –

TypeSpecBlob ::=

 Partition II 169

 PTR CustomMod* VOID

| PTR CustomMod* Type

| FNPTR MethodDefSig

| FNPTR MethodRefSig

| ARRAY Type ArrayShape

| SZARRAY CustomMod* Type

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type Type*

For compactness, the ELEMENT_TYPE_ prefixes have been omitted from this list. So, for example, ―PTR‖ is

shorthand for ELEMENT_TYPE_PTR. (§23.1.16) Note that a TypeSpecBlob does not begin with a calling-

convention byte, so it differs from the various other signatures that are stored into Metadata.

23.2.15 MethodSpec

The signature in the Blob heap indexed by a MethodSpec token has the following format –

MethodSpecBlob ::=

 GENRICINST GenArgCount Type Type*

GENRICINST has the value 0x0A. [Note: This value is known as IMAGE_CEE_CS_CALLCONV_GENERICINST in

the Microsoft CLR implementation. end note] The GenArgCount is a compressed unsigned integer indicating

the number of generic arguments in the method. The blob then specifies the instantiated type, repeating a total

of GenArgCount times.

23.2.16 Short for m signatures

The general specification for signatures leaves some leeway in how to encode certain items. For example, it

appears valid to encode a String as either

long-form: (ELEMENT_TYPE_CLASS, TypeRef-to-System.String)

short-form: ELEMENT_TYPE_STRING

Only the short form is valid. The following table shows which short-forms should be used in place of each

long-form item. (As usual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here – so VALUETYPE

is short for ELEMENT_TYPE_VALUETYPE)

Long Form Short Form

Prefix TypeRef to:

CLASS System.String STRING

CLASS System.Object OBJECT

VALUETYPE System.Void VOID

VALUETYPE System.Boolean BOOLEAN

VALUETYPE System.Char CHAR

VALUETYPE System.Byte U1

VALUETYPE System.Sbyte I1

VALUETYPE System.Int16 I2

VALUETYPE System.UInt16 U2

VALUETYPE System.Int32 I4

VALUETYPE System.UInt32 U4

VALUETYPE System.Int64 I8

VALUETYPE System.UInt64 U8

170 Partition II

VALUETYPE System.IntPtr I

VALUETYPE System.UIntPtr U

VALUETYPE System.TypedReference TYPEDBYREF

[Note: arrays shall be encoded in signatures using one of ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY.

There is no long form involving a TypeRef to System.Array. end note]

23.3 Custo m attributes

A Custom Attribute has the following syntax diagram:

All binary values are stored in little-endian format (except PackedLen items, which are used only as counts for

the number of bytes to follow in a UTF8 string). If there are no fields, parameters, or properties specified the

entire attribute is represented as an empty blob.

CustomAttrib starts with a Prolog – an unsigned int16, with value 0x0001.

Next comes a description of the fixed arguments for the constructor method. Their number and type is found

by examining that constructor‘s row in the MethodDef table; this information is not repeated in the

CustomAttrib itself. As the syntax diagram shows, there can be zero or more FixedArgs. (Note that VARARG

constructor methods are not allowed in the definition of Custom Attributes.)

Next is a description of the optional ―named‖ fields and properties. This starts with NumNamed – an unsigned
int16 giving the number of ―named‖ properties or fields that follow. Note that NumNamed shall always be

present. A value of zero indicates that there are no ―named‖ properties or fields to follow (and of course, in this

case, the CustomAttrib shall end immediately after NumNamed). In the case where NumNamed is non-zero, it

is followed by NumNamed repeats of NamedArgs.

The format for each FixedArg depends upon whether that argument is an SZARRAY or not – this is shown in the

lower and upper paths, respectively, of the syntax diagram. So each FixedArg is either a single Elem, or

NumElem repeats of Elem.

(SZARRAY is the single byte 0x1D, and denotes a vector – a single-dimension array with a lower bound of zero.)

NumElem is an unsigned int32 specifying the number of elements in the SZARRAY, or 0xFFFFFFFF to indicate

that the value is null.

 Partition II 171

An Elem takes one of the forms in this diagram, as follows:

 If the parameter kind is simple (first line in the above diagram) (bool, char, float32,

float64, int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned

int32 or unsigned int64) then the 'blob' contains its binary value (Val). (A bool is a single

byte with value 0 (false) or 1 (true); char is a two-byte Unicode character; and the others have

their obvious meaning.) This pattern is also used if the parameter kind is an enum -- simply store

the value of the enum's underlying integer type.

 If the parameter kind is string, (middle line in above diagram) then the blob contains a SerString –

a PackedLen count of bytes, followed by the UTF8 characters. If the string is null, its PackedLen

has the value 0xFF (with no following characters). If the string is empty (―‖), then PackedLen

has the value 0x00 (with no following characters).

 If the parameter kind is System.Type, (also, the middle line in above diagram) its value is stored
as a SerString (as defined in the previous paragraph), representing its canonical name. The

canonical name is its full type name, followed optionally by the assembly where it is defined, its

version, culture and public-key-token. If the assembly name is omitted, the CLI looks first in the

current assembly, and then in the system library (mscorlib); in these two special cases, it is

permitted to omit the assembly-name, version, culture and public-key-token.

 If the parameter kind is System.Object, (third line in the above diagram) the value stored

represents the ―boxed‖ instance of that value-type. In this case, the blob contains the actual type's

FieldOrPropType (see below), followed by the argument‘s unboxed value. [Note: it is not

possible to pass a value of null in this case. end note]

 If the type is a boxed simple value type (bool, char, float32, float64, int8, int16,

int32, int64, unsigned int8, unsigned int16, unsigned int32 or unsigned

int64) then FieldOrPropType is immediately preceded by a byte containing the value 0x51 .

The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2,

ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8,

ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING . A single-dimensional, zero-based

array is specified as a single byte 0x1D followed by the FieldOrPropType of the element type.

(See §23.1.16) An enum is specified as a single byte 0x55 followed by a SerString.

Partition%20II%20Metadata.doc#SignatureElementTypes
Partition%20II%20Metadata.doc#SignatureElementTypes

172 Partition II

A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or
property it represents. [Note: Recall that the CLI allows fields and properties to have the same name; so we

require a means to disambiguate such situations. end note]

FIELD is the single byte 0x53.

PROPERTY is the single byte 0x54.

The FieldOrPropName is the name of the field or property, stored as a SerString (defined above).

A number of examples involving custom attributes are contained in Annex B of Partition VI.

23.4 Marshalling descriptors

A Marshalling Descriptor is like a signature – it‘s a 'blob' of binary data. It describes how a field or parameter
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or

from unmanaged code via PInvoke dispatch. The ILAsm syntax marshal can be used to create a marshalling

descriptor, as can the pseudo custom attribute MarshalAsAttribute – see §21.2.1)

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier

– see §15.5.4.

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx. Their names and values are listed
in the following table:

Name Value

NATIVE_TYPE_BOOLEAN 0x02

NATIVE_TYPE_I1 0x03

NATIVE_TYPE_U1 0x04

NATIVE_TYPE_I2 0x05

NATIVE_TYPE_U2 0x06

NATIVE_TYPE_I4 0x07

NATIVE_TYPE_U4 0x08

NATIVE_TYPE_I8 0x09

NATIVE_TYPE_U8 0x0a

NATIVE_TYPE_R4 0x0b

NATIVE_TYPE_R8 0x0c

NATIVE_TYPE_LPSTR 0x14

NATIVE_TYPE_LPWSTR 0x15

NATIVE_TYPE_INT 0x1f

NATIVE_TYPE_UINT 0x20

NATIVE_TYPE_FUNC 0x26

NATIVE_TYPE_ARRAY 0x2a

 Partition II 173

The 'blob' has the following format –

MarshalSpec ::=

 NativeIntrinsic

| ARRAY ArrayElemType

| ARRAY ArrayElemType ParamNum

| ARRAY ArrayElemType ParamNum NumElem

NativeIntrinsic ::=

 BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8

| LPSTR | LPSTR | INT | UINT | FUNC

For compactness, the NATIVE_TYPE_ prefixes have been omitted in the above lists; for example, ―ARRAY‖ is

shorthand for NATIVE_TYPE_ARRAY.

ArrayElemType ::=

 NativeIntrinsic

ParamNum is an unsigned integer (compressed as described in §23.2) specifying the parameter in the method

call that provides the number of elements in the array – see below.

NumElem is an unsigned integer compressed as described in §23.2 (specifying the number of elements or

additional elements – see below).

[Note: For example, in the method declaration:

.method void M(int32[] ar1, int32 size1, unsigned int8[] ar2, int32 size2) { … }

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap

with the format:

ARRAY MAX 2 1

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY. There is no additional info about the type of

each element (signified by that NATIVE_TYPE_MAX). The value of ParamNum is 2, which indicates that

parameter number 2 in the method (the one called size1) will specify the number of elements in the actual

array – let‘s suppose its value on a particular call is 42. The value of NumElem is 0. The calculated total size,

in bytes, of the array is given by the formula:

if ParamNum = 0

 SizeInBytes = NumElem * sizeof (elem)

else

 SizeInBytes = (@ParamNum + NumElem) * sizeof (elem)

endif

 The syntax ―@ParamNum‖ is used here to denote the value passed in for parameter number ParamNum – it

would be 42 in this example. The size of each element is calculated from the metadata for the ar1 parameter in

Foo‘s signature – an ELEMENT_TYPE_I4 (§23.1.16) of size 4 bytes. end note]

174 Partition II

24 Metadata physical layout

The physical on-disk representation of metadata is a direct reflection of the logical representation described

in §22 and §23. That is, data is stored in streams representating the metadata tables and heaps. The main

complication is that, where the logical representation is abstracted from the number of bytes needed for

indexing into tables and columns, the physical representation has to take care of that explicitly by defining how

to map logical metadata heaps and tables into their physical representations.

 Unless stated otherwise, all binary values are stored in little-endian format.

24.1 Fixed fields

Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable

Executable (PE) File Format (§25). Because of this heritage, some of the fields in the physical representation
of metadata have fixed values. When writing these fields it is best that they be set to the value indicated, on

reading they should be ignored.

24.2 File headers

24.2.1 Metadata root

The root of the physical metadata starts with a magic signature, several bytes of version and other

miscellaneous information, followed by a count and an array of stream headers, one for each stream that is

present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of

headers.

Offset Size Field Description

0 4 Signature Magic signature for physical metadata : 0x424A5342.

4 2 MajorVersion Major version, 1 (ignore on read)

6 2 MinorVersion Minor version, 1 (ignore on read)

8 4 Reserved Reserved, always 0 (§24.1).

12 4 Length Number of bytes allocated to hold version string (including

null terminator), call this x.

Call the length of the string (including the terminator) m (we

require m <= 255); the length x is m rounded up to a multiple

of four.

16 m Version UTF8-encoded null-terminated version string of length m
(see below)

16+m x-m Padding to next 4 byte boundary.

16+x 2 Flags Reserved, always 0 (§24.1).

16+x+2 2 Streams Number of streams, say n.

16+x+4 StreamHeaders Array of n StreamHdr structures.

The Version string shall be ―Standard CLI 2005‖ for any file that is intended to be executed on any conforming

implementation of the CLI, and all conforming implementations of the CLI shall accept files that use this
version string. Other strings shall be used when the file is restricted to a vendor-specific implementation of the

CLI. Future versions of this standard shall specify different strings, but they shall begin ―Standard CLI‖. Other

standards that specify additional functionality shall specify their own specific version strings beginning with

―Standard□‖, where ―□‖ represents a single space. Vendors that provide implementation-specific extensions

shall provide a version string that does not begin with ―Standard□‖. (For the first version of this Standard, the

Version string was ―Standard CLI 2002‖.)

 Partition II 175

24.2.2 Stream header

A stream header gives the names, and the position and length of a particular table or heap. Note that the length

of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-

terminated string).

Offset Size Field Description

0 4 Offset Memory offset to start of this stream from start of the

metadata root (§24.2.1)

4 4 Size Size of this stream in bytes, shall be a multiple of 4.

8 Name Name of the stream as null-terminated variable length array

of ASCII characters, padded to the next 4-byte boundary

with \0 characters. The name is limited to 32 characters.

Both logical tables and heaps are stored in streams. There are five possible kinds of streams. A stream header

with name ―#Strings‖ that points to the physical representation of the string heap where identifier strings are
stored; a stream header with name ―#US‖ that points to the physical representation of the user string heap; a

stream header with name ―#Blob‖ that points to the physical representation of the blob heap, a stream header

with name ―#GUID‖ that points to the physical representation of the GUID heap; and a stream header with

name ―#~‖ that points to the physical representation of a set of tables.

Each kind of stream shall occur at most once, that is, a meta-data file shall not contain two ―#US‖ streams, or

five ―#Blob‖ streams. Streams need not be there if they are empty.

The next subclauses describe the structure of each kind of stream in more detail.

24.2.3 #Strings heap

The stream of bytes pointed to by a ―#Strings‖ header is the physical representation of the logical string heap.

The physical heap can contain garbage, that is, it can contain parts that are unreachable from any of the tables,

but parts that are reachable from a table shall contain a valid null-terminated UTF8 string. When the #String
heap is present, the first entry is always the empty string (i.e., \0).

24.2.4 #US and #Blob heaps

The stream of bytes pointed to by a ―#US‖ or ―#Blob‖ header are the physical representation of logical

Userstring and 'blob' heaps respectively. Both these heaps can contain garbage, as long as any part that is

reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in

the first few bytes:

 If the first one byte of the 'blob' is 0bbbbbbb2, then the rest of the 'blob' contains the bbbbbbb2

bytes of actual data.

 If the first two bytes of the 'blob' are 10bbbbbb2 and x, then the rest of the 'blob' contains the

(bbbbbb2 << 8 + x) bytes of actual data.

 If the first four bytes of the 'blob' are 110bbbbb2, x, y, and z, then the rest of the 'blob' contains the

(bbbbb2 << 24 + x << 16 + y << 8 + z) bytes of actual data.

The first entry in both these heaps is the empty 'blob' that consists of the single byte 0x00.

Strings in the #US (user string) heap are encoded using 16-bit Unicode encodings. The count on each string is

the number of bytes (not characters) in the string. Furthermore, there is an additional terminal byte (so all byte

counts are odd, not even). This final byte holds the value 1 if and only if any UTF16 character within the string

has any bit set in its top byte, or its low byte is any of the following: 0x01–0x08, 0x0E–0x1F, 0x27, 0x2D,

0x7F. Otherwise, it holds 0. The 1 signifies Unicode characters that require handling beyond that normally

provided for 8-bit encoding sets.

176 Partition II

24.2.5 #GUID heap

The ―#GUID‖ header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the

stream.

24.2.6 #~ stream

The ―#~‖ streams contain the actual physical representations of the logical metadata tables (§22). A ―#~‖

stream has the following top-level structure:

Offset Size Field Description

0 4 Reserved Reserved, always 0 (§24.1).

4 1 MajorVersion Major version of table schemata; shall be 2 (§24.1).

5 1 MinorVersion Minor version of table schemata; shall be 0 (§24.1).

6 1 HeapSizes Bit vector for heap sizes.

7 1 Reserved Reserved, always 1 (§24.1).

8 8 Valid Bit vector of present tables, let n be the number of bits that

are 1.

16 8 Sorted Bit vector of sorted tables.

24 4*n Rows Array of n 4-byte unsigned integers indicating the number of

rows for each present table.

24+4*n Tables The sequence of physical tables.

The HeapSizes field is a bitvector that encodes the width of indexes into the various heaps. If bit 0 is set,

indexes into the ―#String‖ heap are 4 bytes wide; if bit 1 is set, indexes into the ―#GUID‖ heap are 4 bytes

wide; if bit 2 is set, indexes into the ―#Blob‖ heap are 4 bytes wide. Conversely, if the HeapSize bit for a

particular heap is not set, indexes into that heap are 2 bytes wide.

Heap size flag Description

0x01 Size of ―#String‖ stream >= 216.

0x02 Size of ―#GUID‖ stream >= 216.

0x04 Size of ―#Blob‖ stream >= 2
16

.

The Valid field is a 64-bit bitvector that has a specific bit set for each table that is stored in the stream; the

mapping of tables to indexes is given at the start of §22. For example when the DeclSecurity table is present in
the logical metadata, bit 0x0e should be set in the Valid vector. It is invalid to include non-existent tables in

Valid, so all bits above 0x2c shall be zero.

The Rows array contains the number of rows for each of the tables that are present. When decoding physical

metadata to logical metadata, the number of 1‘s in Valid indicates the number of elements in the Rows array.

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in §22. For

example, the table with assigned index 0x02 is a TypeDef table, which, according to its specification in §22.37,

has the following columns: a 4-byte-wide flags, an index into the String heap, another index into the String

heap, an index into TypeDef , TypeRef , or TypeSpec table, an index into Field table, and an index into

MethodDef table.

The physical representation of a table with n columns and m rows with schema (C0,…,Cn-1) consists of the

concatenation of the physical representation of each of its rows. The physical representation of a row with

schema (C0,…, n-1) is the concatenation of the physical representation of each of its elements. The physical
representation of a row cell e at a column with type C is defined as follows:

 Partition II 177

 If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e., a

2-bit mask of type PropertyAttributes)

 If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes

as defined in the HeapSizes field.

 If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than 216

rows, otherwise it is stored using 4 bytes.

 If e is a coded index that points into table ti out of n possible tables t0, …tn-1, then it is stored as e

<< (log n) | tag{ t0, …tn-1}[ti] using 2 bytes if the maximum number of rows of tables t0, …tn-1,

is less than 2(16 – (log n)), and using 4 bytes otherwise. The family of finite maps tag{ t0, …tn-1} is

defined below. Note that decoding a physical row requires the inverse of this mapping. [For

example, the Parent column of the Constant table indexes a row in the Field, Param, or Property

tables. The actual table is encoded into the low 2 bits of the number, using the values: 0 =>
Field, 1 => Param, 2 => Property.The remaining bits hold the actual row number being indexed.

For example, a value of 0x321, indexes row number 0xC8 in the Param table.]

TypeDefOrRef: 2 bits to encode tag Tag

TypeDef 0

TypeRef 1

TypeSpec 2

HasConstant: 2 bits to encode tag Tag

Field 0

Param 1

Property 2

HasCustomAttribute: 5 bits to encode tag Tag

MethodDef 0

Field 1

TypeRef 2

TypeDef 3

Param 4

InterfaceImpl 5

MemberRef 6

Module 7

Permission 8

Property 9

Event 10

StandAloneSig 11

ModuleRef 12

TypeSpec 13

Assembly 14

AssemblyRef 15

File 16

ExportedType 17

178 Partition II

ManifestResource 18

[Note: HasCustomAttributes only has values for tables that are ―externally visible‖; that is, that correspond to items

in a user source program. For example, an attribute can be attached to a TypeDef table and a Field table, but not a

ClassLayout table. As a result, some table types are missing from the enum above. end note]

HasFieldMarshall: 1 bit to encode tag Tag

Field 0

Param 1

HasDeclSecurity: 2 bits to encode tag Tag

TypeDef 0

MethodDef 1

Assembly 2

MemberRefParent: 3 bits to encode tag Tag

TypeDef 0

TypeRef 1

ModuleRef 2

MethodDef 3

TypeSpec 4

HasSemantics: 1 bit to encode tag Tag

Event 0

Property 1

MethodDefOrRef: 1 bit to encode tag Tag

MethodDef 0

MemberRef 1

MemberForwarded: 1 bit to encode tag Tag

Field 0

MethodDef 1

Implementation: 2 bits to encode tag Tag

File 0

AssemblyRef 1

ExportedType 2

CustomAttributeType: 3 bits to encode tag Tag

Not used 0

Not used 1

MethodDef 2

MemberRef 3

 Partition II 179

Not used 4

ResolutionScope: 2 bits to encode tag Tag

Module 0

ModuleRef 1

AssemblyRef 2

TypeRef 3

TypeOrMethodDef: 1 bit to encode tag Tag

TypeDef 0

MethodDef 1

180 Partition II

25 File format extensions to PE

This contains informative text only

The file format for CLI components is a strict extension of the current Portable Executable (PE) File Format.

This extended PE format enables the operating system to recognize runtime images, accommodates code
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.

There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a

tool or compiler can use the specifications to emit valid CLI images.

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item

once loaded into memory, with the base address of the image file subtracted from it (i.e., the offset from the

base address where the file is loaded). The RVA of an item will almost always differ from its position within

the file on disk. To compute the file position of an item with RVA r, search all the sections in the PE file to find

the section with RVA s, length l and file position p in which the RVA lies, ie s r < s+l. The file position of
the item is then given by p+(r-s).

Unless stated otherwise, all binary values are stored in little-endian format.

End informative text

25.1 Structure of the runtime fi le format

The figure below provides a high-level view of the CLI file format. All runtime images contain the following:

 PE headers, with specific guidelines on how field values should be set in a runtime file.

 A CLI header that contains all of the runtime specific data entries. The runtime header is read -

only and shall be placed in any read-only section.

 The sections that contain the actual data as described by the headers, including imports/exports,

data, and code.

The CLI header (§25.3.3) is found using CLI Header directory entry in the PE header. The CLI header in turn

contains the address and sizes of the runtime data (for metadata, see §24; for CIL see § 25.4) in the rest of the

image. Note that the runtime data can be merged into other areas of the PE format with the other data based on
the attributes of the sections (such as read only versus execute, etc.).

25.2 PE headers

A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and

then the PE optional header followed by PE section headers.

 Partition II 181

25.2.1 MS-DOS header

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the

module. At offset 0x3c in the DOS header is a 4-byte unsigned integer offset, lfanew, to the PE signature (shall

be ―PE\0\0‖), immediately followed by the PE file header.

0x4d 0x5a 0x90 0x00 0x03 0x00 0x00 0x00

0x04 0x00 0x00 0x00 0xFF 0xFF 0x00 0x00

0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 lfanew

0x0e 0x1f 0xba 0x0e 0x00 0xb4 0x09 0xcd

0x21 0xb8 0x01 0x4c 0xcd 0x21 0x54 0x68

0x69 0x73 0x20 0x70 0x72 0x6f 0x67 0x72

0x61 0x6d 0x20 0x63 0x61 0x6e 0x6e 0x6f

0x74 0x20 0x62 0x65 0x20 0x72 0x75 0x6e

0x20 0x69 0x6e 0x20 0x44 0x4f 0x53 0x20

0x6d 0x6f 0x64 0x65 0x2e 0x0d 0x0d 0x0a

0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00

25.2.2 PE fi le header

Immediately after the PE signature is the PE File header consisting of the following:

Offset Size Field Description

0 2 Machine Always 0x14c.

2 2 Number of Sections Number of sections; indicates size of the Section Table,

which immediately follows the headers.

4 4 Time/Date Stamp Time and date the file was created in seconds since

January 1st 1970 00:00:00 or 0.

8 4 Pointer to Symbol Table Always 0 (§24.1).

12 4 Number of Symbols Always 0 (§24.1).

16 2 Optional Header Size Size of the optional header, the format is described below.

18 2 Characteristics Flags indicating attributes of the file, see §25.2.2.1.

25.2.2.1 Characterist ics

A CIL-only DLL sets flag 0x2000 to 1, while a CIL-only .exe has flag 0x2000 set to zero:

Flag Value Description

IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link library (DLL).

Except for the IMAGE_FILE_DLL flag (0x2000), flags 0x0002, 0x0004, 0x008, and 0x0100 shall all be set, while

all others shall always be zero (§24.1).

182 Partition II

25.2.3 PE optional header

Immediately after the PE Header is the PE Optional Header. This header contains the following information:

Offset Size Header part Description

0 28 Standard fields These define general properties of the PE file, see §25.2.3.1.

28 68 NT-specific fields These include additional fields to support specific features of

Windows, see 25.2.3.2.

96 128 Data directories These fields are address/size pairs for special tables, found in

the image file (for example, Import Table and Export Table).

25.2.3.1 PE header standard f ie lds

These fields are required for all PE files and contain the following information:

Offset Size Field Description

0 2 Magic Always 0x10B (§24.1).

2 1 LMajor Always 6 (§24.1).

3 1 LMinor Always 0 (§24.1).

4 4 Code Size Size of the code (text) section, or the sum of all code sections

if there are multiple sections.

8 4 Initialized Data Size Size of the initialized data section, or the sum of all such

sections if there are multiple data sections.

12 4 Uninitialized Data Size Size of the uninitialized data section, or the sum of all such

sections if there are multiple unitinitalized data sections.

16 4 Entry Point RVA RVA of entry point , needs to point to bytes 0xFF 0x25

followed by the RVA in a section marked execute/read for

EXEs or 0 for DLLs

20 4 Base Of Code RVA of the code section. (This is a hint to the loader.)

24 4 Base Of Data RVA of the data section. (This is a hint to the loader.)

This contains informative text only

The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this

stub will call the entry point API of mscoree (_CorExeMain or _CorDllMain). The mscoree entry point will use

the module handle to load the metadata from the image, and invoke the entry point specified in vthe CLI

header.

End informative text

25.2.3.2 PE header Windows NT-specif ic f ie lds

These fields are Windows NT specific:

Offset Size Field Description

28 4 Image Base Always 0x400000 (§24.1).

32 4 Section Alignment Always 0x2000 (§24.1).

36 4 File Alignment Either 0x200 or 0x1000.

40 2 OS Major Always 4 (§24.1).

 Partition II 183

42 2 OS Minor Always 0 (§24.1).

44 2 User Major Always 0 (§24.1).

46 2 User Minor Always 0 (§24.1).

48 2 SubSys Major Always 4 (§24.1).

50 2 SubSys Minor Always 0 (§24.1).

52 4 Reserved Always 0 (§24.1).

56 4 Image Size Size, in bytes, of image, including all headers and padding;

shall be a multiple of Section Alignment.

60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional

Header and padding; shall be a multiple of the file alignment.

64 4 File Checksum Always 0 (§24.1).

68 2 SubSystem Subsystem required to run this image. Shall be either

IMAGE_SUBSYSTEM_WINDOWS_CE_GUI (0x3) or

IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2).

70 2 DLL Flags Always 0 (§24.1).

72 4 Stack Reserve Size Always 0x100000 (1Mb) (§24.1).

76 4 Stack Commit Size Always 0x1000 (4Kb) (§24.1).

80 4 Heap Reserve Size Always 0x100000 (1Mb) (§24.1).

84 4 Heap Commit Size Always 0x1000 (4Kb) (§24.1).

88 4 Loader Flags Always 0 (§24.1)

92 4 Number of Data

Directories

Always 0x10 (§24.1).

25.2.3.3 PE header data directories

The optional header data directories give the address and size of several tables that appear in the sections of the

PE file. Each data directory entry contains the RVA and Size of the structure it describes, in that order.

Offset Size Field Description

96 8 Export Table Always 0 (§24.1).

104 8 Import Table RVA and Size of Import Table, (§25.3.1).

112 8 Resource Table Always 0 (§24.1).

120 8 Exception Table Always 0 (§24.1).

128 8 Certificate Table Always 0 (§24.1).

136 8 Base Relocation Table Relocation Table; set to 0 if unused (§25.3.2).

144 8 Debug Always 0 (§24.1).

152 8 Copyright Always 0 (§24.1).

160 8 Global Ptr Always 0 (§24.1).

168 8 TLS Table Always 0 (§24.1).

176 8 Load Config Table Always 0 (§24.1).

184 Partition II

184 8 Bound Import Always 0 (§24.1).

192 8 IAT RVA and Size of Import Address Table,

(§25.3.1).

200 8 Delay Import Descriptor Always 0 (§24.1).

208 8 CLI Header CLI Header with directories for runtime data,

(§25.3.1).

216 8 Reserved Always 0 (§24.1).

The tables pointed to by the directory entries are stored in one of the PE file‘s sections; these sections

themselves are described by section headers.

25.3 Section headers

Immediately following the optional header is the Section Table, which contains a number of section headers.

This positioning is required because the file header does not contain a direct pointer to the section table; the
location of the section table is determined by calculating the location of the first byte after the headers.

Each section header has the following format, for a total of 40 bytes per entry:

Offset Size Field Description

0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null

if the string is exactly eight characters long.

8 4 VirtualSize Total size of the section in bytes. If this value is greater than

SizeOfRawData, the section is zero-padded.

12 4 VirtualAddress For executable images this is the address of the first byte of the

section, when loaded into memory, relative to the image base.

16 4 SizeOfRawData Size of the initialized data on disk in bytes, shall be a multiple of

FileAlignment from the PE header. If this is less than VirtualSize

the remainder of the section is zero filled. Because this field is

rounded while the VirtualSize field is not it is possible for this to

be greater than VirtualSize as well. When a section contains only

uninitialized data, this field should be 0.

20 4 PointerToRawData Offset of section‘s first page within the PE file. This shall be a

multiple of FileAlignment from the optional header. When a

section contains only uninitialized data, this field should be 0.

24 4 PointerToRelocations RVA of Relocation section.

28 4 PointerToLinenumbers Always 0 (§24.1).

32 2 NumberOfRelocations Number of relocations, set to 0 if unused.

34 2 NumberOfLinenumbers Always 0 (§24.1).

36 4 Characteristics Flags describing section‘s characteristics, see below.

The following table defines the possible characteristics of the section.

Flag Value Description

IMAGE_SCN_CNT_CODE 0x00000020 Section contains executable code.

IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized data.

IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized data.

IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as code.

 Partition II 185

IMAGE_SCN_MEM_READ 0x40000000 Section can be read.

IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to.

25.3.1 Import Table and Import Address Table (IAT)

The Import Table and the Import Address Table (IAT) are used to import the _CorExeMain (for a .exe) or

_CorDllMain (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to

a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each

imported DLL):

Offset Size Field Description

0 4 ImportLookupTable RVA of the Import Lookup Table

4 4 DateTimeStamp Always 0 (§24.1).

8 4 ForwarderChain Always 0 (§24.1).

12 4 Name RVA of null-terminated ASCII string ―mscoree.dll‖.

16 4 ImportAddressTable RVA of Import Address Table (this is the same as the

RVA of the IAT descriptor in the optional header).

20 20 End of Import Table. Shall be filled with zeros.

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of

RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in
this table for every imported symbol.

Offset Size Field Description

0 4 Hint/Name Table RVA A 31-bit RVA into the Hint/Name Table. Bit 31

shall be set to 0 indicating import by name.

4 4 End of table, shall be filled with zeros.

The IAT should be in an executable and writable section as the loader will replace the pointers into the

Hint/Name table by the actual entry points of the imported symbols.

The Hint/Name table contains the name of the dll-entry that is imported.

Offset Size Field Description

0 2 Hint Shall be 0.

2 variable Name Case sensitive, null-terminated ASCII string containing name to

import. Shall be ―_CorExeMain‖ for a .exe file and

―_CorDllMain‖ for a .dll file.

25.3.2 Relocations

In a pure CIL image, a single fixup of type IMAGE_REL_BASED_HIGHLOW (0x3) is required for the x86

startup stub which access the IAT to load the runtime engine on down level loaders. When building a mixed

CIL/native image or when the image contains embedded RVAs in user data, the relocation section contains

relocations for these as well.

The relocations shall be in their own section, named ―.reloc‖, which shall be the final section in the PE file. The
relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block

represents the fixups for a 4K page, and each block shall start on a 32-bit boundary.

Each fixup block starts with the following structure:

Offset Size Field Description

186 Partition II

0 4 PageRVA The RVA of the block in which the fixup needs to be

applied. The low 12 bits shall be zero.

4 4 Block Size Total number of bytes in the fixup block, including the

Page RVA and Block Size fields, as well as the

Type/Offset fields that follow, rounded up to the next

multiple of 4.

The Block Size field is then followed by (BlockSize –8)/2 Type/Offset. Each entry is a word (2 bytes) and has

the following structure (if necessary, insert 2 bytes of 0 to pad to a multiple of 4 bytes in length):

Offset Size Field Description

0 4 bits Type Stored in high 4 bits of word. Value indicating which

type of fixup is to be applied (described above)

0 12 bits Offset Stored in remaining 12 bits of word. Offset from starting
address specified in the Page RVA field for the block.

This offset specifies where the fixup is to be applied.

25.3.3 CLI header

The CLI header contains all of the runtime-specific data entries and other information. The header should be

placed in a read-only, sharable section of the image. This header is defined as follows:

Offset Size Field Description

0 4 Cb Size of the header in bytes

4 2 MajorRuntimeVersion The minimum version of the runtime required to run

this program, currently 2.

6 2 MinorRuntimeVersion The minor portion of the version, currently 0.

8 8 MetaData RVA and size of the physical metadata (§24).

16 4 Flags Flags describing this runtime image. (§25.3.3.1).

20 4 EntryPointToken Token for the MethodDef or File of the entry point

for the image

24 8 Resources RVA and size of implementation-specific resources.

32 8 StrongNameSignature RVA of the hash data for this PE file used by the

CLI loader for binding and versioning

40 8 CodeManagerTable Always 0 (§24.1).

48 8 VTableFixups RVA of an array of locations in the file that contain

an array of function pointers (e.g., vtable slots), see

below.

56 8 ExportAddressTableJumps Always 0 (§24.1).

64 8 ManagedNativeHeader Always 0 (§24.1).

25.3.3.1 Runti me flags

The following flags describe this runtime image and are used by the loader.

Flag Value Description

COMIMAGE_FLAGS_ILONLY 0x00000001 Always 1 (§24.1).

 Partition II 187

COMIMAGE_FLAGS_32BITREQUIRED 0x00000002 Image can only be loaded into a 32-bit process,

for instance if there are 32-bit vtablefixups, or

casts from native integers to int32. CLI

implementations that have 64-bit native

integers shall refuse loading binaries with this

flag set.

COMIMAGE_FLAGS_STRONGNAMESIGNED 0x00000008 Image has a strong name signature.

COMIMAGE_FLAGS_TRACKDEBUGDATA 0x00010000 Always 0 (§24.1).

25.3.3.2 Entry point metadata token

 The entry point token (§15.4.1.2) is always a MethodDef token (§22.26) or File token (§22.19)

when the entry point for a multi-module assembly is not in the manifest assembly. The signature

and implementation flags in metadata for the method indicate how the entry is run

25.3.3.3 Vtable f ixup

Certain languages, which choose not to follow the common type system runtime model, can have virtual

functions which need to be represented in a v-table. These v-tables are laid out by the compiler, not by the

runtime. Finding the correct v-table slot and calling indirectly through the value held in that slot is also done

by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of

Vtable Fixups (§15.5.1). V-tables shall be emitted into a read-write section of the PE file.

Each entry in this array describes a contiguous array of v-table slots of the specified size. Each slot starts out

initialized to the metadata token value for the method they need to call. At image load time, the runtime

Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.

Offset Size Field Description

0 4 VirtualAddress RVA of Vtable

4 2 Size Number of entries in Vtable

6 2 Type Type of the entries, as defined in table below

Constant Value Description

COR_VTABLE_32BIT 0x01 Vtable slots are 32 bits.

COR_VTABLE_64BIT 0x02 Vtable slots are 64 bits.

COR_VTABLE_FROM_UNMANAGED 0x04 Transition from unmanaged to managed code.

COR_VTABLE_CALL_MOST_DERIVED 0x10 Call most derived method described by the

token (only valid for virtual methods).

25.3.3.4 Strong name signature

This header entry points to the strong name hash for an image that can be used to deterministically identify a

module from a referencing point (§6.2.1.3).

25.4 Common Intermediate Language phys ical layout

This section contains the layout of the data structures used to describe a CIL method and its exceptions. Method

bodies can be stored in any read-only section of a PE file. The MethodDef (§22.26) records in metadata carry
each method's RVA.

A method consists of a method header immediately followed by the method body, possibly followed by extra

method data sections (§25.4.5), typically exception handling data. If exception-handling data is present, then

188 Partition II

CorILMethod_MoreSects flag (§25.4.4) shall be specified in the method header and for each chained item after

that.

There are two flavors of method headers - tiny (§25.4.2) and fat (§25.4.3). The two least significant bits in a

method header indicate which type is present (§25.4.1). The tiny header is 1 byte long and stores only the

method's code size. A method is given a tiny header if it has no local variables, maxstack is 8 or less, the

method has no exceptions, the method size is less than 64 bytes, and the method has no flags above 0x7. Fat
headers carry full information - local vars signature token, maxstack, code size, flag. Tiny method headers can

start on any byte boundary. Fat method headers shall start on a 4-byte boundary.

25.4.1 Method header type values

The two least significant bits of the first byte of the method header indicate what type of header is present.

These 2 bits will be one and only one of the following:

Value Value Description

CorILMethod_TinyFormat 0x2 The method header is tiny (§25.4.2) .

CorILMethod_FatFormat 0x3 The method header is fat (§25.4.3).

25.4.2 Tiny format

Tiny headers use a 6-bit length encoding. The following is true for all tiny headers:

 No local variables are allowed

 No exceptions

 No extra data sections

 The operand stack shall be no bigger than 8 entries

A Tiny Format header is encoded as follows:

Start Bit Count of Bits Description

0 2 Flags (CorILMethod_TinyFormat shall be set, see §25.4.4).

2 6 Size, in bytes, of the method body immediately following this

header.

25.4.3 Fat for mat

The fat format is used whenever the tiny format is not sufficient. This can be true for one or more of the

following reasons:

 The method is too large to encode the size (i.e., at least 64 bytes)

 There are exceptions

 There are extra data sections

 There are local variables

 The operand stack needs more than 8 entries

A fat header has the following structure

Offset Size Field Description

0 12 (bits) Flags Flags (CorILMethod_FatFormat shall be set in bits 0:1,

see §25.4.4)

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte

integers occupied (currently 3)

 Partition II 189

2 2 MaxStack Maximum number of items on the operand stack

4 4 CodeSize Size in bytes of the actual method body

8 4 LocalVarSigTok Meta Data token for a signature describing the layout

of the local variables for the method. 0 means there

are no local variables present

25.4.4 Flags for method headers

The first byte of a method header can also contain the following flags, valid only for the Fat format, that

indicate how the method is to be executed:

Flag Value Description

CorILMethod_FatFormat 0x3 Method header is fat.

CorILMethod_TinyFormat 0x2 Method header is tiny.

CorILMethod_MoreSects 0x8 More sections follow after this header (§25.4.5).

CorILMethod_InitLocals 0x10 Call default constructor on all local variables.

25.4.5 Method data section

At the next 4-byte boundary following the method body can be extra method data sections. These method data

sections start with a two byte header (1 byte for flags, 1 byte for the length of the actual data) or a 4-byte

header (1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the

header, and what data is in the actual section:

Flag Value Description

CorILMethod_Sect_EHTable 0x1 Exception handling data.

CorILMethod_Sect_OptILTable 0x2 Reserved, shall be 0.

CorILMethod_Sect_FatFormat 0x40 Data format is of the fat variety, meaning there is a 3-

byte length least-significant byte first format. If not

set, the header is small with a 1-byte length

CorILMethod_Sect_MoreSects 0x80 Another data section occurs after this current section

Currently, the method data sections are only used for exception tables (§19). The layout of a small exception

header structure as is a follows:

Offset Size Field Description

0 1 Kind Flags as described above.

1 1 DataSize Size of the data for the block, including the header, say

n*12+4.

2 2 Reserved Padding, always 0.

4 n Clauses n small exception clauses (§25.4.6).

The layout of a fat exception header structure is as follows:

Offset Size Field Description

0 1 Kind Which type of exception block is being used

1 3 DataSize Size of the data for the block, including the header, say

n*24+4.

190 Partition II

4 n Clauses n fat exception clauses (§25.4.6).

25.4.6 Exception handling c lauses

Exception handling clauses also come in small and fat versions.

The small form of the exception clause should be used whenever the code sizes for the try block and the

handler code are both smaller than 256 bytes and both their offsets are smaller than 65536. The format for a

small exception clause is as follows:

Offset Size Field Description

0 2 Flags Flags, see below.

2 2 TryOffset Offset in bytes of try block from start of method body.

4 1 TryLength Length in bytes of the try block

5 2 HandlerOffset Location of the handler for this try block

7 1 HandlerLength Size of the handler code in bytes

8 4 ClassToken Meta data token for a type-based exception handler

8 4 FilterOffset Offset in method body for filter-based exception handler

The layout of the fat form of exception handling clauses is as follows:

Offset Size Field Description

0 4 Flags Flags, see below.

4 4 TryOffset Offset in bytes of try block from start of method body.

8 4 TryLength Length in bytes of the try block

12 4 HandlerOffset Location of the handler for this try block

16 4 HandlerLength Size of the handler code in bytes

20 4 ClassToken Meta data token for a type-based exception handler

20 4 FilterOffset Offset in method body for filter-based exception handler

The following flag values are used for each exception-handling clause:

Flag Value Description

COR_ILEXCEPTION_CLAUSE_EXCEPTION 0x0000 A typed exception clause

COR_ILEXCEPTION_CLAUSE_FILTER 0x0001 An exception filter and handler clause

COR_ILEXCEPTION_CLAUSE_FINALLY 0x0002 A finally clause

COR_ILEXCEPTION_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on

exception only)

 Partition II 191

26 Index

! 26

!! 26

& 26

* 26

\n 14

\ooo..14

\t 14

+ 14

abstract .. 44, 46, 83

accessibility..31

default ..45

overriding and ..53

.addon .. 100

address ...70

ansi .. 44, 46, 89

arglist ...87

array

jagged ..68

multi-dimensional ...66

native ...29

rank of ..66

single-dimensional ..66

.assembly ..12, 17, 19, 22

assembly ..12

assembly ..18

assembly

defining an ...19

assembly

version number ...21

assembly

referencing an ...22

assembly ..83

assembly ..91

.assembly extern12, 17, 22, 23

assert .. 106

attribute ..16

accessibility ... 44

custom ... 107

CLS-defined ... 109

thread local storage 110

field ... 91

field contract .. 92

genuine custom .. 107

inheritance ... 46

interoperation ... 46, 92

pre-defined ... 43

pseudo custom ... 108

special handling ... 46

type layout ... 45

type semantics .. 45

visibility ... 44

auto ... 44, 45

autochar ..44, 46, 89

beforefieldinit ...44, 46, 55

BeginInvoke ...73, 75, 76

blob ... 111

block

catch .. 104

fault ... 105

filter ... 104

finally .. 105

handler ... 104

protected .. 103

bool ... 26, 29

boxing ... 62, 96

byte list .. 15

bytearray .. 93

call ...64, 77, 78

calli ... 71

calling convention .. 78

callvirt ..64, 77, 78

.capability .. 51

192 Partition II

catch .. 103, 104

.cctor .. 54, 79, 85

cdecl ... 89

char ... 26

character

escape.. 14

cil85, 88

.class .. 17, 24, 43, 51

class .. 26

.class extern .. 17, 25

CLS tag ..113

code

type-safe .. 11

unmanaged .. 88

unverifiable ... 11

verifiable ... 11

compilercontrolled .. 83, 92

constraint... 41

constructor

class .. 54

instance ... 54

conv.ovf.u ... 71

conv.u ... 71

.corflags ... 17, 19

.ctor .. 54, 79, 85, 107

.culture ... 20, 23

.custom...... 17, 20, 22, 23, 24, 25, 51, 80, 98, 100, 107

.data .. 17, 24, 51, 80, 89, 94

data marshaling ... 88

deadlock .. 55

default ... 78

delegate ... 72

creation ... 73

delegate call

asynchronous ... 75

synchronous .. 74

demand ..106

deny ...106

directive ... 17

dottedname .. 14, 52

.emitbyte .. 80, 81

endfault .. 105

endfinally ... 105

EndInvoke ... 73, 75, 76

.entrypoint... 12, 22, 80, 81

enum .. 68

underlying type .. 68

enumeration .. See enum

ERROR tag .. 113

.event ... 51, 100

event .. 100

event

declaration ... 100

event

adder .. 100

event

remover .. 100

event

fire ... 100

exception handling ... 103

explicit .. 44, 45, 78, 91

extends... 43

famandassem ... 83, 91

family .. 83, 91

famorassem .. 83, 91

fastcall ... 89

fault ... 103, 105

.field ... 17, 24, 51, 91

field

global ... 58

field ... 91

field

instance .. 91

field

static .. 91

field

 Partition II 193

global ...91

.file .. 17, 22

file name ..16

filter ... 103, 104

final ...83

finalizer ..54

finally .. 103, 105

.fire .. 100

float32...15, 26, 29, 93

float64...15, 26, 29, 93

forwardref .. 85, 88

fromunmanaged ...88

generic instance ..35

generic method definition34

generic parameter ...47

generic type definition ..33

generics ..32

.get ...98

GUID ... 111

handle

opaque..90

handler ... 103, 104

.hash .. 22, 23

.hash algorithm ... 20, 22

heap ... 111

Blob ... 111

Guid ... 111

String ... 111

UserString .. 111

hexbyte .. 13, 15

hidebysig..83

hiding ...31

id 14

ID ..14

identifier ..14

keyword as an...14

ILAsm..10

case sensitivity of ...13

syntax .. 13

implements .. 43, 60

[in] .. 80

inheritcheck ... 106

init ... 80, 82

initobj .. 63

initonly .. 54, 91

instance.. 54, 78

instance explicit ... 78

instruction

protected .. 103

int .. 30

native ... 26

native unsigned .. 26

int16 ...26, 30, 93

unsigned .. 27

int32 ... 13, 26, 30, 88, 93

unsigned .. 27

int64 ... 13, 26, 30, 88, 93

unsigned .. 27

int8 ...26, 30, 93

unsigned .. 27

interface .. 43, 44, 45, 60

internalcall ... 85

InvalidOperationException 70

Invoke ... 73

isinst .. 62

label... 15

code ... 15, 81

data ...15, 91, 94

list of ... 15

layout .. 57

default.. 45

explicit ... 57

sequential ... 57

ldarga .. 70

ldelem .. 66

ldelema .. 66, 70

194 Partition II

ldflda ... 70

ldftn ... 71, 78

ldind .. 70

ldloca .. 70

ldsflda ... 70

ldvirtftn .. 71, 78

#line .. 81

.line .. 16, 51, 81

linkcheck ..106

literal ... 91

.locals .. 82

.locals .. 80

localsinit flag ... 63

lpstr ... 30

lpwstr .. 30

managed ... 72, 85

manifest .. 18

manifest resource ... 22

marshal .. 29, 79, 92

marshaling ... 90

.maxstack ... 12, 80

member

special ... 54

metadata

semantics of ... 10

structure of .. 10

metadata merging .. 58

metadata table

Assembly ...113

AssemblyOS ...114

AssemblyProcessor ...114

AssemblyRef ..114

AssemblyRefOS ...115

AssemblyRefProcessor115

ClassLayout ..116

Constant ...118

CustomAttribute ...118

DeclSecurity ...120

Event ... 122

EventMap .. 122

ExportedType ... 124

Field .. 125

FieldLayout .. 127

FieldMarshal .. 128

FieldRVA .. 129

File .. 129

GenericParam ... 130

GenericParamConstraint 131

ImplMap .. 132

InterfaceImpl .. 133

ManifestResource ... 133

MemberRef .. 134

MethodDef ... 135

MethodImpl ... 138

MethodSemantics ... 139

MethodSpec ... 140

Module .. 141

ModuleRef ... 141

NestedClass.. 142

Param ... 142

Property ... 143

PropertyMap .. 144

StandAloneSig ... 145

TypeDef ... 146

TypeRef ... 149

TypeSpec ... 150

.method ... 12, 17, 24, 51, 77

method ... 26

method ... 30

method

virtual .. 51

method

global ... 58

method

static .. 77

method

 Partition II 195

instance ..77

method

virtual...78

method

definition ..79

method

entry point ..81

method

predefined attributes for a83

method

implementation attributes for a85

method

vararg ...87

method

unmanaged ...88

Method See method definition

method body ..80

method declaration ...77

method definition ...77

method descriptor ...77

method implementation 52, 77

method reference ..77

method transition thunk ..88

MethodDecl .See method implementation, See method

declaration

MethodImpl ...60

MethodRef See method reference

modifier

optional ..See modopt

required .. See modreq

modopt ... 27, 80

modreq ... 27, 80

.module ...17, 24, 27, 28

module ...18

module

declaring a ..24

module

referencing a...24

module

manifest ... 24

module... 112

<Module> 58, 126, 136, 138

.module extern ... 17, 24

.mresource ... 17, 22

mscorlib ... 12

namespace ... 18

native ... 85, 89

nested assembly ... 44

nested famandassem ... 44

nested family ... 44

nested famorassem ... 44

nested private ... 44

nested public .. 44

newarr ... 66

newobj ... 63, 73

newslot ... 31, 51, 78, 83

noinlining .. 85

nometadata .. 22

notserialized... 92

null .. 59

object ... 26

operator

+ 14

[opt]... 80

.other ... 98, 100

[out]... 80

.override ...51, 52, 80

.override method .. 80

.pack .. 51, 57

.param ..80, 81, 82

.param type ...51, 81, 82

.permission .. 81, 106

.permissionset .. 81, 106

permitonly ... 106

pinned .. 27, 28

PInvoke See platform invoke

196 Partition II

pinvokeimpl ... 83, 89

platform invoke .. 86, 88, 89

platformapi .. 89

pointer ... 69

managed ... 69, 71

method .. 71

unmanaged ... 69, 70

pointer arithmetic .. 70

private .. 44, 83, 92

.property ... 51, 98

property ... 98

property

declaration ... 98

property

getter ... 98

property

setter ... 98

public ... 44, 83, 92

.publickey... 20, 23

.publickeytoken ... 23

QSTRING ... 14

race ... 55

realnumber ... 13, 15

.removeon ..100

reqopt ...106

reqrefuse ..106

request..106

resolution scope ... 28

rtspecialname 44, 46, 54, 83, 92, 98, 100

runtime ... 72, 85

scope block ... 87

sealed ... 44, 46

security

declarative ..106

sequential ... 44, 45

serializable ... 44, 46

serialization ... 47

.set .. 98

signature .. 159

.size ... 51

specialname 44, 46, 54, 83, 92, 98, 100

SQSTRING.. 14

Standard Public Key ... 20

static .. 83, 92

static data

initialization of ... 95

stdcall .. 89

stelem .. 66

stind ... 70

string ... 26

string literal

concatenation of ... 14

.subsystem ... 17, 19

synchronized .. 85

System.ArgIterator ... 87

System.Array ... 66

System.Array.Initialize ... 63

System.AsyncCallback 73, 76

System.Attribute .. 107

System.AttributeUsageAttribute 109

System.CLSCompliantAttribute 109

System.Console.. 12

System.Delegate... 72

System.Diagnostics.ConditionalAttribute 110

System.Enum ... 68

System.Enum.ToString... 118

System.FlagsAttribute .. 110

System.Globalization.CultureInfo 20

System.IAsyncResult 73, 76

System.IntPtr ... 73

System.MarshalByRefObject 70

System.MissingMethodException 77

System.Net.DnsPermissionAttribute 109

System.Net.SocketPermissionAttribute 109

System.Net.WebPermissionAttribute 109

System.Object 26, 43, 73, 76

 Partition II 197

System.Object.Finalize ...54

System.ObsoleteAttribute 109

System.ParamArrayAttribute 110

System.Reflection.AssemblyAlgorithmIDAttribute

 .. 108

System.Reflection.AssemblyFlagsAttribute 108

System.Reflection.DefaultMemberAttribute .. 108, 110

System.Runtime.CompilerServices.DecimalConstant

Attribute ... 110

System.Runtime.CompilerServices.FaultModeAttribu

te .. 110

System.Runtime.CompilerServices.IndexerNameAttri

bute .. 110

System.Runtime.CompilerServices.InitializeArray ..96

System.Runtime.CompilerServices.MethodImplAttrib

ute .. 108

System.Runtime.InteropServices.DllImportAttribute

 .. 108

System.Runtime.InteropServices.FieldOffsetAttribute

 .. 108

System.Runtime.InteropServices.GCHandle90

System.Runtime.InteropServices.InAttribute 108

System.Runtime.InteropServices.MarshalAsAttribute

 .. 108

System.Runtime.InteropServices.OutAttribute 108

System.Runtime.InteropServices.StructLayoutAttribut

e ... 108

System.Runtime.Interopservices.UnmanagedType ..29

System.Security.Permissions.CodeAccessSecurityAttr
ibute ... 109

System.Security.Permissions.ecurityAttribute 109

System.Security.Permissions.EnvironmentPermission

Attribute ... 109

System.Security.Permissions.FileIOPermissionAttribu

te .. 109

System.Security.Permissions.ReflectionPermissionAtt

ribute .. 109

System.Security.Permissions.SecurityAttribute16

System.Security.Permissions.SecurityPermissionAttri

bute .. 109

System.String ... 12, 26, 46

System.ThreadStaticAttribute 110

System.ValueType ... 68

table... 111

tail. .. 87

terminal ... 13

thiscall ... 89

thunk ... 88

token

foreign ... 124

regular ... 124

.try ... 103

try .. 103

try block .. 103

type ... 26

abstract .. 46

base ... 43

built-in ... 26, 28

closed .. 35

concrete ... 54

definition of a ... 26, 43

instantiated ... 35

marshalling of a ... 29

native data.. 29

nested .. 56

open ... 35

pointer ... 69

reference .. 26

specification ... 27

user defined ... 26

value .. 62

type initializer .. 54

type layout ... 116

typedref ... 27

unbox .. 64

unboxing .. 62

unicode ...44, 46, 89

unmanaged .. 85, 89

unmanaged cdecl.. 79

unmanaged fastcall... 79

198 Partition II

unmanaged stdcall ... 79

unmanaged thiscall .. 79

unsigned int ... 30

unsigned int16 ... 30

unsigned int32 ... 30

unsigned int64 ... 30

unsigned int8 ... 30

validation .. 11

value type .. 27

vararg ... 78, 80, 87

vector .. 66

.ver .. 21

.ver .. 20

.ver .. 23

verification ... 11

virtual .. 83

visibility ... 31

default .. 45

void ... 27, 79

.vtfixup .. 17, 88

WARNING tag .. 113

