


What You Need to Use This Book
The following list is the recommended system requirements for running the code in this book:

❑ Windows 2000 Professional or higher with IIS installed

❑ Windows XP Professional with IIS installed

❑ ASP.NET Version 1.0

❑ SQL Server 2000 or MSDE

❑ Visual Studio .NET Professional or higher (optional)

In addition, this book assumes the following knowledge:

❑ A good understanding of the .NET Framework and ASP.NET

❑ An understanding of the VB.NET language and JavaScript

Summary of Contents
Introduction 1
Chapter 1: The Distributed Application 9
Chapter 2: Components and Data Access 49
Chapter 3: Accessing XML Documents 91
Chapter 4: The Application Plumbing 119
Chapter 5: Working with Down-Level Clients 159
Chapter 6: Working with Rich Clients 209
Chapter 7: Remoting to .NET Clients 281
Chapter 8: Updating Data in Down-Level Clients 321
Chapter 9: Updating Remote Cached Data 389
Chapter  10: Components for Updating Data 431
Chapter 11: Rich Client Update Applications 475
Chapter 12: Reconciling Update Errors 525
Chapter 13: Updating Data from Remote .NET Applications 579
Chapter 14: Furthermore 621
Index 625



Accessing XML Documents

In the previous chapter we looked at how we can expose data via components in our application's data
tier in a range of formats. Depending on the features of our application's middle tier, or the type of
client we are serving to, we may have to tailor the data format to suit their requirements. As you saw,
this is relatively easy with the .NET data access classes included in the Framework.

However, all the examples in the previous chapter accessed a data source that is a relational data store –
in our case a SQL Server database. What if the data source is not "relational", but (as is increasingly
becoming the case) an XML document? It could be a file stored on disk, or a stream of XML delivered
by another component, a Web Service, or another service or application such as BizTalk Server. Or it
might simply be delivered over HTTP as a POST from a Web page.

In this chapter, we'll continue examining the examples we started looking at in the previous chapter. As
well as a series of pages that use data extracted from a relational database, there is an equivalent set of
pages that use data stored as an XML document in a disk file. So, the plan for this chapter is to show:

❑ How we can build components that access XML documents

❑ How we can convert and return the XML as various different object types

❑ How we can display the XML easily in our ASP.NET pages

We start with a look at the data access component that we are using throughout this chapter.



Chapter 3

92

XML Data Access Component Examples
All the examples we looked at in the previous chapter accessed data stored in a relational database,
predominantly using ADO.NET objects (such as the DataReader and DataSet) to extract the data,
and returning it in various other formats as well – such as an Array and an XML document. However,
there are an increasing number of occasions where the data is supplied in XML format. Obvious cases
are when it is stored as a disk file, streamed from another component, or delivered to our application
via a Web Service (using SOAP).

The client may require the data in a format suitable for data binding, such as a rowset of some kind.
Or, as we've previously discussed, there are useful possibilities for using data as XML where the client is
able to process this XML directly, for example using an XML parser located on the client machine. We
demonstrate this in a range of ways in later chapters. Of course, if the .NET Framework is installed on
the client, we can use the .NET System.XML classes there instead. However, in the remainder of this
chapter we'll consider how we can take XML data and expose it to the client or the middle tier in a
range of different ways.

You can download the samples shown here to run on your own systems. See the section "Setting
Up the Examples" in the previous chapter for details of how to install and configure them on
your machine.

Accessing and Returning Relational Data
The example files we provide include a set of components whose source code is provided in the vb-
components folder, and a series of pages stored in the accessing-data folder that use these
components. This folder also contains the default.htm menu page (originally seen in the previous
chapter) for the examples you'll see here:



Accessing XML Documents

93

The SupplierListXml Data Access Component
As we did in the previous chapter, we've provided one data access component for all the examples in
this chapter. The component, SupplierListXml.dll, implements several methods that we use to
expose the XML data in different ways. The source code of the component can be examined in the vb-
components/SupplierListXML folder, or by following the links at the top of each example page (as
demonstrated in the relational data access examples in the previous chapter).

The component imports the .NET classes it requires, in this case System and the three System.Xml
namespaces. It defines a namespace for our component class, Wrox4923Xml, and several Private
member variables that we want to be able to access from more than one function within the component:

Imports System
Imports System.Xml
Imports System.Xml.XPath
Imports System.Xml.Schema

'the namespace for the component
Namespace Wrox4923Xml

  'the main class definition
  Public Class SupplierListXml

    'private internal variables
    Private m_XmlFilePath As String       'path and name of XML file
    Private m_SchemaPath As String        'path and name of Schema file
    Private m_Validate As Boolean = False 'if validation to be performed

    'variable to hold instance of XmlTextReader object
    'allows it to be accessed by separate functions
    Private m_XTReader As XmlTextReader

The constructor function for the component comes next. It accepts two parameters – the first is
mandatory and specifies the full path to the XML source file on disk that we're using as our data
source. The second optional parameter is the full path to an XML Schema (XSD) file that we
want the component to use to validate the XML document. If this parameter is omitted, no
validation is performed.

    Public Sub New(ByVal XmlFilePath As String, _
                   Optional ByVal SchemaPath As String = "")
      MyBase.New() 'call constructor for base class
      m_XmlFilePath = XmlFilePath
      m_SchemaPath = SchemaPath
      If m_SchemaPath.Length > 0 Then m_Validate = True
    End Sub

However, note that three of the functions in the component require a schema to be provided, and these
methods will raise an error if they are called when the optional second parameter to the constructor was
not set when the component instance was created. The three methods are
GetSuppliersValidatingReader, GetSuppliersDataSet and GetSuppliersXmlString.



Chapter 3

94

Returning an XmlTextReader Reference
We start with a simple example, returning a reference to an open XmlTextReader object. Members of
the XmlReader family of objects (XmlTextReader and XmlNodeReader) are the XML equivalent of
the DataReader object we used in the previous chapter. They act like a "pipe" between our
applications and an XML document (stream or disk file).

However, unlike the DataReader, they return XML elements rather than data rows and columns. We
used an XmlTextReader in an example in the previous chapter to return the XML elements that the
SQLXML technology built into SQL Server 2000 returns.

All we have to do to implement our GetSuppliersXmlTextReader method is to create and initialize
an XmlTextReader object from a disk file. We specify the full physical path to the file in the
XmlTextReader object's constructor, catch any error (for example, file not found) and raise this error
to the calling routine. Otherwise we just pass back a reference to the XmlTextReader:

Public Function GetSuppliersXmlTextReader() As XmlTextReader

  Try

    'create new XmlTextReader object and load XML document
    Return New XmlTextReader(m_XmlFilePath)

  Catch objErr As Exception

    Throw objErr    'throw exception to calling routine

  End Try

End Function

Displaying the Results

The page suppliers-xtreader-from-xml.aspx uses this function to read the XML source
document we're using in these examples. When you open it, the page displays a list of elements from
the XML document:



Accessing XML Documents

95

There are links at the top of the page to view the source of the .aspx file (and from that screen, the
component source code), and to display the XML document itself. The next screenshot shows a section
of this XML document – you can see that it's the same as the XML that we returned from our relational
database in some of the examples in the previous chapter:

The example page contains an Import directive for our component, as well as one for the System.Xml
classes (we'll be using some of the types defined there in the code in our page):

<%@Import Namespace="SupplierListXml" %>
<%@Import Namespace="System.Xml" %>

It also contains an asp:Label control in which we display the results:

<asp:Label id="lblMessage" runat="server" />

The Page_Load Event Handler

The Page_Load event code is responsible for instantiating our component and calling the method that
returns an XmlTextReader. The first step is to create the physical path to the XML file we're using –
this section of code is the same in most of the pages you'll see in this chapter:

Sub Page_Load()

  'create physical path to XML file (in same folder as ASPX page)
  Dim strCurrentPath As String = Request.PhysicalPath
  Dim strPathOnly As String = Left(strCurrentPath, _
                              InStrRev(strCurrentPath, "\"))
  Dim strXMLPath As String = strPathOnly & "supplier-list.xml"

Now we declare a variable to hold the XmlTextReader returned by our method, create the component
instance and call the GetSuppliersXmlTextReader method:



Chapter 3

96

  'declare variable to hold XmlTextReader object
  Dim objReader As XmlTextReader

  Try

    'create an instance of the data access component
    Dim objSupplierList As New Wrox4923Xml.SupplierListXml(strXMLPath)

    'call the method to return the data as an XmlTextReader
    objReader = objSupplierList.GetSuppliersXmlTextReader()

Now we can use the XmlTextReader in our page. We want to display the XML it references, so we
created a separate function within this page that reads and parses the XML and returns it as a String.
The function ParseXmlContent takes the XmlTextReader and returns the content ready for display,
so we can just assign it to our asp:Label control:

    'if we got a result, display the parsed content
    If Not objReader Is Nothing Then
      lblMessage.Text = ParseXmlContent(objReader)
    End If

We now have two more tasks to take care of. If there was an error using the component, we want to catch
this and display it in the page, and finally, we must remember to close the XmlTextReader we used:

  Catch objErr As Exception

    'there was an error and no data will be returned
    lblMessage.Text = "ERROR: No data returned. " & objErr.Message

  Finally

    objReader.Close()   'close the Reader to release file

  End Try

End Sub

This example page uses a custom function named ParseXmlContent to read the XML content direct
from the XmlTextReader and return it as a string ready for display. We'll describe that function next –
it is used in the next example in this chapter as well.

Parsing an XML Document

The XmlReader objects provided in the System.Xml namespace of the Framework provide a "pull"
model for accessing XML documents in much the same way as the DataReader does for relational data
(and unlike a SAX XML parser, which uses the "push" model and requires event handlers to be created
to handle events as the document is read).

In many ways, the .NET "pull" model of accessing data is more intuitive and easier to use. The
XmlReader objects have methods that allow us to read nodes from a document in a specific format, or
retrieve them as node objects. As each node is read we can get information about the node, access the
attributes of that node, or skip nodes.



Accessing XML Documents

97

The following listing of our ParseXmlContent function demonstrates many of these features. It reads
nodes in turn from the document and checks to see what type they are – outputting appropriate
information for the three common types we know exist in our document. Then it looks for any attributes
and outputs information about these, before moving on to the next node:

Function ParseXmlContent(objXMLReader As XmlTextReader) As String

  'read or "pull" the nodes of the XML document
  Dim strNodeResult As String = ""
  Dim objNodeType As XmlNodeType

  'read each node in turn – returns False if no more nodes to read
  Do While objXMLReader.Read()

    'select on the type of the node (these are only some of the types)
    objNodeType = objXMLReader.NodeType

    Select Case objNodeType

      Case XmlNodeType.XmlDeclaration:
        'get the name and value
        strNodeResult += "XML Declaration: <b>" & objXMLReader.Name _
                       & " " & objXMLReader.Value & "</b><br />"

      Case XmlNodeType.Element:
        'just get the name, any value will be in next (#text) node
        strNodeResult += "Element: <b>" & objXMLReader.Name & "</b><br />"

      Case XmlNodeType.Text:
        'just display the value, node name is "#text" in this case
        strNodeResult += "&nbsp; – Value: <b>" & objXMLReader.Value _
                       & "</b><br />"

    End Select

    'see if this node has any attributes
    If objXMLReader.AttributeCount > 0 Then

      'iterate through the attributes by moving to the next one
      'could use MoveToFirstAttribute but MoveToNextAttribute does
      'the same when the current node is an element-type node
      Do While objXMLReader.MoveToNextAttribute()

        'get the attribute name and value
        strNodeResult += "&nbsp; – Attribute: <b>" & objXMLReader.Name _
                       & "</b> &nbsp; Value: <b>" & objXMLReader.Value _
                       & "</b><br />"
      Loop

    End If

  Loop   'and read the next node

  'and return the resulting string
  Return strNodeResult

End Function



Chapter 3

98

Returning an XmlTextReader object is therefore a useful way to provide our application with access
to an XML document that arrives as a stream or is stored as a disk file. However, bear in mind that it
exhibits the same pros and cons as the DataReader we used in the previous chapter to access
relational data.

The XmlReader objects are connected data sources, and so require their "connection" (or reference) to
the source data to be maintained all the time that the XML data is being read. However, they are
lightweight, fast and efficient for situations where the "connected" limitation is acceptable.

On the other hand, when we want to remote data and work with it in a disconnected environment, we
need to look for a different object to use. Later in this chapter we'll see some options – including using a
DataSet and one of the XmlDocument family of objects.

Returning an XmlValidatingReader Reference
One regular requirement when reading XML is to validate it against a specific schema to ensure that the
format is suitable for the application that is using it. It makes sense to do this within our data access
layer components as we actually read the document from a stream or disk file.

Within the .NET System.Xml namespace classes, validation is usually performed through an
XmlValidatingReader. We "attach" this to an XmlReader object in order to perform the validation
as the document is read. Our example data access component contains a method named
GetSuppliersValidatingReader that instantiates and returns an XmlValidatingReader. The
following listing shows this method. You can see that it uses a separate function named
GetValidatingReader within our data access component to actually get the
XmlValidatingReader we return to the calling routine:

Public Function GetSuppliersValidatingReader() As XmlValidatingReader

  If m_Validate = True Then  'schema must be specified

    Try

      'get instance of validator from separate function
      Dim objValidator As XmlValidatingReader = GetValidatingReader()

      'add the event handler for any validation errors found
      AddHandler objValidator.ValidationEventHandler, _
                 AddressOf ValidationError

      Return objValidator   'return it to the calling routine

    Catch objErr As Exception

      Throw objErr            'throw exception to calling routine

    End Try

  Else   'no schema provided

    'create a new Exception and fill in details
    Dim objSchemaErr As New Exception("You must provide a Schema" _



Accessing XML Documents

99

                    & " when using the GetSuppliersValidatingReader method")
    objSchemaErr.Source = "SupplierListXml"

    Throw objSchemaErr  'throw exception to calling routine

  End If

End Function

You can also see here how we create a custom exception to return to the calling routine if the path of
the XML schema was not provided when the component's constructor was originally called. Obviously,
we can't perform validation unless we have a schema. It is possible to use an inline schema for
validation (one that is part of the XML document), but we haven't enabled that in our application.

In general, when using a "standard" XML document format for data transport on a regular basis
(in other words a document that is of the same structure each time), using an inline schema only
adds to the payload sent across the network. It's probably better in this situation for each party to
have a copy of the schema locally and validate against that.

Creating and Initializing an XmlValidatingReader Object

The GetValidatingReader function we use in our GetSuppliersValidatingReader method is
implemented by a separate routine, which is listed next. We simply create an XmlTextReader for the
document (in our case a disk file), then use this in the constructor for an XmlValidatingReader. Next
we set the validation type (in our case we use Auto, so that it will detect the schema type
automatically – it can handle XSD and XDR schemas and DTDs):

Private Function GetValidatingReader() As XmlValidatingReader

  'create new XmlTextReader object and load XML document
  m_XTReader = New XmlTextReader(m_XmlFilePath)

  'create an XmlValidatingReader for this XmlTextReader
  Dim objValidator As New XmlValidatingReader(m_XTReader)

  'set the validation type to "Auto"
  objValidator.ValidationType = ValidationType.Auto

We also need to create an XmlSchemaCollection object that references the schema(s) we want to
validate against (there could be more than one if they inherit from each other), add our schema to it,
and assign this collection to the Schemas property of the XmlValidatingReader before returning it
to the calling routine. The version (overload) of the Add method we are using to add our schema to the
XmlSchemaCollection takes two string parameters. This first is the namespace for the schema (we use
the default here by providing an empty string for this parameter) and the second is the path to the
schema file:

  'create a new XmlSchemaCollection
  Dim objSchemaCol As New XmlSchemaCollection()

  'add our schema to it
  objSchemaCol.Add("", m_SchemaPath)



Chapter 3

100

  'assign the schema collection to the XmlValidatingReader
  objValidator.Schemas.Add(objSchemaCol)

  Return objValidator  'return to calling routine

End Function

Catching Validation Events

If we just use the XmlValidatingReader as it is now, any validation errors that are detected while
reading the XML document will cause an exception. Often we want to handle these validation errors
separately, or at least get specific information about the error. We can do this by handling the event that
the XmlValidatingReader raises when a validation error is encountered.

If you look back at the definition of the GetSuppliersValidatingReader method, you'll see that we
assigned an event handler within our data access component to this event:

'add the event handler for any validation errors found
AddHandler objValidator.ValidationEventHandler, _
           AddressOf ValidationError

The event handler is a separate subroutine that accepts an instance of a ValidationEventArgs object
as the second parameter. This object contains several details of the error, although we are only using the
Message property in our example. We just create a custom exception, and raise it to the calling routine:

    Private Sub ValidationError(ByVal objSender As Object, _
                                ByVal objArgs As ValidationEventArgs)

      'create a new Exception and fill in details
      Dim objValidErr As New Exception("Validation error: " _
                                       & objArgs.Message)
      objValidErr.Source = "SupplierListXml"

      Throw objValidErr  'throw exception to calling routine

    End Sub

Displaying the Results of the GetSuppliersValidatingReader Method

Our example page, suppliers-validreader-from-xml.aspx, uses the
GetSuppliersValidatingReader method, and displays the results of reading the disk file named
supplier-list.xml and validating it against an XML schema named supplier-list.xsd. The
code in the Page_Load event creates the physical path to the document and the schema files, and then
creates an instance of the data access component (specifying both of these paths):

'create physical path to XML file (in same folder as ASPX page)
Dim strCurrentPath As String = Request.PhysicalPath
Dim strPathOnly As String = Left(strCurrentPath, _
                                 InStrRev(strCurrentPath, "\"))
Dim strXMLPath As String = strPathOnly & "supplier-list.xml"
Dim strSchemaPath As String = strPathOnly & "supplier-list.xsd"

'create an instance of the data access component
Dim objSupplierList As New Wrox4923Xml.SupplierListXml(strXMLPath, _
                                                       strSchemaPath)



Accessing XML Documents

101

Then it calls the GetSuppliersValidatingReader method to get back the XmlValidatingReader,
and displays the results using the same ParseXmlContent method as we did in the previous example:

'declare variable to hold XmlValidatingReader object

Dim objReader As XmlValidatingReader

'call the method to return the data as an XmlValidatingReader

objReader = objSupplierList.GetSuppliersValidatingReader()

'if we got a result, display the parsed content

If Not objReader Is Nothing Then

  lblMessage.Text = ParseXmlContent(objReader)

End If

objReader.Reader.Close()   'close the Reader to release file

As we use the same XML document and the same ParseXmlContent method as the previous example,
the output is identical to the screenshot we showed in that example. To see a validation error, all you
have to do is edit the XML source file named supplier-list.xml, for example here is the result after
we changed the name of one of the <SupplierName> elements:

You can also view the schema we're validating against by clicking the links at the top right of the page:



Chapter 3

102

Returning a DataSet Object
So far we've returned our XML document through a couple of objects that are part of the XML
armory – defined within System.Xml and it's subordinate namespaces. However, we can take
advantage of the synchronization between XML and relational data formats that we discussed in the
previous chapter to return our XML document using objects that are normally associated with the
relational data world.

The next example demonstrates this by returning an ADO.NET DataSet object containing a relational
representation of our XML document:

Public Function GetSuppliersDataSet() As DataSet

To "convert" XML into a relational format, we can use an XmlDataDocument object. In Chapter 1 we
discussed how this maintains and exposes two synchronized "views" of the data it contains. It exposes the
normal XML DOM and XPath-compatible view of the data in the same way as is exposed by an
XmlDocument object. It also has a DataSet property that returns an ADO.NET DataSet-compatible view
of the data.

So, all we need to do is load our XML document into an XmlDataDocument object, and return a
reference to its DataSet property. However, to be able to access this, we have to use a schema as well,
and load this into the XmlDataDocument object before we load the XML document itself.

In our example, we also take advantage of the GetValidatingReader function within our data access
component to read the XML document and validate it as we load it into the XmlDataDocument. So,
the first step is to get the XmlValidatingReader that references the XML document, and we also
have to specify the event handler we want to use for validating it (as in our previous example):



Accessing XML Documents

103

  'get instance of validator from separate function

  Dim objValidator As XmlValidatingReader = GetValidatingReader()

  'add the event handler for any validation errors found

  AddHandler objValidator.ValidationEventHandler, AddressOf ValidationError

Now we can create the new XmlDataDocument object, load the schema from disk, then load the XML
document via our XmlValidatingReader. Once loaded, we close the XmlTextReader from which
we created the XmlValidatingReader (this is why it's declared as a member variable within our
component), and return the DataSet reference:

  'create a new XmlDataDocument object

  Dim objDataDoc As New XmlDataDocument()

  'load schema into DataSet exposed by XmlDataDocument object

  objDataDoc.DataSet.ReadXmlSchema(m_SchemaPath)

  'load document – its validated against Schema as it loads

  objDataDoc.Load(objValidator)

  'close the XmlTextReader

   m_XTReader.Close()

  'return the DataSet to the calling routine

  Return objDataDoc.DataSet

We've removed the error-handling code from this listing to make it easier to follow, though it is in
the examples you can download and run on your own system.

Displaying the Results

The example page suppliers-dataset-from-xml.aspx uses the GetSuppliersDataSet method
and displays the results. As we get back a DataSet object, we can display the rows in it using a
DataGrid control like we did in many examples in the previous chapter (which also helps to prove that
it is a real DataSet we get back!):

<asp:DataGrid id="dgrSuppliers" runat="server">

<HeaderStyle BackColor="#c0c0c0"></HeaderStyle>

<AlternatingItemStyle BackColor="#eeeeee"></AlternatingItemStyle>

</asp:DataGrid>

This is what the page looks like when you open it in the browser. There are the now-customary links to
show the source code, the XML document and the schema we used:



Chapter 3

104

In the Page_Load event, all we need to do is create the physical paths to the XML document and the
schema we want to use, and create our data access component instance (as in the previous examples).
Then we call the GetSuppliersDataSet method and assign the result to the DataGrid control. As a
DataSet can contain more than one table, we also have to specify the name of the table that we want to
act as the data source for the grid, and finally call the DataBind method:

'create an instance of the data access component

Dim objSupplierList As New Wrox4923Xml.SupplierListXml(strXMLPath, _
                                                       strSchemaPath)

'call the method to return the data as a DataSet and

'assign it to the DataGrid server control for display

dgrSuppliers.DataSource = objSupplierList.GetSuppliersDataSet()

'check we got a result – will be Nothing if there was an error

If Not dgrSuppliers.DataSource Is Nothing Then

  'set data member and bind the data to display it

  dgrSuppliers.DataMember = "Suppliers"

  dgrSuppliers.DataBind()

End If



Accessing XML Documents

105

Returning a Custom Array Reference
One of the examples we used with our relational data source in the previous chapter returned the
supplier list as an array of strings. We can quite easily do the same from an XML document if this is the
format that we need for our application. The method named GetSuppliersArray returns the same set
of values as the relational example from the previous chapter. Of course, the way it is implemented
within our XML data access component is quite different.

In this method, we use an XPathDocument to hold our XML while we extract the values we want from
it. An XPathDocument object is a special version of the "document" objects provided in the
System.Xml (and its child) namespaces. It is designed to provide fast and efficient access to the
document contents using "path" definitions from the W3C XPath query language. It does not support
the XML DOM techniques for accessing the content, and is consequently "lighter" and more efficient if
we only need to use XPath queries.

One of the methods within our data access component, GetSuppliersXPathDocument, returns the
data as an XPathDocument to the calling routine. We use it in a later example in this chapter, and we'll
look at it in more detail there. In the meantime, we can use this method from within our
GetSuppliersArray method to get an instance of XPathDocument that contains the XML stored in
the disk file.

Public Function GetSuppliersArray() As Array

  'use function in this class to get an XPathDocument
  Dim objXPathDoc As XPathDocument = GetSuppliersXPathDocument()

To access an XPathDocument, we can use XPath queries directly. However, a more generally useful
technique when we want to iterate through the document content is to create an XPathNavigator
object based on the XPathDocument object:

  'create a new XPathNavigator object using the XPathDocument object
  Dim objXPNav As XPathNavigator = objXPathDoc.CreateNavigator()

Using the XPathNavigator and XPathNodeIterator Objects

Now we can use the XPathNavigator to access the contents of our XML document. We declare a
couple of variables to hold XPathNodeIterator objects. These are collection-like objects designed to
hold a set of nodes from an XML document and they support iterating through the nodes contained, as
we'll see shortly.

  'declare variables to hold two XPathNodeIterator objects
  Dim objXPRowIter, objXPColIter As XPathNodeIterator

We move to the first child element in our document, which will be the root element in this case as we
created the XPathNavigator on the document object itself (we could have created it pointing to a
specific node if required by calling the CreateNavigator method of that node instead). Then we use
the Select method of the XPathNavigator to return an XPathNodeIterator that references all the
nodes that match a specified XPath expression. In our case, the XPath expression is "child::*",
meaning all child nodes (the <Suppliers> nodes in the XML document):



Chapter 3

106

'move to document element

  objXPNav.MoveToFirstChild()

  'select all the child nodes of the document node into an

  'XPathNodeIterator object using an XPath expression

  objXPRowIter = objXPNav.Select("child::*")

We can find out how many nodes we got from the Count property of the XPathNodeIterator, and
store this away in a variable. Then we move to the first child of this node (the <SupplierName>
element in our document) and repeat the process to find out how many child nodes this node has:

  'get number of "rows" (number of child elements)

  Dim intLastRowIndex As Integer = objXPRowIter.Count – 1

  'move to first child of first "row" element

  objXPNav.MoveToFirstChild()

  'select all the child nodes of this node into another

  'XPathNodeIterator object using an XPath expression

  objXPColIter = objXPNav.Select("child::*")

  'get number of "columns" (one per child element)

  Dim intLastColIndex As Integer = objXPColIter.Count – 1

Building the Array

We now know how "long" our array needs to be (the number of "rows" in the data), and how many
values there are for each "row" (the number of "columns" in the data). Hence we can declare a suitably
sized array:

  'can now create an Array of the appropriate size

  Dim arrResult(intLastColIndex, intLastRowIndex) As String

  Dim intLoop As Integer   'to hold index into array

At last we're in a position to collect the data from the XML into our new array. We iterate through the
"rows" of data using the XPathNodeIterator we set to the collection of <Supplier> elements. For
each one, we can iterate through the child elements (the <SupplierName>, <SupplierAddress> and
<SupplierContact> elements) and fill in our array as we go. Afterwards, we just return the array to
the calling routine:

  'iterate through the "rows"

  While objXPRowIter.MoveNext

    'create an XPathNavigator for this "row" element

    objXPNav = objXPRowIter.Current

    'get an XPathNodeIterator containing the child nodes

    objXPColIter = objXPNav.Select("child::*")



Accessing XML Documents

107

    'iterate through these child nodes adding values to array
    For intLoop = 0 To intLastColIndex
      objXPColIter.MoveNext()
      arrResult(intLoop, objXPRowIter.CurrentPosition – 1) _
                                 = objXPColIter.Current.Value
    Next

  End While

  'return the array to the calling routine
  Return arrResult

End Function

Displaying the Results

The result of calling this method is a simple two-dimensional array of strings, which is exactly the same
as the one we got back from the GetSuppliersArray method of our relational data access component
in the previous chapter. The version of the page that uses our XML data source, suppliers-array-
from-xml.aspx, is therefore just about identical to the "relational" version, both in the way it works
and the output it produces:

In fact, the only difference is that we have to create the physical path to the XML document disk file we
want to use, as in our previous examples in this chapter. Also, of course, we need to create an instance
of the XML data access component this time. We haven't listed the code, but you can view it using the
link at the top of the page.



Chapter 3

108

Returning an ArrayList Reference
The second type of collection object we demonstrated in the previous chapter was the ArrayList, We
also provide a method in our XML data access component that returns the data from the XML disk file
as an ArrayList.

An ArrayList can only hold one "value" in each row. This means that the code is actually a lot
simpler than the previous example in this chapter, which returned a two-dimensional string array. Our
method accepts a parameter that we set to the element name (the "column" of the data) that we want to
return in our ArrayList.

In our example page (coming later) you'll see that we specified the SupplierName element, and so our
ArrayList will just contain the supplier names (as in the previous chapter ArrayList example). In
our method, we use the same approach as the previous example, creating an XPathDocument and an
XPathNavigator based on it. We also create a single XPathNodeIterator object:

Public Function GetSuppliersArrayList(ByVal strElementName As String) _
                                                           As ArrayList

  'use function in this class to get an XPathDocument
  Dim objXPathDoc As XPathDocument = GetSuppliersXPathDocument()

  'create a new XPathNavigator object using the XPathDocument object
  Dim objXPNav As XPathNavigator = objXPathDoc.CreateNavigator()

  'declare variable to hold an XPathNodeIterator object
  Dim objXPIter As XPathNodeIterator

However, now we can just move to the document element and use an XPath query that selects all the
required element nodes in the document. We use the XPath predicate descendant rather than child
this time, as the nodes we want aren't actually direct children of the root node – they are one level
deeper than this:

  'move to document element
  objXPNav.MoveToFirstChild()

  'select the required descendant nodes of document node into
  'an XPathNodeIterator object using an XPath expression
  objXPIter = objXPNav.Select("descendant::" & strElementName)

From here, we can now create an ArrayList and iterate through the collection of elements, copying
their values into the ArrayList. We finish up by passing the ArrayList back to the calling routine:

  'create an ArrayList to hold the results
  Dim arrResult As New ArrayList()

  'iterate through the element nodes in the XPathNodeIterator
  'collection adding their values to the ArrayList
  While objXPIter.MoveNext()
    arrResult.Add(objXPIter.Current.Value)
  End While

  Return arrResult   'and return it to the calling routine

End Function



Accessing XML Documents

109

Displaying the Results

You won't be the least surprised to know that the page we use to display the contents of the ArrayList
returned by our data access component in this example is just about identical to the version we used
with an ArrayList in the previous chapter. The page suppliers-arraylist-from-xml.aspx is
shown in the next screenshot:

It uses an ASP DataGrid control bound to the ArrayList to display the contents:

<asp:DataGrid id="dgrSuppliers" runat="server">

<HeaderStyle BackColor="#c0c0c0"></HeaderStyle>

<AlternatingItemStyle BackColor="#eeeeee"></AlternatingItemStyle>

</asp:DataGrid>

In the Page_Load event, we create the physical path to the XML document disk file (as in our previous
examples in this chapter). We then create an instance of the XML data access component, and call the
GetSuppliersArrayList method. Notice that this time we specify the SupplierName element as
the one we want to select the values from:

    dgrSuppliers.DataSource = _
                 objSupplierList.GetSuppliersArrayList("SupplierName")

We assign the result of the method to the DataGrid (as shown above) and then call DataBind to
display the data. Again, we haven't listed all the code here, but you can view it using the link at the top
of the page.



Chapter 3

110

Returning an XML String
The final three methods in our XML data access component show how we can return an XML
document in three "document" formats – a String, an XmlDocument object and an
XPathDocument object. If we are simply streaming the XML to a non-.NET client or object, we will
usually choose to return a string containing the XML. This can be sent to a client as the HTTP
response across the network.

However, if we are dealing with a .NET client or object, we might prefer to return an XmlDocument or
XPathDocument object that they can manipulate directly. Chapter 4, which introduces the .NET Remoting
technology, demonstrates how we can send objects like this across an HTTP network such as the Internet.

Therefore, the format we choose for an application depends on how we intend to remote the data to the
client or middle tier, and what the client or middle-tier objects will be doing with the data. We'll start by
showing you how we can return an XML string from a component, and the following listing of the
GetSuppliersXmlString in our example data access component does just that:

Public Function GetSuppliersXmlString() As String

  Try

    'use function in this class to get an XmlValidatingReader
    Dim objValidator As XmlValidatingReader = GetSuppliersValidatingReader()

    'create a new XmlDocument to hold the XML as it is validated
    Dim objXmlDoc As New XmlDocument()
    objXmlDoc.Load(objValidator)

    'return the complete XML content of the document
    Return objXmlDoc.OuterXml

  Catch objErr As Exception

    Throw objErr          'throw exception to calling routine

  Finally

    m_XTReader.Close()    'close the XmlTextReader

  End Try

End Function

You can see that we're validating the XML in this example by calling the method within our component
named GetSuppliersValidatingReader, which we saw earlier in this chapter. It returns a reference
to an initialized XmlValidatingReader for the document, so we can load this into a new
XmlDocument object as it stands. The XmlDocument object will automatically call the Read method of
the underlying XmlTextReader to get the contents of the document, and any validation errors will be
flagged up as this process proceeds.

After remembering to close the XmlTextReader, we can then return the OuterXml property of the
XmlDocument object. This is one of the useful extensions to the XML DOM that Microsoft implements
within the XmlDocument object. It saves us having to iterate through the object ourselves extracting
each element in turn. Other similar and useful extension properties are InnerXml, which includes all
the XML and text content but without the containing element tags, and InnerText, which includes
only the text content of the node and all its descendants.



Accessing XML Documents

111

Displaying the Results

The example page suppliers-xml-from-xml.aspx displays the XML string that our data access
component generates. As usual, you can view the source of the page, the XML string itself, the schema
we used to validate it and the XSLT stylesheet through the links at the top of the page:

This page uses the same technique as the examples in the previous chapter that display XML
documents. We declare an asp:Xml server control in the page:

<asp:Xml id="xmlResult" runat="server" /><br />

In the Page_Load event, we create the physical paths to the XML document and the stylesheet, and
create our data access component instance, exactly as in the previous examples in this chapter. Then we
can call the GetSuppliersXmlString method of our component, and assign the result to the
DocumentContent property of the asp:Xml control. We also assign the path to our XSLT stylesheet
to the TransformSource property of the control:

'create an instance of the data access component
Dim objSupplierList As New Wrox4923Xml.SupplierListXml(strXMLPath, _
                                                       strSchemaPath)

'call the method to return the data as an Xml String and
'assign it to the Xml Server Control
xmlResult.DocumentContent = objSupplierList.GetSuppliersXmlString()

'specify path to XSLT stylesheet that transforms XML for display
xmlResult.TransformSource = "supplier-list-style.xsl"



Chapter 3

112

Returning an XmlDocument Object
If we need an XmlDocument object, rather than just a string that contains the document, we can use the
GetSuppliersXmlDocument method of our data access component. In this case, we can instantiate
the component with or without specifying an XML schema. The function first creates a new empty
XmlDocument object, and then checks the member variable m_Validate to see if a schema was
specified in the constructor to the component when it was instantiated:

Public Function GetSuppliersXmlDocument() As XmlDocument

  'create a new XmlDocument object

  Dim objXmlDoc As New XmlDocument()

  If m_Validate = True Then  'validate against schema

    Try

      'use function in this class to get an XmlValidatingReader

      Dim objValidator As XmlValidatingReader = _
                                             GetSuppliersValidatingReader()

      'load the XML and validate as it's being loaded

      objXmlDoc.Load(objValidator)

    Catch objErr As Exception

      Throw objErr    'throw exception to calling routine

    Finally

      m_XTReader.Close()   'close the XmlTextReader

    End Try

  Else  'validation not required

    ....

If there was a schema specified, it calls the method in our component we saw earlier to get an
XmlValidatingReader that references the XML disk file, and uses this to load the XML into the
XmlDocument object (in the code above). Any error that is detected when loading the document is
raised to the calling routine.

Alternatively, if there was no schema specified, we simply use the Load method of the XmlDocument
object we created at the beginning of the method to load the XML from disk directly (in the following
code). Again, any error is raised to the calling routine:



Accessing XML Documents

113

    ....

    Try

      'load the XML from disk without validation

      objXmlDoc.Load(m_XmlFilePath)

    Catch objErr As Exception

      Throw objErr    'throw exception to calling routine

    End Try

  End If

  'return the XmlDocument object

  Return objXmlDoc

End Function

Displaying the Results

The example page that uses this method, suppliers-xmldoc-from-xml.aspx, is identical to the
previous example except that it now assigns the result to the Document property of the asp:Xml
control. This property expects an XmlDocument object, whereas the DocumentSource property
expects a string. We also specify the same XSLT stylesheet, which creates the table in the page:

    'call the method to return the data as an XmlDocument and

    'assign it to the Xml Server Control

    xmlResult.Document = objSupplierList.GetSuppliersXmlDocument()

    'specify path to XSLT stylesheet that transforms XML for display

    xmlResult.TransformSource = "supplier-list-style.xsl"

Returning an XPathDocument Object
The final example in this chapter demonstrates how we can return an XPathDocument object from an
XML disk file. In fact, we used this method a couple of times earlier on within other methods that we
discussed. We'll see how it works here.

Fundamentally, the technique is similar to that used in the previous example to create and return an
XmlDocument object. However, an XPathDocument object does not have a Load method, so we can't
create an empty one and load the XML afterwards like we did with an XmlDocument object. Instead,
we have to specify the source of the XML document in the constructor for the XPathDocument.

So, our method first checks to see if a schema was specified when the component's constructor was
called. If so, it uses the GetSuppliersValidatingReader method in our component to get an
XmlValidatingReader that references the XML disk file. Then it calls the constructor for a new
XPathDocument object, specifying the XmlValidatingReader as the source of the document:



Chapter 3

114

Public Function GetSuppliersXPathDocument() As XPathDocument

  'declare a variable to hold an XPathDocument object
  'cannot create an "empty" one and load the XML afterwards
  Dim objXPathDoc As XPathDocument

  If m_Validate = True Then  'validate against schema

    Try

      'use function in this class to get an XmlValidatingReader
      Dim objValidator As XmlValidatingReader = _
                          GetSuppliersValidatingReader()

      'load the XML and validate as it's being loaded
      objXPathDoc = New XPathDocument(objValidator)

    Catch objErr As Exception

      Throw objErr    'throw exception to calling routine

    Finally

      m_XTReader.Close()   'close the XmlTextReader

    End Try

  Else  'validation not required
    ...

If validation is not required, in other words no schema was specified in the constructor for the
component, we simply create the XPathDocument by specifying the physical path to the XML disk
file instead:

    ...

    Try

      'load the XML from disk without validation
      objXPathDoc = New XPathDocument(m_XmlFilePath)

    Catch objErr As Exception

      Throw objErr    'throw exception to calling routine

    End Try

  End If

  Return objXPathDoc   'return it to the calling routine

End Function



Accessing XML Documents

115

Displaying the Results

The example page that uses the GetSuppliersXPathDocument method is a little different from our
earlier examples that displayed an XML document. This page, suppliers-xpathdoc-from-
xml.aspx, displays just the supplier names as a list:

To do this, we use an asp:Label control declared in the page:

<asp:Label id="lblMessage" runat="server" />

In the Page_Load event we still create the physical paths to our XML document and XML schema disk
files, and create our data access component instance as before. However, we also declare a variable to
hold the XPathDocument that our method returns so that we can work with it to extract the data we
want to display (we've removed some of the error-handling code for clarity here):

'declare a variable to hold an XPathDocument object

Dim objXPDoc As XPathDocument

'create an instance of the data access component

Dim objSupplierList As New Wrox4923Xml.SupplierListXml(strXMLPath, _
                                                       strSchemaPath)

'call the method to return the data as an XPathDocument

objXPDoc = objSupplierList.GetSuppliersXPathDocument()



Chapter 3

116

Now we create an XPathNavigator based on the XPathDocument, and a variable to hold an
XPathNodeIterator object like we used in our Array and ArrayList examples. We move the
XPathNavigator to the root element of the document using the MoveToFirstChild method then
create a collection in the XPathNodeIterator of all the SupplierName elements:

'create an XPathNavigator object against the XPathDocument

Dim objXPNav As XPathNavigator = objXPDoc.CreateNavigator()

'declare variable to hold an XPathNodeIterator object

Dim objXPIter As XPathNodeIterator

'move to document element

objXPNav.MoveToFirstChild()

'select all the SupplierName nodes of the document node into an

'XPathNodeIterator object using an XPath expression

objXPIter = objXPNav.Select("descendant::SupplierName")

Then it's simply a matter of iterating through the collection and building up a string to display in the
asp:Label control on our page:

Dim strResult As String   'to hold results for display

'iterate through the element nodes in the XPathNodeIterator

'collection adding their values to the output string

While objXPIter.MoveNext()

  strResult += objXPIter.Current.Value & "<br />"

End While

lblMessage.Text = strResult

Summary
We've spent a lot of time in this and the previous chapter looking at various types of data access
component that the .NET Framework makes so easy to build. The foundation for any distributed (or, for
that matter, non-distributed) data application is its ability to fetch and update data in a way that is
efficient, but also maintainable, extensible and flexible.

Having to completely rebuild an application just because the data source has changed is not a great
approach for developers in today's results-oriented world. By separating out the data access features into
a separate physical or logical "tier", we allow the application to evolve as the data source changes, and
adapt to new requirements more easily.

What we've attempted to demonstrate in these two chapters is the various ways that we can access data
in different formats, and yet expose it to our applications in the format that best suits them. We aren't
shackled with just a relational view, or just an XML view as we often were in the past. As you've seen,
we can freely intermix these to get the output format we want from almost any data source. On top of
that, we can choose between a connected approach (such as the DataReader or XmlReader objects), or
a disconnected approach (using a DataSet or an XML "document-style" object).



Accessing XML Documents

117

The topics we covered in this chapter were:

❑ How we can build components that access XML documents

❑ How we can convert and return the XML as various different object types

❑ How we can display the XML easily in our ASP.NET pages

So far, we've only concerned ourselves with reading data. In later chapters, we'll return to building data
access components to see how we can go about updating the source data from a component, and
returning information about the success or otherwise of these updates. We'll also see how we can use
components like the ones we saw in this chapter within some example applications.



Chapter 3

118


