

Common Language Infrastructure (CLI)

Partition V:

Debug Interchange Format

 Partition V i

Table of contents

1 Portable CILDB fi les 1

1.1 Encoding of in teger s 1

1.2 CILDB header 1

1.2.1 Version GUID 1

1.3 Tables and heaps 1

1.3.1 SymConstant table 2

1.3.2 SymDocument table 2

1.3.3 SymMethod table 2

1.3.4 SymSequencePoin t table 3

1.3.5 SymScope table 3

1.3.6 SymVar iable table 4

1.3.7 Sym Using table 4

1.3.8 SymMisc heap 4

1.3.9 SymStr ing heap 4

1.4 Signatures 4

 Partition V 1

1 Portable CILDB fi les

Portable CILDB files provide a standard way to interchange debugging information between CLI producers

and consumers. This partition serves to fill in gaps not covered by metadata, notably the names of local

variables and source line correspondences.

1.1 Encoding of integers

All integers are stored in little-endian format, except for those in signatures, which are encoded as described in

Partition II.

1.2 CILDB header

A CILDB file starts with a 72-byte header, whose layout is as follows:

Offset Size Field Description

0 16 Signature Magic signature for CILDB “_ildb_signature\0”

16 16 GUID Version GUID

32 4 UserEntryPoint MethodDef token of the entry point.

36 4 CountOfMethods Number of rows in the SymMethod table.

40 4 CountOfScopes Number of rows in the SymScopes table.

44 4 CountOfVars Number of rows in the SymVariable table.

48 4 CountOfUsing Number of rows in the SymUsing table.

52 4 CountOfConstants Number of rows in the SymConstant table.

56 4 CountOfDocuments Number of rows in the SymDocument table.

60 4 CountOfSequencePoints Number of rows in the SymSequencePoint table.

64 4 CountOfMiscBytes Number of bytes in the SymMisc heap.

68 4 CountOfStringBytes Number of bytes in the SymString heap.

1.2.1 Version GUID

The version GUID is the 16-byte sequence shown below:

0x7F 0x55 0xE7 0xF1 0x3C 0x42 0x17 0x41

0x8D 0xA9 0xC7 0xA3 0xCD 0x98 0x8D 0xF1

1.3 Tables and heaps

The CILDB header is immediately followed by various tables and heaps, in the following order:

1. SymConstant

2. SymMethod

3. SymScopes

4. SymVariable

5. SymUsing

6. SymSequencePoint

7. SymDocument

Partition%20II%20Metadata.doc#Blobsandsignatures

2 Partition V

8. SymMisc

9. SymString

Some of the tables contain CIL offsets. These offsets are in bytes, and the offset of the first instruction is zero.

The offsets do not necessarily match the beginning of a CIL instruction. For example, offsets denoting the end of

a range of bytes often refer to the last byte of an instruction. Lengths are also in bytes.

The rows in each of the tables 3–7 above that belong to the same method must be contiguous within their parent
table.

1.3.1 SymConstant table

Each row of the SymConstant table describes a constant, as follows:

Offset Size Field Description

0 4 Scope Index of parent scope

4 4 Name Index of the name in the SymString heap

8 4 Signature Index of the signature in the SymMisc heap

12 4 SignatureSize Length of the signature

16 4 Value Index of the value in the SymMisc heap

20 4 ValueSize Length of the value.

The value of the constant is encoded just like a Blob for the Value column of a Constant metadata table in Partition II,

except that there is no length prefix.

1.3.2 SymDoc ument table

Each row of a SymDocument describes a source document, as shown below. The document can either be referred to

indirectly (by its URL) or incorporated directly into the CILDB file as part of the SymMisc heap. The GUID values

referred to in this subclause are not defined by this Standard; space is simply reserved for them.

Offset Size Field Description

0 16 Language GUID for the language.

16 16 LanguageVendor GUID for the language vendor.

32 16 DocumentType GUID for the document type.

48 16 AlgorithmId GUID of the checksum algorithm; or 0 if there is no

checksum.

64 4 CheckSumSize Size of the checksum; or 0 if there is no checksum.

68 4 CheckSumEntry Index of the checksum in the SymMisc heap; or 0 if there

is no checksum.

72 4 SourceSize Size of the source in the SymMisc heap; or 0 if the source

document is not directly incorporated into the file.

76 4 SourceEntry Index of the source in the SymMisc heap; or 0 if the

source document is not directly incorporated into the file.

80 4 UrlEntry Index of the document URL in the SymString heap.

1.3.3 SymMethod table

Each row of a SymMethod table has the following format:

Offset Size Field Description

Partition%20II%20Metadata.doc#Constant

 Partition V 3

0 4 MethodToken A MethodDef metadata token.

4 8 Scopes [Start,Stop) range of SymScope table.

12 8 Vars [Start,Stop) range of SymVariable table.

20 8 Using [Start,Stop) range of SymUsing table.

28 8 Constant [Start,Stop) range of SymConstant table.

36 8 Documents [Start,Stop) range of SymDocument table.

44 8 SequencePoints [Start,Stop) range of SymSequencePoint table.

Each [Start,Stop) range is represented as two 4-byte integers. The first integer is the index of the first related

table row; the second integer is the index of one past the last related table row.

The rows of a SymMethod table are sorted in ascending order of the MethodToken field. There is at most one

row for each method.

1.3.4 SymSequencePoint table

Each row of a SymSequencePoint table describes a sequence point, as follows:

Offset Size Field Description

0 4 Offset CIL offset of the sequence point.

4 4 StartLine Starting line of the source document.

8 4 StartColumn Starting column, or 0 if not specified.

12 4 EndLine Ending line of the source document, or 0 if not specified.

16 4 EndColumn Ending column, or 0 if not specified.

20 4 Doc Index of the source document in the SymString heap.

Together, EndLine and EndColumn specify the column “one past” the last byte position associated with the

sequence point. In other words, they specify the end of a half-open interval [start,end).

Rows of the SymSequencePoint belonging to the same Method must be contiguous and sorted in ascending

order of Offset.

1.3.5 SymScope table

Each row of a SymScope table describes a scope, as follows:

Offset Size Field Description

0 4 Parent Index of parent SymScope row, or –1 if scope has no parent.

4 4 StartOffset CIL offset of the first byte in the scope.

8 4 EndOffset CIL offset of the last byte in the scope.

12 4 HasChildren 1 if scope has child scopes; 0 otherwise

16 4 HasVars 1 if scope has variables; 0 otherwise

The scopes belonging to a method must form a tree, with the following constraints:

 A parent scope must precede its child scopes.

 The StartOffset and EndOffset of a child scope must be within the (inclusive) range of offsets specified

by its parent’s scope.

4 Partition V

1.3.6 SymVariable table

Each row of a SymVariable table describes a local variable.

Offset Size Field Description

0 4 Scope Index of the parent scope

4 4 Name Index of the variable’s name in the SymString heap.

8 4 Attributes Flags describing the variable (see below).

12 4 Signature Index of the signature in the SymMisc heap.

16 4 SignatureSize Length of the signature.

20 4 AddressKind Always 1.

24 4 Address1 Local variable number.

28 4 Address2 Always 0.

32 4 Address3 Always 0.

36 4 StartOffset CIL offset where the variable is first visible .

40 4 EndOffset CIL offset where the variable is last visible.

44 4 Sequence Always 0.

48 4 IsParam Always 0.

52 4 IsHidden 1 if variable should be hidden from debugger; 0 otherwise.

The least-significant bit of Attributes indicates whether the variable is user-generated (0) or compiler-

generated (1). The other bits are reserved and should be set to zero.

Because parameters are fully described by the Metadata, they do not appear in the SymVariable table.

1.3.7 SymUsing table

Each row of the SymUsing table describes importation of a namespace, as follows:

Offset Size Field Description

0 4 Scope Index of the parent scope

4 4 Namespace Index of the namespace in the SymString heap

1.3.8 SymMisc heap

The SymMisc heap holds various byte sequences (e.g., signatures and checksums).

1.3.9 SymString heap

The stream of bytes in the SymString heap has the same form as those for the #Strings heap (see Partition II).

1.4 Signatures

Signatures of variables and constants are encoded as an index into the SymMisc heap, and a signature size. The

values of the bytes are similar to those for a FieldSig (see Partition II), and include the prefix FIELD (0x6),

even though the variables are not fields. Because the length of the signature is encoded in the tables, it is not

included in the SymMisc heap. For example, type int32 is encoded as “0x06 0x08”.

Partition%20II%20Metadata.doc#Stringsheap
Partition%20II%20Metadata.doc#FieldSig

