

What You Need to Use This Book
The following list is the recommended system requirements for running the code in this book:

❑ Windows 2000 Professional or higher with IIS installed

❑ Windows XP Professional with IIS installed

❑ ASP.NET Version 1.0

❑ SQL Server 2000 or MSDE

❑ Visual Studio .NET Professional or higher (optional)

In addition, this book assumes the following knowledge:

❑ A good understanding of the .NET Framework and ASP.NET

❑ An understanding of the VB.NET language and JavaScript

Summary of Contents
Introduction 1
Chapter 1: The Distributed Application 9
Chapter 2: Components and Data Access 49
Chapter 3: Accessing XML Documents 91
Chapter 4: The Application Plumbing 119
Chapter 5: Working with Down-Level Clients 159
Chapter 6: Working with Rich Clients 209
Chapter 7: Remoting to .NET Clients 281
Chapter 8: Updating Data in Down-Level Clients 321
Chapter 9: Updating Remote Cached Data 389
Chapter 10: Components for Updating Data 431
Chapter 11: Rich Client Update Applications 475
Chapter 12: Reconciling Update Errors 525
Chapter 13: Updating Data from Remote .NET Applications 579
Chapter 14: Furthermore 621
Index 625

Working with Down-Level Clients

In previous chapters we've seen how we can access data sources and create a data tier for our
applications. We also discussed techniques for remoting data to various types of client, and how we can
detect the client type when they first hit our application. It's now time to see an application that puts all
these techniques into practice.

The application we've built is quite compact and tries not to obscure the processes by being too
complicated. We also tried to make it look attractive and easy to understand and use. You'll have to
judge how well we succeeded for yourself, of course, but it does neatly demonstrate some useful
techniques for combining ASP.NET, server-side .NET components and client-side programming to
create distributed data applications.

Many of the techniques in this book are primarily aimed at rich clients, such as Internet Explorer and .NET
applications, and we'll be looking at these in the following chapters. However, unless we can be certain that
these are the only types of client that will use the application, we should also provide a version that works on
other down-level clients. We described how and why we categorize down-level clients in Chapter 1. The term
down-level is the one Microsoft prefer to use, and is possibly less offensive than some other choices!

Anyway, the topics we'll be concentrating on in this chapter are:

❑ What the application looks like

❑ Some of the design considerations involved

❑ Specific client detection techniques for the example application

❑ The version of the application aimed at HTML 3.2 clients

❑ The version aimed at small screen and mobile devices

We start with a brief look at the appearance and functionality of the application.

Chapter 5

160

A Multiple-Client Order List Application
In this chapter, we'll build an application that can be used to view and edit the orders placed by
customers of a fictional food distribution corporation. We'll use the Northwind database that comes as a
sample with SQL Server versions 7.0 onwards. We plan to support several different types of client, at
the same time taking advantage of several different technological approaches.

We'll build a series of pages that take full advantage of several distinct and different types of down-level
and rich client variations. We'll incorporate some client-detection code, like the code we developed in
the previous chapter, and we'll use the associated techniques such as remoting data and using ASP.NET
Sessions. To give you an idea of the clients and technologies we're supporting, the next screenshot
shows the menu page for the application:

You can obtain the example source code from http://www.wrox.com or from
http://www.daveandal.com/books/4923/. For details of how to install and configure them, and
the database we use to drive the examples, see the section Setting Up the Examples in Chapter 2.
If you just want to view the results, we've provided the application online at
http://www.daveandal.com/books/4923/.

As well as an option that automatically detects the client type you are using, there are links inviting the
user to view the different versions irrespective of the client type. Just bear in mind that some may not
work if your client doesn't support the features used by that version of the application. For example, the
Internet Explorer 5.0 and above version requires the MSXML parser to be installed, and so it will most
likely not work with other versions of Internet Explorer or other makes of browser.

Working with Down-Level Clients

161

The User Interface
With the exception of the pages designed for small-screen and mobile devices, and those that use .NET
remoting techniques, the application is designed to give a very similar user interface for all clients. The
following two screenshots show the version designed for use with any Web browser that supports
HTML 3.2 – you'll see several different browsers in the screenshots for this version of the application.
The two Internet Explorer-specific versions, and the Hypertext Application (which will only work in IE
5 and above) look almost identical.

When the user opens the application they first select the customer whose orders they want to view.
After entering all or part of the customer ID or name and clicking the Search button, the right-hand
section of the page displays a list of matching customers:

Clicking on a customer name in the table opens the second page. Here the user can select an order in
the left-hand list for this customer, and the details of that order are then displayed in the right-hand part
of the page:

Chapter 5

162

The application also allows orders to be edited, though we will not be covering this feature just yet.
We'll concentrate on how we extract, manipulate and display the order information in this and the next
couple of chapters. We'll come back to look at how we can update the order data later in the book.

Detecting the Client Type
In the menu page we saw earlier, the top link (Automatically Detect the Client Type) uses the
techniques we discussed in Chapter 4 to redirect the client to the appropriate version of the application.
It checks for client-side scripting support on the way if this is a requirement in the version designed for
the current client. We use the client-detect.ascx user control that we developed in Chapter 4 to
detect which "group" our client falls into.

In the Page_Load event handler of our default.aspx page (http://localhost/4923/customer-
orders/default.aspx), we can then make decisions on where to redirect the client depending on this
group. Notice that we check for unsupported clients, and send them a simple text message. We don't use
client-side scripting for small-screen and mobile devices, and so we can transfer them directly to the
appropriate version of the application in the subfolder named mobile. All other clients are redirected
to the page client-script-check.aspx, with the client type appended to the query string.

Overall, this is very similar to the code we saw in http://localhost/4923/detect-client/default.aspx, in
Chapter 4:

Working with Down-Level Clients

163

Sub Page_Load()
 Select Case ClientDetect.ClientType

 Case 0 'not supported

 Response.Clear

 Response.ContentType = "text/text"

 Response.Write("Sorry, this application does not support " _
 & "your client type: " & Request.UserAgent)

 Response.End

 Case 2 'IE 4.x

 Response.Clear

 Response.Redirect("client-script-check.aspx?client=ie4")

 Response.End

 Case 3 'IE 5.x and above

 Response.Clear

 Response.Redirect("client-script-check.aspx?client=ie5")

 Response.End

 Case 4, 5 'small-screen HTML device or WML client

 Response.Clear

 Server.Transfer("mobile/default.aspx")

 Case Else 'assume HTML 3.2 client

 Response.Clear

 Response.Redirect("client-script-check.aspx?client=html32")

 Response.End

 End Select

End Sub

Each client-specific version of the application is stored in a subfolder that is named in the client
name/value pair of the query string we show in this listing. So, for example, Internet Explorer 5
browsers will be redirected to the version in a folder named ie5. And, as we're not checking for session
support in our application, we can use Server.Transfer in the case of the version for small-screen
and mobile devices.

Checking for Client-Side Scripting Support
Our application uses a page named client-script-check.aspx, which works in just the same way
as the example we saw in Chapter 4. If the client has scripting available (and enabled), they are
redirected to the appropriate version of the application. However, if client-side scripting is not available
(or is disabled), the client is redirected to a page named no-client-script.aspx, which displays a
message telling the user what options are available to them in this case:

Chapter 5

164

This page is simple, using ASP.NET code only to set the value in the query string for the first option. If
the user enables scripting and then clicks this link, we can take them to the version of the application
that our client type detection code originally suggested. Alternatively, they can go directly to the HTML
3.2 or the small-screen and mobile devices version:

no-client-script.aspx

<% Dim strClientType As String = Request.QueryString("client") %>
...

 I have <a href="<% = strClientType %>/default.aspx">
 enabled client-side scripting and I want to use ...
 I will
 use the standard HTML 3.2 version of the application
 I will
 use the simplified version of the application ...

...

Session Support
In this application, we aren't checking for session support for each client. As we hope to do most of the
processing on the client, we don't need to use ASP.NET Sessions. However, two versions of the
application (the HTML 3.2 and the small screen and mobile devices versions covered in this chapter)
will benefit from session support. Nevertheless it is not an absolute requirement, even for these. They
will automatically take advantage of sessions to give improved performance and reduce the number of
data access operations required when supported, or work fine without them otherwise.

Of course, if an application depends on session support, we can use the techniques we examined in
Chapter 4 to check that session support exists, and redirect to a version of the application in a different
subfolder where we have a web.config file that specifies cookie-less sessions (by munging the session
ID into the URL itself). We'll look at session issues for our application in more depth shortly.

Working with Down-Level Clients

165

The current release of the Microsoft Mobile Internet Toolkit stores the ViewState data in the current
ASP.NET Session. If the mobile client you use does not support cookies (and hence does not support
sessions) you may get an error. See the section that describes the mobile version of the application for
more details of how to configure the samples in this case.

The Data Access Tier
We use the same data access component as we did in the last couple of examples in Chapter 2
(Wrox4923Orders.OrderList), for all versions of our application. This is intentional, and
demonstrates how the separation of data access, business logic and presentation tiers in our applications
allows us to use the same data access tier for several versions of the application. If the data store we are
using changes in type or structure, or different data access techniques are implemented in the future, we
only have to update the single component. As long as it continues to expose the same interface (the
same methods with the same parameters and returning the same data types), then all the versions of our
application will continue to work with the new component.

As we saw in Chapter 2, our Wrox4923Orders.OrderList component exposes two methods:

❑ The GetCustomerByIdOrName method accepts two String parameters and returns a
DataSet. The parameters are all or part of the customer ID, and all or part of the customer's
name. The returned DataSet contains a list of customers that match the ID (if this is
provided) or name (if an empty string is used for the ID parameter).

❑ The GetOrdersByCustomerDataSet method accepts a single String parameter and returns a
DataSet. The parameter is the full customer ID, and the returned DataSet has two tables that
contain all the orders for this customer, and all the order lines (details) for these orders.

In some cases this is a little wasteful, because we don't always end up displaying all the information in
the DataSet. For example, if the user only views one order, then the "detail" rows we extracted from
the database for all the others are never used. In this case, it would have been more efficient to fetch the
"detail" rows only when an order is selected, minimizing the volume of data that is extracted from the
database. However, if we used this alternative technique when the user wanted to browse order details,
it would mean repeated trips to the database to collect the relevant "detail" rows.

Maximizing Efficiency through Data Caching
It's generally accepted that the two major bottlenecks in any Web-based application are the data access
process and the network bandwidth. As far as server loading goes, data access is usually the worst
culprit. So, if we can extract all the data we need in one go, we can minimize server loading and reduce
the number of data access hits we get.

OK, so the volume of data that we extract is greater, but we are only moving it from the database to the
Web server. Hopefully, this will be a LAN connection where there is plenty of bandwidth; and in the
"small site" case where the database and Web server are on the same machine, using Named Pipes for
the data transfer, bandwidth is extremely unlikely to be an issue.

What we must do, however, is make sure that we cache the data so that we don't need to keep going
back to the database each time. In the examples in this chapter, we cache the data in the client's session.
Most clients these days do support "per-session" cookies such as those required for ASP.NET Sessions to
function correctly. In fact, many modern on-line applications, such as banking and e-commerce sites,
demand per-session cookie support and users have generally become accustomed to accepting them.

Chapter 5

166

As you'll see later, lack of session support will not break our applications. If the client does not support
sessions, we simply hit the data access layer again to fetch a fresh copy of the data. This is not an ideal
situation, but we hope that this problem applies to just a small number of clients, and therefore it is not
worth building special versions of the application. Of course, if your situation is different, and you do
have to support a large proportion of clients that do not support cookie-based sessions, you might prefer
to build special versions that use cookie-less sessions (as mentioned earlier in this chapter and in
Chapter 4). Alternatively, you could build a version that uses a DataReader to access the database –
thereby reducing the loading that repeated data access hits will produce.

In the versions of the application we discuss in later chapters, the data is cached on the client rather
than on the server; in most cases this gives the best of both worlds. It limits server loading by avoiding
repeated hits on the data access tier, and avoids the memory and processing overhead required for
managing ASP.NET Sessions for each user.

The Order List Application – the HTML Version
The screenshots we looked at earlier are from the HTML version of the application, and this is designed
to run in any HTML 3.2 compatible browser. The appearance will differ between browsers from
different manufacturers and (to some extent) between different versions, because we're using Cascading
Style Sheets (CSS) and other features to control the display. These might not be supported in full or in
exactly the same way in all browsers, but the overall layout and usability should be unaffected. And
while we do use some client-side script in this version of the application, it is only minimal and the
pages will still work when client-side scripting is not supported.

The Outline Process
The outline process for the HTML version of the application is shown in the next schematic. The
default.aspx page (in the customer-orders\html32 folder) allows users to search for and display
a list of customers based on their ID or name. It uses the GetCustomerByIdOrName method of our
data access component. Selecting a customer opens the view-orders.aspx page. This is an HTML
frameset, into which the two pages order-list.aspx and order-detail.aspx are loaded.

It's worth noting that the HTML 3.2 specification doesn't include frames – they were introduced
into HTML in version 4.0. However, the majority of HTML 3.2-compatible browser clients do
support frames – IE 3.0 and Netscape Navigator 2.0 among them – so we'll assume support for
framesets here, and provide a link to the simplified small-screen version for the small number of
HTML 3.2-compliant clients that don't support frames.

The left-hand page, order-list.aspx, uses the GetOrdersByCustomerDataSet method of our data
access component to get the order data, and displays a list of all the orders for this customer as soon as this
page loads. It also caches the complete DataSet in the user's session. If the page is refreshed for any
reason, it uses this cached data automatically. However, if the user elects to go back to the previous page
and select another customer, the cached order data for this customer is removed from the session by code
in default.aspx. We'll see all this as we step through this code in the coming pages.

Selecting an order in the list in the left-hand page reloads the page order-details.aspx in the right-
hand frame, and it then shows a list of all the "detail" rows for the selected order. It uses the DataSet
that was cached in the user's session by the page order-list.aspx. If this is not available, it calls the
same GetOrdersByCustomerDataSet method to get the data directly from the data store instead:

Working with Down-Level Clients

167

order
details

Data Access Component
Wrox4923Orders.OrderList

search customers

orders

default.aspx

view-orders.aspx

order-list.aspx order-detail.aspx

GetCustomerByIdOrName

GetOrdersByCustomerDataSet

Searching for Customers
When this version of the application starts, it displays the "Select Customer" page shown in the next
screenshot. As well as some hints on how to search for customers by ID or name, it contains the
relevant text boxes and a Search button – plus a Help button that can be used at any stage to redisplay
the search hints. Here, we're searching for all customers whose ID starts with "c":

Chapter 5

168

This page contains the Import directives for our custom data access component OrderListData, and
for the System.Data namespace. We'll need this to be able to create a DataSet object in our code.
We also register and insert the user control that exposes our server's database connection string, as we
demonstrated in the examples in previous chapters:

default.aspx

<%@Page Language="VB" %>
<%@Import Namespace="OrderListData" %>
<%@Import Namespace="System.Data" %>

<%@ Register TagPrefix="wrox" TagName="connect"
 Src="..\..\global\connect-strings.ascx" %>

<%'-- insert connection string script --%>
<wrox:connect id="ctlConnectStrings" runat="server" />

The HTML Form Controls
This is followed by the HTML that creates the visible portion of the page. We use a server-side include
statement to insert a stylesheet that is common to most of our application versions, and define the client-
side JavaScript function that makes the interface a little more useable by setting the option buttons to
the relevant value as the user types in the text boxes. This function is used for the (client-side)
onkeypress events of the two text boxes:

<html>
 <head>
 <title>View Customer Orders – Select Customer</title>
 <!-- #include file="../../global/style.inc" -->
 <script language="JavaScript">
 <!--
 // client-side script section used to set radio
 // buttons to correct option as text is typed.
 function setCheck(strName) {
 document.forms(0).elements(strName).checked = true;
 }
 //-->
 </script>
 </head>

 <body link="#0000ff" alink="#0000ff" vlink="#0000ff">
 ...
 <form runat="server">
 <table border="0" cellpadding="20">
 <tr><td valign="top" bgcolor="#ffffacd">

 <!-- controls for specifying the required customer ID or name -->
 <asp:RadioButton id="optByID" groupname="SearchBy" Align="right"
 text="Search by Customer ID: " runat="server"
 checked="true" />

 <asp:TextBox id="txtCustID" columns="5" maxlength="5"
 onkeypress="setCheck('optByID');" runat="server" /><p />

Working with Down-Level Clients

169

 or<p />
 <asp:RadioButton id="optByName" groupname="SearchBy" Align="right"
 text="Search by Customer Name:" runat="server" />

 <asp:TextBox id="txtCustName" columns="20" maxlength="40"
 onkeypress="setCheck('optByName');" runat="server" /><p />
 <asp:Button id="btnSearch" text="Search" onclick="DoSearch"
 runat="server" />
 <asp:Button id="btnHelp" text="Help" onclick="ShowHelp"
 runat="server" /><p />
 <asp:Label id="lblStatus" runat="server" />

 </td>
 ...

Displaying a List of Customers
Before we look at the remainder of the HTML to see how we display a list of matching customers in the
right-hand part of the page, we'll examine the code that searches for them to see how it actually works.
The server-side code section of the default.aspx page declares two Page-level (global) variables that
we need to store the values that are selected in the two text boxes. In the Page_Load event handler
that comes next, we just display the "Help" text in the right-hand part of the screen by calling the
ShowHelp function:

<script language="VB" runat="server">
 'page-level variables accessed from more than one routine
 Dim strCustID As String = ""
 Dim strCustName As String = ""

 Sub Page_Load()
 'show Help when page first loads
 If Not Page.IsPostBack Then ShowHelp(Nothing, Nothing)
 End Sub

Showing the Help Text
The ShowHelp function simply displays some text in an ASP.NET Label control located in the right-
hand part of the page – you'll see this control in the next part of the HTML listing, when we come to
look at the DataGrid control:

Sub ShowHelp(ByVal objSender As Object, ByVal objArgs As EventArgs)
'shows help on using page in the right-hand part of the window

 lblMessage.Text = "To list customer orders you can:<p />" _
 & " * Search for customers using their five-character " _
 & "Customer ID.
" _
 ...
 ... etc ...
 ...
End Sub

Chapter 5

170

Calling the Data Access Component
Getting the DataSet that contains matching customers from the data store is relatively easy. We create
a separate function that takes the two parameters required by the data access component, instantiates
the component with the connection string obtained from our user control, and returns the DataSet
created by the data access component. We enclose it all in a Try...Catch construct so that we can
trap and display details of any error that might occur:

Function GetDataSetFromServer(strCustID As String, _
 strCustName As String) As DataSet

'uses data access component to get DataSet of matching customers

 'get connection string from connect-strings.ascx user control

 Dim strConnect As String

 strConnect = ctlConnectStrings.OLEDBConnectionString

 Try

 'create an instance of the data access component

 Dim objOrderList As New Wrox4923Orders.OrderList(strConnect)

 'call the method to return the data as a DataSet

 Return objOrderList.GetCustomerByIdOrName(strCustID, strCustName)

 Catch objErr As Exception

 'there was an error and no data will be returned

 lblMessage.Text = "ERROR: No data returned. " & objErr.Message

 End Try

End Function

Performing the Customer Search
The DoSearch event handler, which is executed in response to a click on the Search button, is shown
next. It starts off by removing any existing DataSet of order details from the user's session. This is
required if the user comes back from examining orders for one customer to search for a different
customer. We have to destroy the cached DataSet containing the order details for the previous
customer or they will not see any orders for the new one:

Sub DoSearch(ByVal objSender As Object, ByVal objArgs As EventArgs)

'display the list of matching customers in the DataGrid control

 'remove any existing "Orders" DataSet from the user's Session

 'as we're searching now for a different customer

 Session("4923HTMLOrdersDataSet") = Nothing

Next we can collect the values from the appropriate one of the two text boxes, depending on which
option button (Search by Customer ID or Search by Customer Name) is checked. We also convert any
ID value that is entered into uppercase (which is how they are stored in the database):

Working with Down-Level Clients

171

 'get one or other value from text boxes depending on selection

 If optByID.Checked Then

 strCustID = txtCustID.Text.ToUpper()

 lblStatus.Text = "Listing customers with ID ..." & strCustID

 Else

 strCustName = txtCustName.Text

 lblStatus.Text = "Listing customers with Name..." & strCustName

 End If

Fetching and Displaying the Results

Now we can use the GetDataSetFromServer function we described earlier to collect our DataSet,
and we can see how many matching customers were actually found by checking the number of rows in
the single table within the DataSet:

 'get DataSet using function elsewhere in this page

 Dim objDataSet As DataSet = GetDataSetFromServer(strCustID, strCustName)

 'check how many matching customers were found

 Dim intRowsFound As Integer = objDataSet.Tables(0).Rows.Count

If we found any rows at all, we set the CurrentPageIndex of the DataGrid to zero (though this is the
default anyway, so we could get away with omitting this), and assign the single table in the DataSet to
the DataSource property of the grid. Before we actually bind it, however, we use the number of rows
found to see if we need to display the paging controls. Finally, we can bind the grid and display some
informative text to the user:

 If intRowsFound > 0 Then

 'reset DataGrid page index to zero for new rowset

 'and set DataSource of DataGrid control

 dgrCustomers.CurrentPageIndex = 0

 dgrCustomers.DataSource = objDataSet.Tables(0)

 'display the "paging" controls (Previous/Next) only when required

 dgrCustomers.PagerStyle.Visible = (intRowsFound > dgrCustomers.PageSize)

 'bind the DataGrid and display status message

 dgrCustomers.DataBind()

 lblMessage.Text = "Click a Customer Name in the grid above " _
 ... etc.

 Else

 lblMessage.Text = "No matching customers found in database ..."

 End If

End Sub

If there were no matching customers found, the Else part of the If...Then construct displays a
message to this effect.

Chapter 5

172

The DataGrid to Display the Customer List
The controls shown in the earlier HTML listing are in a table cell on the left of the page. The right-hand
cell contains an ASP.NET DataGrid control that we use to display a list of matching customers, and an
ASP.NET Label control for status messages and other information. As the DataGrid is not bound to a
data source when the page loads the first time, it is not actually visible in the page:

 ...
 <td valign="top">
 <!-- DataGrid control to display matching customers -->
 <asp:DataGrid id="dgrCustomers" runat="server"
 AutoGenerateColumns="False"
 CellPadding="5"
 GridLines="Vertical"
 HeaderStyle-BackColor="silver"
 PagerStyle-BackColor="silver"
 AlternatingItemStyle-BackColor="#eeeeee"
 AllowPaging="true"
 PageSize="8"
 PagerStyle-Mode="NextPrev"
 PagerStyle-NextPageText="Next"
 PagerStyle-PrevPageText="Previous"
 PagerStyle-HorizontalAlign="Right"
 PagerStyle-Visible="false"
 DataKeyField="CustomerID"
 OnPageIndexChanged="ShowGridPage">

 <Columns>
 <asp:BoundColumn HeaderText="ID"
 HeaderStyle-HorizontalAlign="center"
 DataField="CustomerID" ItemStyle-BackColor="#add8e6"
 />
 <asp:HyperlinkColumn HeaderText="Customer Name"
 DataTextField="CompanyName"
 DataNavigateUrlField="CustomerID"
 DataNavigateUrlFormatString="view-orders.aspx?customerid={0}"
 />
 <asp:BoundColumn HeaderText="City" DataField="City" />
 <asp:HyperlinkColumn Text="Edit Orders"
 DataNavigateUrlField="CustomerID"
 DataNavigateUrlFormatString= �
 "../../update-orders/html32/edit-orders.aspx?customerid={0}"
 />
 </Columns>

 </asp:DataGrid><p />

 <!-- label to display interactive messages -->
 <asp:Label id="lblMessage" runat="server" />

 </td></tr>
 </table>
 </form>

Working with Down-Level Clients

173

You can see from the listing that we've set several properties of the DataGrid to control its appearance.
We also set the AllowPaging property to true so that a list of more than eight customers (the
PageSize property) will be broken up into "pages" when displayed. The properties that follow the
PageSize define the appearance of the paging controls, and we also make them invisible by default. As
you saw in the previous code section, we show them by dynamically changing this property value to
true if the number of matching customers found exceeds the value of PageSize.

We also specify that the CustomerID column in our DataSet should be used as the DataKeyField,
giving us an easy way to extract the row key for a selected row if we need to do so later on. Finally, we
specify an event handler named ShowGridPage, located within the code section of our default.aspx
page, which will be executed when the grid paging controls are clicked (the event handler is specified
by the OnPageIndexChanged attribute).

Defining the Columns in the DataGrid

When we declared the DataGrid element (as shown in the previous listing), we included the attribute
AutoGenerateColumns="False" so that the grid will not automatically generate the columns based
on the contents of the data source we bind to it. Instead, we define the columns we want ourselves
within a <Columns> element. We have a column bound to the CustomerID column in our data source,
followed by a column that will display the customer name as a hyperlink. The combination of the
DataNavigateUrlField and DataNavigateUrlFormatString attributes we use mean that this
hyperlink's href attribute will contain the value view-orders.aspx with a name/value pair
indicating the customer ID for that row appended to the query string:

 <asp:HyperlinkColumn HeaderText="Customer Name"

 DataTextField="CompanyName"

 DataNavigateUrlField="CustomerID"

 DataNavigateUrlFormatString="view-orders.aspx?customerid={0}"

 />

Next comes a simple bound column that displays the City value from the source DataSet, followed by
another hyperlink column that displays the text Edit Orders for every row (we'll see more about this in
Chapter 8). We use the DataNavigateUrlField and DataNavigateUrlFormatString attributes
for this column to specify that the href for the hyperlink will be the page edit-orders.aspx (in a
separate folder of our application). Again, a name/value pair indicating the customer ID for that row is
appended to the query string:

 <asp:HyperlinkColumn Text="Edit Orders"

 DataNavigateUrlField="CustomerID"

 DataNavigateUrlFormatString= �

 "../../update-orders/html32/edit-orders.aspx?customerid={0}"

 />

In the next screenshot, you can see the output that our DataGrid creates after searching for customers
whose ID starts with the letter c. There are only five that match, so the paging controls do not appear
(recall that we set the Visible property for the "pager" row within our code every time we fetch the list
of matching customers):

Chapter 5

174

Handling Paging in the DataGrid
However, the paging controls do appear when we get more than eight matching customers in our
list. This is shown in the next screenshot. To get this, click Search with a blank string for both the
ID and name, so that our data access component returns all the customers in the database. (In a
production environment, you might prefer to limit the number of rows returned by the data access
tier to some specific maximum, like 100 rows, to protect against excessive use of bandwidth and
server resources if you have a large number of customers.) We've used the paging controls to go to
the second page of results:

Working with Down-Level Clients

175

When we defined our DataGrid control, we specified that the event handler named ShowGridPage
should be executed automatically when the "pager" controls are clicked:

 OnPageIndexChanged="ShowGridPage"

The ShowGridPage routine is remarkably simple. All it has to do is extract the index of the new page
(the one that has just been requested) from the NewPageIndex property of the arguments to the event
handler, set the CurrentPageIndex property of the DataGrid to this value, collect the customer ID
or name from the text boxes on the left-hand side of the page, and re–bind the grid control to the
original data source:

Sub ShowGridPage(ByVal objSender As Object, _
 ByVal objArgs As DataGridPageChangedEventArgs)
'runs when the paging controls are clicked to display different page

 'set page index of DataGrid control to new value
 dgrCustomers.CurrentPageIndex = objArgs.NewPageIndex

 'get one or other value from text boxes depending on selection
 If optByID.Checked Then

Chapter 5

176

 strCustID = txtCustID.Text.ToUpper()
 Else
 strCustName = txtCustName.Text
 End If

 'get the DataSet to populate the control and bind it
 dgrCustomers.DataSource = GetDataSetFromServer(strCustID, strCustName)
 dgrCustomers.DataBind()

End Sub

Notice that this involves another hit on our data access component. We could get round this by caching
the original DataSet in the user's session (as we do with the order details). However, this may not
actually improve performance or reduce server loading. It will only be of benefit if there are usually
more than eight matching customers, and the user has to page through the list to find the one they want.
If not, we are taking up server resources by caching data in the session that will only rarely be re-used.
Like so many design decisions, the best choice depends mostly on the nature of the data and how the
application will actually be used.

Displaying a List of Orders
In the list of customers in the page we've just seen, each customer name is a hyperlink pointing to the
page view-orders.aspx, with a name/value pair that contains the customer ID appended to the
query string – for example, view-orders.aspx?customerid=CONSH.

The Order List Frameset Page
As we saw in the schematic earlier on, the page view-orders.aspx is an HTML frameset page that
contains other pages. It also includes some ASP.NET code that collects the customer ID from the query
string and passes it on to the page in the left-hand frame. This is the code we use:

view-orders.aspx

<% Dim strCustID As String = Request.QueryString("customerid") %>

The next listing shows the HTML that creates the frameset. You can see that we use the customer ID in
the query string of the URL for the page order-list.aspx that we load into the left-hand frame:

<frameset rows="*,60" frameborder="0">
 <frameset cols="320,*" frameborder="0">
 <frame name="left" src="order-list.aspx?customerid=<% = strCustID %>"
 frameborder="0" />
 <frame name="right" src="order-detail.aspx"
 frameborder="0" />
 </frameset>
 <frame src="footer.htm" frameborder="0" scrolling="no"/>
</frameset>

The right-hand frame page, order-detail.aspx, doesn't require any query string, as it will not
display any data until the user makes a selection in the list in the left-hand frame page. At the end of the
frameset you can also see the narrow strip where we display our standard page footer.

Working with Down-Level Clients

177

As we mentioned earlier, we're assuming that the majority of the HTML 3.2-compliant browsers using
this version of the application also have support for HTML frames. For those few that don't, we include
this escape hatch which will take them to a more simple version of the application:

<noframes>

 This page requires HTML Frames support.
 As your browser does not support

 frames, you should use the
 simplified version
 of the application instead.

</noframes>

Getting the Data from the Session or Server
When the view-orders.aspx frameset page is loaded in response to a click in the list of customers on
the previous page, it will load the page order-list.aspx into the left-hand frame – passing it the ID
of the selected customer.

In the page order-list.aspx, we just need to collect the customer ID, use it to look up a list of
orders for this customer, and display the list in the page. However, before we build that code, we need
to think a little more about how we are going to use the data we extract from our database.

We're using a data access component that returns a DataSet containing the two tables required for
displaying both the list of orders and the details of each one (the order lines). We've chosen to present
this information in two DataGrid controls on two separate pages, though there is no reason why we
couldn't use it in other ways as well. For example, we could use the relationship between the tables in
the DataSet to display the data hierarchically if required.

But we're straying from the point. What we need to consider is how we cache and use the DataSet that
our data access tier exposes in our user's session (something we already decided was a good idea and
would usually offer a considerable performance boost). Getting data into the session is easy – we just
specify the key we want to refer to it by later:

Session("key-name") = MyDataSetObject

To get it back out, we use the key and cast (convert) the returned object to the correct data type:

MyDataSetObject = CType(Session("key-name"), DataSet)

However, in our application we are using this data in two pages concurrently, so we need to be sure that
it is appropriate for both of these pages. We only want to fetch and store one copy of it. In fact, the
second page (order-detail.aspx, which we'll look at shortly) has an extra requirement for the data.
Each "detail" row contains columns for the product, quantity, price and discount, but we would also like
to display the "line total" for each row as well.

We could calculate this "line total" as we display the data, but it makes a lot more sense to make it part
of the data itself. This way we only calculate the values once, and it also makes binding the data to the
DataGrid control for display much easier. Even better, we can actually do it without having to
calculate the totals ourselves – we can let the DataSet do it for us.

Chapter 5

178

The GetDataSetFromSessionOrServer Function

In the page order-list.aspx, we have a function GetDataSetFromSessionOrServer that is
responsible for returning the order details as a DataSet for a specified customer. It first attempts to
fetch the DataSet from the session using a key that is unique for this version of the application. If the
DataSet is not stored in the session at this point, the variable objDataSet will be empty, so we need
to go off to our data access tier and fetch it from the database in this case:

order-list.aspx

Function GetDataSetFromSessionOrServer(strCustID As String) As DataSet

'gets a DataSet containing all orders for this customer

 Try

 Dim objDataSet As DataSet

 'try and get DataSet from user's Session

 objDataSet = CType(Session("4923HTMLOrdersDataSet"), DataSet)

 If objDataSet Is Nothing Then 'not in Session

 'get connection string from connect-strings.ascx user control

 Dim strConnect As String

 strConnect = ctlConnectStrings.OLEDBConnectionString

 'create an instance of the data access component

 Dim objOrderList As New Wrox4923Orders.OrderList(strConnect)

 'call the method to return the data as a DataSet

 objDataSet = objOrderList.GetOrdersByCustomerDataSet(strCustID)
 ...

Now we can manipulate the DataSet to make sure it is compatible with the order-detail.aspx
page. We simply add a new column to the OrderLines table in the DataSet, and specify an
expression for this column that will calculate the line total for each row automatically:

 ...

 'add a column containing the total value of each line

 Dim objLinesTable As DataTable = objDataSet.Tables("OrderLines")

 Dim objColumn As DataColumn

 objColumn = objLinesTable.Columns.Add("LineTotal", _
 System.Type.GetType("System.Double"))

 objColumn.Expression = "[Quantity] * ([UnitPrice] – ([UnitPrice]" _
 & " * [Discount]))"
 ...

Having done that, we can store the DataSet in our user's session, and then return it to the calling
routine. If there is an error, we display a message in the page and return Nothing:

Working with Down-Level Clients

179

 ...
 'save DataSet in Session for next order inquiry
 Session("4923HTMLOrdersDataSet") = objDataSet

 End If

 Return objDataSet

 Catch objErr As Exception
 'there was an error and no data will be returned
 lblMessage.Text = "* ERROR: No data returned. " & objErr.Message

 Return Nothing
 End Try
End Function

The next time the user submits a request that calls this function the DataSet will be extracted not from
the database, but from the session. (Of course, this assumes the session has not timed out.) The
DataSet will already have the extra LineTotal column, so we can just return it "as is".

The DataGrid to Display the Order List
Now we've got our DataSet, we can think about how we'll display it in the page. We've used a
DataGrid server control for this, specifying our own custom column layout as in the previous example
page. However, in this page we have also turned off ViewState support, so that the values in the
DataGrid are not persisted across postbacks:

<%@Page Language="VB" EnableViewState="False" %>

This means that there will be no hidden-type control in the page to store the values of the DataGrid
(this is how ViewState is persisted by default), so the page will be smaller. We don't need ViewState to
be supported, as we aren't planning to do postbacks directly from this page.

Note that we could not do this in the previous page. There, we had enabled paging in our DataGrid,
and this requires ViewState support in order to work. We aren't using paging in either of the pages that
display the order details. Of course, if you could potentially have a great many orders per customer you
may decide to use paging, in which case you will need to enable ViewState support for the page.

Our code also defines a single Page-level (global) variable that we'll use to hold the current customer ID:

'page-level variable accessed from more than one routine
Dim strCustID As String = ""

So, back to the HTML; the following is the declaration of our DataGrid control and the two Label
controls that provide ancillary information for the user:

<form runat="server">
 <!-- label to display customer ID -->
 <asp:Label id="lblStatus" runat="server" /><p />

 <!-- DataGrid control to display matching orders -->
 <asp:DataGrid id="dgrOrders" runat="server"
 AutoGenerateColumns="False"
 CellPadding="5"
 GridLines="Vertical"

Chapter 5

180

 HeaderStyle-BackColor="#c0c0c0"
 ItemStyle-BackColor="#ffffff"
 AlternatingItemStyle-BackColor="#eeeeee">

 <Columns>

 <asp:TemplateColumn HeaderText="Order ID"
 ItemStyle-BackColor="#add8e6"
 ItemStyle-HorizontalAlign="center">
 <ItemTemplate>
 <asp:Hyperlink Text='<%# Container.DataItem("OrderID")%>'
 NavigateUrl='<%# DataBinder.Eval(Container.DataItem, "OrderID", _
 "order-detail.aspx?customerid=" & strCustID & "&orderid={0}") %>'
 Target="right" runat="server" />
 </ItemTemplate>
 </asp:TemplateColumn>

 <asp:BoundColumn HeaderText="Order Date"
 HeaderStyle-HorizontalAlign="center"
 ItemStyle-HorizontalAlign="center"
 DataField="OrderDate" DataFormatString="{0:d}" />

 <asp:BoundColumn HeaderText="Shipped"
 HeaderStyle-HorizontalAlign="center"
 ItemStyle-HorizontalAlign="center"
 DataField="ShippedDate" DataFormatString="{0:d}" />
 </Columns>
 </asp:DataGrid><p />

 <!-- label to display interactive messages -->
 <asp:Label id="lblMessage" runat="server" />
</form>

Again we are generating the columns in the grid ourselves (we set the AutoGenerateColumns
property to False). The only complicated column is the first one – an asp:TemplateColumn.
This is used because it allows us to implement the content using a template, and a template allows
a more flexible approach to setting the content than any other technique that we've used in the
previous example.

Using a "Template" Column

The reason we need the extra flexibility is because we want to use a hyperlink in the column, but we
also want to specify the target attribute of this hyperlink so that the target page is loaded into the
other frame of our frameset rather than the current frame. If we use a standard hyperlink column (as in
the previous example), we can't set the target attribute in our declaration of the DataGrid.

The template content we're using is shown again below. It defines an asp:Hyperlink, which will
output an <a> element in the table, and you can see that we've specified the right-hand frame (rather
unimaginatively named right in the frameset page) as the Target attribute. The text of the hyperlink
is the value of the OrderID column in the DataSet table that is bound to the DataGrid control. The
syntax used is that of server-side data binding, and indicates we want this specific column (DataItem)
from the data source that is bound to the control (the Container):

Working with Down-Level Clients

181

 <ItemTemplate>
 <asp:Hyperlink Text='<%# Container.DataItem("OrderID")%>'
 NavigateUrl='<%# DataBinder.Eval(Container.DataItem, "OrderID", _
 "order-detail.aspx?customerid=" & strCustID & "&orderid={0}") %>'
 Target="right" runat="server" />
 </ItemTemplate>

The NavigateUrl attribute of the hyperlink specifies the href attribute that will be added to the
output <a> element. In this we are using the Eval method of the DataBinder object (the object that
carries out the binding) to specify the format of the string we want to be used for the href. You can see
that the method takes the data source (Container.DataItem) as it's first parameter, the column name
within the data source as it's second parameter, and the format string as the third parameter.

The great thing is that this is a "proper" method call (notice the underscore at the end of the line where
the third parameter has wrapped to the next line), and it means we can use code to build the format
string. We use the Page-level variable named strCustID, and the value of the order ID for the current
row, so the href will be something like:

order-detail.aspx?customerid=CONSH&orderid=10462

So, in the view-orders.aspx page we can extract the customer ID from the query string and use it in
our code. The next screenshot shows what the view-orders.aspx frameset page looks like when it
first loads:

Chapter 5

182

The Page_Load Event Handler
To display the list of orders shown in the previous screenshot, we execute some code in response to the
Page_Load event. If it is not a postback (that is, if this is the first time the page has been loaded), we
collect the customer ID from the query string and store it in the Page-level variable named strCustID.
If a customer ID was not specified (perhaps because the page was loaded directly rather than from the
previous default.aspx page), we display an error message – we need the customer ID to be able to
look up their orders:

Sub Page_Load()

 If Not Page.IsPostBack Then
 strCustID = Request.QueryString("customerid")
 If (strCustID Is Nothing) Or (strCustID = "") Then
 'display error message
 lblMessage.Text = "* ERROR: no Customer ID provided.
" _
 & "You must select" _
 & " a customer first."

 Else
 'display all orders for this customer
 ShowOrders()

 End If
 End If
End Sub

As long as we got a customer ID, we can call the ShowOrders routine located elsewhere in this page to
display the list of orders for the specified customer.

Displaying the Order List
The ShowOrders routine is relatively simple. It just has to fetch the DataSet from the custom
GetDataSetFromSessionOrServer function we looked at earlier and bind it to the DataGrid
control. However, there are a couple of other issues to contend with. Recall that we are "sharing" this
DataSet with the page in the other frame of the <frameset> (order-detail.aspx). As you'll see
when we look at that page, it applies a filter to the Orders table in the DataSet in order to extract and
display details of the shipping address and the carrier that is delivering it.

If the user refreshes this page, the row filter will prevent all the other orders for this customer from
being listed, so we take the precaution of removing it by setting the RowFilter property of the
DefaultView of the table to an empty string:

Sub ShowOrders()
'display list of all orders for this customer in DataGrid control

 'get DataSet using function elsewhere in this page
 Dim objDataSet As DataSet = GetDataSetFromSessionOrServer(strCustID)

 'remove any existing filter from table DefaultView
 'otherwise refreshing page in browser shows only one row
 objDataSet.Tables("Orders").DefaultView.RowFilter = ""
 ...

Working with Down-Level Clients

183

The only other issue is to check whether we actually have any orders for this customer to display, and
show an appropriate message in the Label control on this page:

 ...
 'check if any orders were found for this customer
 If objDataSet.Tables("Orders").Rows.Count > 0 Then
 'diplay heading above DataGrid
 lblStatus.Text = "Orders for customer ID '" & strCustID & "'"

 'set DataSource, bind the DataGrid and display status message
 dgrOrders.DataSource = objDataSet.Tables("Orders")
 dgrOrders.DataBind()
 lblMessage.Text = "Click an Order ID in the grid above to" _
 & "
 display details of that order or "

 Else
 lblMessage.Text = "No orders found for this customer ..."

 End If

 lblMessage.Text &= "
" _
 & "select another customer"
End Sub

Displaying the Order Details
The final page in our HTML version of the application (order-detail.aspx) is displayed in the
right-hand frame of the view-orders.aspx page. Most of the techniques are similar to the previous
two pages we've looked at. The page contains an ASP.NET DataGrid control to display the list of
order lines for the selected order, plus a couple of Label controls to display the shipping details for the
order and the total value.

The Declaration of the DataGrid and Labels
The next listing shows the HTML for this page. You can see the Label controls and the DataGrid. As
in previous pages, we have "turned off" the AutoGenerateColumns property of the DataGrid. We
just have a series of standard asp:BoundColumn elements in this page – there is one for each column
in the OrderLines table of our DataSet (including the calculated column that we added to the
DataSet when we stored it in the session):

order-detail.aspx

<form runat="server">

 <!-- label to display order details -->
 <asp:Label id="lblMessage" runat="server" /><p />

 <!-- DataGrid control to display order lines -->
 <asp:DataGrid id="dgrOrders" runat="server"
 AutoGenerateColumns="False"
 CellPadding="5"
 GridLines="Vertical"

Chapter 5

184

 HeaderStyle-BackColor="#c0c0c0"
 AlternatingItemStyle-BackColor="#eeeeee">

 <Columns>
 <asp:BoundColumn HeaderText="Qty"
 HeaderStyle-HorizontalAlign="center"
 ItemStyle-HorizontalAlign="center"
 DataField="Quantity" />
 <asp:BoundColumn HeaderText="Product"
 HeaderStyle-HorizontalAlign="center"
 DataField="ProductName" />
 <asp:BoundColumn HeaderText="Packs"
 HeaderStyle-HorizontalAlign="center"
 DataField="QuantityPerUnit" />
 <asp:BoundColumn HeaderText="Each"
 HeaderStyle-HorizontalAlign="center"
 ItemStyle-HorizontalAlign="right"
 DataField="UnitPrice" DataFormatString="${0:N2}" />
 <asp:BoundColumn HeaderText="Discount"
 HeaderStyle-HorizontalAlign="center"
 ItemStyle-HorizontalAlign="right"
 DataField="Discount" DataFormatString="{0:P}" />
 <asp:BoundColumn HeaderText="Total"
 HeaderStyle-HorizontalAlign="center"
 ItemStyle-HorizontalAlign="right"
 DataField="LineTotal" DataFormatString="${0:N2}" />
 </Columns>

 </asp:DataGrid><p />

 <!-- label to display order total -->
 <asp:Label id="lblTotal" runat="server" /><p />

</form>

You'll notice that we specify values for the DataFormatString property of the last three columns to
display the content as currency or as a percentage format. We used the standard format specifier P to
format the percentage column. For the other two we used the currency character "$" followed by the
numeric value formatted to two decimal places (N2). You might be tempted to use the standard currency
format specifier, C, here – but this would cause the page to display a currency character that depends on
the locale settings of the server. If your database holds the price in US dollars, you probably don't want
to display that number with any other currency symbol!

The ASP.NET Code for the Page
Our code declares two Page-level variables that will contain the customer ID and the order ID for the
selected order:

<script language="VB" runat="server">

 'page-level variables accessed from more than one routine
 Dim strCustID As String = ""
 Dim strOrderID As String = ""

Working with Down-Level Clients

185

This page will probably be loaded several times as the user browses through the list of orders displayed
in the left-hand frame of the view-orders.aspx page, and each time they select an order the current
page (order-detail.aspx) is reloaded with the customer ID and the order ID in the query string. So,
in the Page_Load event we can extract the customer ID and the order ID from the query string as the
page loads each time:

 Sub Page_Load()

 If Not Page.IsPostBack Then

 strCustID = Request.QueryString("customerid")

 strOrderID = Request.QueryString("orderid")

 If (strOrderID Is Nothing) Or (strOrderID = "") _
 Or (strCustID Is Nothing) Or (strCustID = "") Then

 'display help message

 lblMessage.Text = "Select an order from the first column " _
 & "in the list shown on the left to display the order details."

 Else

 'display order details for this order

 ShowOrderLines()

 End If

 End If

 End Sub

Notice that we display a simple "help" message if there is no customer ID or order ID. When the
frameset containing this page is loaded the first time, there will be no "current order" (we saw this in the
previous screenshot).

When the page is loaded with customer ID or order ID values in the query string, we call the
ShowOrderLines routine elsewhere in our page to display the details of the selected order.

Getting the DataSet from the Server or Session

We'll need to be able to extract the data for this page from the DataSet created by the data access tier
of our application. If the client supports sessions, this will already be in the user's session – placed there
by the order-list.aspx page that we loaded into the left-hand frame. This DataSet also has the
calculated LineTotal column we need in this page.

However, if the client does not support sessions, we have to hit the data access component again to
extract it from the database, and add the calculated column. In fact, the function we need is exactly the
same as the one we used in the order-list.aspx page, so we just include the same function
(GetDataSetFromSessionOrServer) in this page as well:

Function GetDataSetFromSessionOrServer(strCustID As String) As DataSet

'gets a DataSet containing all orders for this customer

... exactly the same as in order-list.aspx page ...

... and it uses the same Session-cached DataSet ...

End Function

Chapter 5

186

The ShowOrderLines Routine

The ShowOrderLines routine is a little more complex than the equivalent function we used in
previous pages, as it has to display data from both of the tables in the DataSet. The shipping details
come from the Orders table, and the "detail line" rows come from the OrderLines table.

We start by calling the routine to get the DataSet from the session or direct from the data tier:

Sub ShowOrderLines()

'display all the order line details for this order in DataGrid control

 'get DataSet using function elsewhere in this page

 Dim objDataSet As DataSet = GetDataSetFromSessionOrServer(strCustID)
 ...

Next we get a reference to the DefaultView of the Orders table, and apply a filter so that the only row
exposed is the one for the current order. (This is the same filter that we have to remove in order-
list.aspx, so that all order rows are shown whenever that page is refreshed. We discussed that part
earlier in the chapter.) We also get a reference to the DefaultView of the OrderLines table, and
apply the same filter to that DataView, too:

 ...

 'create filtered DataView from Orders table in DataSet

 Dim objOrderView As DataView = objDataSet.Tables("Orders").DefaultView

 objOrderView.RowFilter = "OrderID = " & strOrderID

 'create filtered DataView from OrderLines table

 Dim objLinesView As DataView = objDataSet.Tables("OrderLines").DefaultView

 objLinesView.RowFilter = "OrderID = " & strOrderID
 ...

Calculating the Order Total and Displaying the Details

Now we can calculate the total value of the order by summing the values in the LineTotal calculated
column that we've already added to the DataSet:

 ...

 'calculate total value of order

 Dim dblTotal As Double = 0

 Dim objDataRowView As DataRowView

 For Each objDataRowView In objLinesView

 dblTotal += objDataRowView("LineTotal")

 Next
 ...

Next we check that there is at least one order line for this order (this should always be the case), and
display the shipping details – selecting them from the appropriate table as we go. Notice the use of the
VB.NET IsDbNull function to test for a null value for the shipping date. As well as providing a more
informative output, this prevents an error arising from trying to format a null value:

Working with Down-Level Clients

187

 ...

 'check that there are some matching order lines

 If objLinesView.Count > 0 Then

 'display the shipping details in Message Label

 lblMessage.Text = "Order ID:" & strOrderID _
 & "Customer Name:" & objOrderView.Item(0)("ShipName") & "
" _
 & "Delivery Address:" & objOrderView.Item(0)("OrderAddress") _
 & "Ordered: " & FormatDateTime(objOrderView.Item(0)("OrderDate"))

 If IsDbNull(objOrderView.Item(0)("ShippedDate")) Then

 lblMessage.Text &= "Awaiting shipping"

 Else

 lblMessage.Text &= "Shipped: " _
 & FormatDateTime(objOrderView.Item(0)("ShippedDate"))

 End If

 lblMessage.Text &= " via " & objOrderView.Item(0)("CompanyName")
 ...

The final steps are to bind the DefaultView of the OrderLines table to our DataGrid control and
display the total order value. Again, we have specified the currency symbol explicitly rather than
depending on the local settings of the server. If there happen to be no order lines for this order, we just
display a message to this effect instead:

 ...

 'set DataSource and bind the DataGrid

 dgrOrders.DataSource = objLinesView

 dgrOrders.DataBind()

 'display the total value of the order

 lblTotal.Text = "Total order value:" & dblTotal.ToString("$#,##0.00")

 Else

 lblMessage.Text = "No order lines found for this order..."

 End If

End Sub

The next screenshot shows the results for order number 10462 for customer Consolidated Holdings:

Chapter 5

188

The Order List Application – the "Mobile" Version
The other "down-level" client we are looking at in this chapter is the small-screen or mobile device,
such as a PDA or a cellular phone. While we can't hope to offer the same kind of usability for these
devices as we can in a standard Web browser, their increasing use for mobile Internet access means that
we can benefit from supporting them as well as we possibly can.

Our version of the application for mobile devices gives the same functionality as the browser-based
equivalents, but tries to minimize the effects of the small screen and lack of a keyboard and mouse for
input. We'll build it with controls from the Microsoft Mobile Internet Toolkit (MIT), so it will also
work fine in a PDA or hand-held device that supports HTML rather than the more usual WML of the
cellular phone.

The next two screenshots show the opening page of the application in a cellular phone emulator, and in
an HTML browser (actually a resized Internet Explorer window). To get this, browse to
http://localhost/4923/customer-orders/default.aspx, and the application should redirect you to the
http://localhost/4923/customer-orders/mobile/default.aspx page automatically:

Working with Down-Level Clients

189

The emulator we're using here is part of the Nokia Mobile Internet Toolkit. Various versions are
available, and you can read about these and download them from: http://forum.nokia.com/.

You can obtain the Microsoft Mobile Internet Toolkit from:
http://msdn.microsoft.com/vstudio/nextgen/device/mitdefault.asp

The Outline Process
The way we structure pages for the MIT is very different from the way this is done in a normal HTML-
targeted ASP.NET page. Devices that support WML rather than HTML have the concept of multiple
"screens", often called cards in WML-speak, for each page. And, not surprisingly, the page itself is often
referred to as a deck (there is a huge opportunity for bad puns when developing for mobile devices).

The theory is that devices like cellular phones have very narrow bandwidth and high latency
connections (at least at the moment), and so sending several screens in one go provides a more
interactive and responsive user interface. However, if each screen is dynamically generated on the
server, it means that a server connection and postback is still required for each screen – but the
principle is there and is useful if you decide to use client-side WMLScript to manipulate the pages.

To implement the requirement for multiple screens in one page, the MIT provides a sub-classed version
of the Page object that accepts multiple server-side <form> elements (the standard Page object will
not). Each <form> becomes a single screen or card, and we can activate (or display) the appropriate
ones within our code as the user interacts with the page.

So, to implement our application requirements we have a single page, default.aspx (in the mobile
subfolder of the application), which contains five <form> elements that implement the five screens:

Chapter 5

190

frmCustSelect

frmOrderDetail

frmOrderSelect

default. aspx

frmCustSearch

frmCustType

Search by ID
Search by Name

orders

order
details

Data Access Component
Wrox4923Orders.OrderList

search

customers
GetCustomerByIdOrName

GetOrdersByCustomerDataSet

The first two screens collect the search details from the user, and the third screen displays a list of
matching customers using the GetCustomerByIdOrName method of our application's standard data
access component. Selecting a customer then displays a list of all their orders in the next screen, using
the GetOrdersByCustomerDataSet method of the same component. Finally, the fifth screen displays
the details of the order that the user selected in the previous screen – again using the
GetOrdersByCustomerDataSet method.

So the data access processes are very similar to those we used in the HTML version of the example. We
also take advantage of sessions in exactly the same way, and the application still works if sessions are
not supported.

Every screen (except the first) allows the user to jump backwards through the process using either the
hyperlinks at the bottom of each screen, or with the "soft keys" that are implemented on most mobile
devices. In the final screen, they can go back to the previous screen (the list of orders for the selected
customer) and select a different order.

Fetching Data from the Server
Before we look at the server controls and the page structure for this example, we'll examine the code
that interacts with our data access tier. To provide the kind of compact display we need for small screen
devices, we have to "massage" the data a little in our application's middle tier. In our case, the code for
this is actually part of this page, though there is no reason why we couldn't separate it out into a
component if we needed the same functionality for other versions of the application as well. In later
chapters we actually do this with the middle tier so that we can reuse it in more than one version.

Working with Down-Level Clients

191

Fetching the Customer List
Getting the list of customers is a simple process. The GetCustomerDataSetFromServer function
takes care of all this – it's almost identical to the GetDataSetFromServer function found in the
HTML version.

As in the HTML version of the application, we first remove any existing DataSet containing order
details from the user's session before we fetch the data for the customer they selected this time. The
partial or full customer ID or name are passed to this function in the two parameters in the same way as
we saw in earlier examples:

default.aspx

Function GetCustomerDataSetFromServer(strCustID As String, _
 strCustName As String) As DataSet

 'remove any existing "Orders" DataSet from the user's session
 'as we're searching now for a different customer
 Session("4923MobileShowOrdersDataSet") = Nothing
 ...

Now we can collect the connection string from our custom user control, instantiate the data access
component, and fetch and return the DataSet it exposes:

 ...
 'get connection string from connect-strings.ascx user control
 Dim strConnect As String
 strConnect = ctlConnectStrings.OLEDBConnectionString

 Try
 'create an instance of the data access component
 Dim objOrderList As New Wrox4923Orders.OrderList(strConnect)

 'call the method to return the data as a DataSet
 Return objOrderList.GetCustomerByIdOrName(strCustID, strCustName)

 Catch objErr As Exception
 'there was an error and no data will be returned
 Return Nothing

 End Try
End Function

Fetching the Orders Data
Fetching the order data for a specific customer is rather more complex. It's handled by the
GetOrderDataSetFromSessionOrServer method (which is similar to the
GetDataSetFromSessionOrServer function in both order pages of the HTML version, but as we'll
see here, has some important additional coding).

Here, as in the HTML version, we'll get back a DataSet containing two tables – an Orders table
containing the details of every order for this customer, and an OrderLines table containing the order
rows for all these orders. We also cache this DataSet in the user's session when we first fetch it from
the data access component, so we can reuse this on subsequent calls to the function:

Chapter 5

192

Function GetOrderDataSetFromSessionOrServer(strCustID As String) As DataSet

 Dim objDataSet As DataSet

 Try
 'try and get DataSet from user's session
 objDataSet = CType(Session("4923MobileShowOrdersDataSet"), DataSet)

 If objDataSet Is Nothing Then 'not in session

 'get connection string from connect-strings.ascx user control
 Dim strConnect As String
 strConnect = ctlConnectStrings.OLEDBConnectionString

 'create an instance of the data access component
 Dim objOrderList As New Wrox4923Orders.OrderList(strConnect)

 'call the method to return the data as a DataSet
 objDataSet = objOrderList.GetOrdersByCustomerDataSet(strCustID)
 ...

Massaging the DataSet

At this point in the code, we know that the DataSet was not in the session, and we have extracted it
from our data access tier. Before we cache it in the session, we need (as in the HTML version) to makes
some changes to it. We aren't using fancy UI controls like the DataGrid in this version of the
application. Instead, we want to provide columns that contain all the information in a compact format
ready for display.

For the Orders table, we add a column named DisplayCol that contains the concatenated values for
the order ID and the order date. This will be used for the list of orders from which the user can choose:

 ...
 'get a reference to the "Orders" table in the DataSet
 Dim objTable As DataTable = objDataSet.Tables("Orders")

 'add column containing order ID and date as one string value
 Dim objColumn As DataColumn
 objColumn = objTable.Columns.Add("DisplayCol", _
 System.Type.GetType("System.String"))

 'fill column for each row with "#{order number} – {order date}"
 Dim objRow As DataRow
 Dim objDate As DateTime
 For Each objRow In objTable.Rows
 objDate = objRow("OrderDate")
 objRow("DisplayCol") = "#" & objRow("OrderID") & " – " _
 & objDate.ToString("d")
 Next
 ...

Working with Down-Level Clients

193

For the OrderLines table, we want to provide a column that concatenates the quantity, product name,
pack details, unit price, discount (if any) and the line total. We go about this by first adding a calculated
column to the table in the same way as we did for the HTML version of the application. Then we can use
this and the other columns values to build the content for the new DisplayCol column in this table:

 ...
 'get a reference to the "OrderLines" table in the DataSet
 objTable = objDataSet.Tables("OrderLines")

 'add column containing total value of each line
 objColumn = objTable.Columns.Add("LineTotal", _
 System.Type.GetType("System.Double"))
 objColumn.Expression = "[Quantity] * ([UnitPrice] – ([UnitPrice]" _
 & " * [Discount]))"

 'add column containing the order details as one string value
 objColumn = objTable.Columns.Add("DisplayCol", _
 System.Type.GetType("System.String"))

 'fill with "qty x product (pack) @ price less discount = total"
 Dim strColValue As String
 For Each objRow In objTable.Rows
 Dim dblThisPrice as Double = objRow("UnitPrice")
 strColValue = objRow("Quantity").ToString & " x " _
 & objRow("ProductName") & " (" _
 & objRow("QuantityPerUnit") & ") @ " _
 & dblThisPrice.ToString("$#0.00")
 If objRow("Discount") > 0 Then
 dblThisPrice = objRow("Discount")
 strColValue &= " Less " & dblThisPrice.ToString("P")
 End If
 dblThisPrice = objRow("LineTotal")
 objRow("DisplayCol") = strColValue & " = " _
 & dblThisPrice.ToString("$#0.00")
 Next
 ...

Now we can save this "massaged" DataSet in the user's session ready for use in the "Order List" and
"Order Details" screens of the application. We finish up by return it to the calling routine. Of course, if
there is a DataSet already in the session, we simply return this instead of re-creating it:

 ...
 'save DataSet in session for next order inquiry
 Session("4923MobileShowOrdersDataSet") = objDataSet

 End If

 Return objDataSet 'return DataSet to calling routine

 Catch objErr As Exception

 'there was an error and no data will be returned
 Return Nothing

 End Try

End Function

Chapter 5

194

The Mobile Page Content
Next we'll look at the structure of the page itself, and see how each screen is built up. The page starts
with the special Page directive for the MIT MobilePage object, and a Register directive to register
the MIT controls. This is followed by the Import directives for our custom data access component, and
the System.Data namespace we need to be able to use objects such as the DataSet, DataColumn and
DataRow you saw in the previous code listings:

<%@Page Inherits="System.Web.UI.MobileControls.MobilePage" Language="VB"%>
<%@Register TagPrefix="Mobile" Namespace="System.Web.UI.MobileControls"
 Assembly="System.Web.Mobile"%>
<%@Import Namespace="OrderListData" %>
<%@Import Namespace="System.Data" %>

<%@ Register TagPrefix="wrox" TagName="connect"
 Src="..\..\global\connect-strings.ascx" %>

<%'-- insert connection string script --%>
<wrox:connect id="ctlConnectStrings" runat="server" />

At the end of this code, you can also see that we register and insert into the page our custom user
control that exposes the connections strings for our database.

For more information on the syntax involved in writing Mobile Forms applications, have a look at
Beginning ASP.NET Mobile Controls (Wrox, ISBN 1-861005-22-9).

Adding Style to the Output
When we serve content to devices like cellular phones, we don't have much control over the style or
appearance of the output. However, the MIT controls can also be used to create output for devices that
support HTML, as you saw in the earlier screenshot. It's nice to be able to add at least some basic styling
to these, and it's done through the mobile:Stylesheet control which is implemented by the MIT.

This requires us to set up choices using a web.config file, which specifies the devices that belong to a
specific <Choice> filter category in a stylesheet (such as the one we'll examine in a moment). In our sample
application, we have the following web.config file in the mobile folder (where this version of the
application resides):

<configuration>
 <system.web>
 <deviceFilters>
 <filter name="IsIE" compare="browser" argument="IE" />
 <filter name="IsHTML32" compare="PreferredRenderingMIME"
 argument="text/html" />
 </deviceFilters>
 </system.web>
</configuration>

This sets up two filters. One is named IsIE and will only include Internet Explorer browsers. The other
filter, named IsHTML32, will only include client devices that support HTML. The compare attribute is
an entry from the list of properties exposed by either the MobileCapabilities or
BrowserCapabilities objects, while the argument attribute is (obviously) the value for that
property that we want to match.

Working with Down-Level Clients

195

The Mobile Stylesheet for our Application

The next listing shows the mobile:Stylesheet we use in this version of our application. You'll find it
in default.aspx. You can see that it implements three styles in separate <Style> elements. The first
is the style we'll apply to every screen in the application, and it specifies the content that we want to
include at the top and bottom of the screen where the current client supports HTML (using the
IsHTML32 filter we defined in web.config):

<mobile:Stylesheet runat="server">

 <Style name="styPage">
 <DeviceSpecific>
 <Choice Filter="IsHTML32">
 <HeaderTemplate>
 <body bgcolor="#ffffacd"
 style="font-family:Tahoma, Arial, sans-serif; font-size:10pt">

 </HeaderTemplate>
 <FooterTemplate>

<hr />

 <div style="font-family:Tahoma, Arial, sans-serif; font-size:8pt">
 ©2001
 ... etc ...
 </body>
 </FooterTemplate>
 </Choice>
 </DeviceSpecific>
 </Style>
 ...

This useful feature means that we can easily tailor the output for HTML devices to make the screens
attractive, and to include extra content. None of this content will be sent to other clients such as cellular
phones that expect WML – if this was not the case the client would report an error when it encountered
a non-supported element.

The other two styles we include in the page are also specific to HTML clients. They simply define the
style for page headings (large blue text) and lists (small black text):

 ...
 <Style name="styHeading">
 <DeviceSpecific>
 <Choice Filter="IsHTML32" Font-Name="Tahoma,Arial,sans-serif"
 ForeColor="blue" Font-Size="large" Font-Bold="true" />
 </DeviceSpecific>
 </Style>

 <Style name="styListAndLink">
 <DeviceSpecific>
 <Choice Filter="IsHTML32" Font-Name="Tahoma,Arial,sans-serif"
 ForeColor="black" Font-Size="small" />
 </DeviceSpecific>
 </Style>

</mobile:Stylesheet>

Chapter 5

196

Setting the Search Type
At last we're in a position to see some of the controls that create the visible parts of our application. The
next screenshot shows the opening screen again, in both the Nokia emulator and an HTML client:

This output is created by the first <form> in our page. It is quite basic, using the MIT controls to create
the text in two Label controls, and the two options within a List control. The form itself has the ID
value frmCustType, and caption View Customer Orders. Notice how we specify the style to apply to
each control – some use a reference to one of the styles in the stylesheet we showed earlier, and some
use attributes of the control to set the appearance:

<mobile:Form id="frmCustType" title="View Customer Orders"
 styleReference="styPage" runat="server">
 <mobile:Label id="lblMsg1" styleReference="styHeading" runat="server">
 Select Search Type
 </mobile:Label>

 <mobile:Label id="lblType" Font-Bold="true" runat="server">
 Search by:
 </mobile:Label>
 <mobile:List id="lstType" styleReference="styListAndLink"
 OnItemCommand="SetSearchType" runat="server">
 <Item Text="Customer ID" Value="CustID" />
 <Item Text="Customer Name" Value="CustName" />
 </mobile:List>
</mobile:Form>

The List control has the OnItemCommand attribute set to point to an event handler named
SetSearchType, which is located elsewhere in our page, and will be executed when the user selects
one of the options. As in an HTML <select> list, we can specify values for the visible text of each
item (using the Text attribute), and the value that is returned when the item is selected (using the
Value attribute).

Working with Down-Level Clients

197

Specifying the Search String
To understand what the code that runs in response to a selection in the list does, we first need to look at
the declaration for the next screen. The following listing implements the frmCustSearch form, which
contains three Label controls, a TextBox control, a Command control and a Link control:

<mobile:Form id="frmCustSearch" title="Customer Search"
 styleReference="styPage" runat="server">
 <mobile:Label id="lblMsg2" styleReference="styHeading" runat="server">
 Search for Customer
 </mobile:Label>

 <mobile:Label id="lblSearchType" Font-Bold="true" runat="server" />
 <mobile:TextBox id="txtSearchString" runat="server" />
 <mobile:Command id="cmdSearch" CommandName="Search" runat="server"
 OnClick="GetCustomers" SoftKeyLabel="Search" Text="Search" />
 <mobile:Label id="lblSearchTips" runat="server" />

 <mobile:Link NavigateUrl="#frmCustType" SoftKeyLabel="Back"
 Text="Change Search Type"
 styleReference="styListAndLink" runat="server" />
</mobile:Form>

Notice that the Label controls with id attributes lblSearchType and lblSearchTips have no text
content at the moment. We'll be setting this text within our code by assigning it to the Text property of
these controls. This means that we can change the caption for the text box and the Hint text displayed
below it, depending on the selection the user made in the previous screen. For example, the next
screenshot shows what this screen looks like when the user selected Search by Customer ID in the
previous screen:

In the mobile device emulator, you can enter the search term through the Edit or Options soft key
or similar.

Chapter 5

198

You can also see from this that the Command control automatically creates a device-specific Search
button – a soft key command in a phone, and an HTML button in the browser. You can also see (at
least in the HTML output) the effect of the Link control we added at the end of the <form>. In the
phone it creates a second soft key command (Back), while in the browser it creates a hyperlink. The
declaration we used for this control was:

 <mobile:Link NavigateUrl="#frmCustType" SoftKeyLabel="Back"
 Text="Change Search Type"
 styleReference="styListAndLink" runat="server" />

The SoftKeyLabel attribute sets the soft key in a phone, and the NavigateUrl attribute we use is the
ID of the <form> we want to activate when the link is clicked.

The Code in the SetSearchType Event Handler

We haven't quite finished with this screen yet. We still need to look at how we set the text of the label
controls, and how we activate the next screen. When the user makes a selection for the search type in the
first screen, as we saw earlier, our event handler named SetSearchType is executed. This is listed next:

Sub SetSearchType(objSender As Object, objArgs As ListCommandEventArgs)
'set the correct text on page 2 (frmCustSearch) and display it

 'fill in Label text
 If objArgs.ListItem.Value = "CustName" Then
 lblSearchType.Text = "Customer Name:"
 lblSearchTips.Text = "Hint: enter any part of the customer... etc."
 Else
 lblSearchType.Text = "Customer ID:"
 lblSearchTips.Text = "Hint: enter all or the first part...etc."
 End If

 'display screen 2
 ActiveForm = frmCustSearch

End Sub

All this code has to do is set the text of the two Label controls in the second screen, then activate it so
that it is displayed. Depending on the user's selection in the first screen, they will see different text in
the two Label controls.

Showing the Customer List
Once the user enters the search string into the text box on the second screen, they use the Command
control in that screen (a soft key or a button, depending on the device) to get a list of customers that
match their criteria. The declaration of that Command control looked like this:

 <mobile:Command id="cmdSearch" CommandName="Search" runat="server"
 OnClick="GetCustomers" SoftKeyLabel="Search" Text="Search" />

So our event handler named GetCustomers will be executed when this Command is activated, and the
user will see the list of customers in the next screen – which has the ID frmCustSelect. The
declaration of this screen's <form> contains a heading Label control, an empty Label control with the
ID property value lblStatus1, a List control and a Link control:

Working with Down-Level Clients

199

<mobile:Form id="frmCustSelect" title="Select Customer"

 styleReference="styPage" runat="server">

 <mobile:Label id="lblMsg3" styleReference="styHeading" runat="server">

 Select Customer

 </mobile:Label>

 <mobile:Label id="lblStatus1" Font-Bold="true" runat="server" />

 <mobile:List id="lstCustomers" OnItemCommand="GetOrders"

 styleReference="styListAndLink" runat="server" />

 <mobile:Link NavigateUrl="#frmCustType" SoftKeyLabel="Customer"

 Text="Change Search"

 styleReference="styListAndLink" runat="server" />

</mobile:Form>

The empty Label control is where we'll insert status information, and the List control will display the
matching customers we found. The Link we use here is similar to that in the previous screen, allowing
the user to go back and enter different search criteria. The next screenshot shows what this screen looks
like after searching for customers with the ID "ALFK":

This example, like many others in this book, uses ViewState to retain the state of the forms.
Because of bandwidth restrictions, mobile pages (unlike other ASP.NET pages) save their
ViewState in the session.

If you get an error here (which declares that the page "requires session state that is no longer
available"), it's related to this. You'll get the error if both (a) your client doesn't support cookies,
and (b) your server is configured to disallow cookieless sessions (cookieless="false" in
machine.config or web.config, as described in Chapter 4).

Chapter 5

200

A quick workaround, in order to get the example working, is to find the
configuration/system.web/sessionState node in the web.config file in your
application root, and set the cookieless attribute to true (don't forget to change it back again
afterwards). If you're planning to use this technique in a real application, you may need to
implement the mobile version as a separate application with its own web.config.

The Code in the GetCustomers Event Handler

We can get a list of customers that match the search criteria by calling the function named
GetCustomerDataSetFromServer, which is located elsewhere in this page. We described this
function when we started looking at this version of the application. However, our event handler (named
GetCustomers) has a few other things to do as well.

We hide the List control by setting its Visible property to False while we fetch the data, and only
show it again if we actually find one or more matching customers. We also have to decide what type of
search the user specified, by collecting the value from the text box on the previous screen. Notice how
we can reference the values for controls on any <form> in our page directly. All the values are held in
the ViewState of the page, as in an ordinary ASP.NET HTML page:

Sub GetCustomers(objSender As Object, objArgs As EventArgs)
'create and display list of matching customers in screen 3

 Dim strCustID As String = ""
 Dim strCustName As String = ""

 'hide the list control until we see if we get a result
 lstCustomers.Visible = "False"

 'check customer search type selection
 If Instr(lblSearchType.Text, "Name") > 0 Then
 strCustName = txtSearchString.Text
 Else
 strCustID = txtSearchString.Text.ToUpper()
 End If
 ...

Note that some cellular phones limit the size of a page, the volume of data that can be posted back
from a <form>, or require special encoding for the ViewState. You can use the
MobileCapabilities object we saw in Chapter 4 to check these features for different devices –
the relevant properties are RequiresSpecialViewStateEncoding and
MaximumRenderedPageSize.

You may instead decide to switch off ViewState altogether and manage the values you need to pass
between screens with another technique such as a session variable or the query string. This will also
circumvent the issue we mentioned a moment ago, caused by the tendency of mobile pages to store
ViewState in the ASP.NET session.

Now we can go and fetch the data we need, and check that there was no error. If we don't get a
DataSet back (because an error occurred), we set the text of the status label to show this. Otherwise we
can see how many rows were returned by querying the Count property of the Rows collection for the
table in the DataSet. If it's greater than zero, we can bind the DataSet table to the List control in
this screen, make it visible again, and display a suitable status message:

Working with Down-Level Clients

201

 ...
 'get DataSet using function elsewhere in this page
 Dim objDataSet As DataSet = _
 GetCustomerDataSetFromServer(strCustID, strCustName)

 'if there was an error display message
 If objDataSet Is Nothing Then
 lblStatus1.Text = "Error accessing database"

 Else
 'check how many matching customers were found
 Dim intRowsFound As Integer = objDataSet.Tables(0).Rows.Count

 If intRowsFound > 0 Then

 'bind the DataGrid and display status message
 lstCustomers.DataSource = objDataSet.Tables(0)
 lstCustomers.DataTextField = "CompanyName"
 lstCustomers.DataValueField = "CustomerID"
 lstCustomers.DataBind()
 lstCustomers.Visible = True
 lblStatus1.Text = "Found Customers:"
 ...

As you can see, the MIT List control (and a few other MIT controls) supports server-side data binding
to the same data types as the ordinary ASP.NET list controls. Here we have specified the column to be
used for the text displayed in the list (the customer name), and a different column (the customer ID) to
be used for the value of each list item.

If no matching customers were found we set the text of the status label to inform the user. Finally we
activate this screen to display the list of any matching customers:

 ...
 Else
 lblStatus1.Text = "No matching customers found in database ..."

 End If

 End If

 'display screen 3 containing the list
 ActiveForm = frmCustSelect

End Sub

Listing the Orders for the Selected Customer
In the third screen (the one captioned Select Customer), we now (hopefully) have a list of customers
that match the search criteria the user specified. When we declared the List control, we specified that
selecting an item should execute an event handler named GetOrders:

 <mobile:List id="lstCustomers" OnItemCommand="GetOrders"
 styleReference="styListAndLink" runat="server" />

Chapter 5

202

The GetOrders routine will fetch a list of orders for the selected customer and display them, much as
the GetCustomer event handler code did to display a list of customers. We'll look at the code shortly.
The following listing shows the declaration of the screen that will display this list of orders:

<mobile:Form id="frmOrderSelect" title="Select Order"
 styleReference="styPage" runat="server">
 <mobile:Label id="lblMsg4" styleReference="styHeading" runat="server">
 Select Order
 </mobile:Label>

 <mobile:Label id="lblStatus2" Font-Bold="true" runat="server" />
 <mobile:List id="lstOrders" OnItemCommand="ShowOrderDetail"
 styleReference="styListAndLink" runat="server" />

 <mobile:Link NavigateUrl="#frmCustType" SoftKeyLabel="Customer"
 Text="Select Customer"
 styleReference="styListAndLink" runat="server" />
 <mobile:Link id="lnkEditOrders"
 SoftKeyLabel="Edit Orders" Text="Edit Orders"
 styleReference="styListAndLink" runat="server" />
</mobile:Form>

The output generated by this <form> is shown in the next screenshot. The empty Label control with
ID value lblStatus2 has its text set by code in the page as it runs, and the List control is bound to
the DataSet of orders returned by our data access tier. The two Link controls provide soft keys or
hyperlinks (depending on the client type) so that the user can go back and select a different customer, or
edit the orders for this customer. We'll be looking at the editing feature in a later chapter:

Working with Down-Level Clients

203

The Code in the GetOrders Event Handler

The GetOrders event handler itself is comparable in outline to the ShowOrders function in the html32
version of the application. When the user selects a customer in the previous screen, we retrieve the order ID
from the list control in that screen and use it in a call to the GetOrderDataSetFromSessionOrServer we
looked at earlier. If we get back a DataSet (meaning that there was no error) we can then check to see if any
orders were found, and display them by binding the Orders table in the DataSet to the List control in this
screen. Notice that we bind to the new column named DisplayCol that we added to the Orders table within
our GetOrderDataSetFromSessionOrServer function:

Sub GetOrders(objSender As Object, objArgs As ListCommandEventArgs)
'create a list of all orders for this customer on page 4

 'get CustomerID from selection made in List control on page 3
 Dim strCustID As String = objArgs.ListItem.Value

 'get DataSet using function elsewhere in this page
 Dim objDataSet As DataSet = GetOrderDataSetFromSessionOrServer(strCustID)

 'if there was an error display message
 If objDataSet Is Nothing Then
 lblStatus1.Text = "Error accessing database"

 Else
 'check if any orders were found for this customer
 If objDataSet.Tables("Orders").Rows.Count > 0 Then
 'diplay heading above List control
 lblStatus2.Text = "Customer '" & strCustID & "'"

 'set DataSource and bind the List control
 lstOrders.DataSource = objDataSet.Tables("Orders")
 lstOrders.DataTextField = "DisplayCol"
 lstOrders.DataValueField = "OrderID"
 lstOrders.DataBind()
 ...

We also have to set the href of the Edit Orders Link control at the bottom of the screen so that it contains
the selected customer ID in the query string. This link opens a separate page, which allows the user to edit
the orders of this customer (we'll look at this in Chapter 8). Then we can activate this screen to display it:

 ...
 'set URL for editing orders in Link control
 lnkEditOrders.NavigateUrl = _
 "../../update-orders/mobile/edit-orders.aspx" _
 & "?customerid=" & strCustID

 Else
 lblStatus2.Text = "No orders found for this customer ..."

 End If

 End If

 'display page 4 containing the list
 ActiveForm = frmOrderSelect

End Sub

Chapter 5

204

Displaying the Order Details
The final screen in this version of the application displays details of the order selected in the previous
screen. This screen is activated when the user selects an order in the previous screen, where we have a
List control that specifies the event handler named ShowOrderDetail:

<mobile:List id="lstOrders" OnItemCommand="ShowOrderDetail"

 styleReference="styListAndLink" runat="server" />

The declaration of the Order Details screen is shown in the next listing. This time we have several
Label controls that will contain details of the order itself, and a List control that we'll bind the list of
order lines to. There are also two Link controls at the bottom of the screen that allow the user to select
a different customer or a different order:

<mobile:Form id="frmOrderDetail" title="Order Details"

 styleReference="styPage" runat="server">

 <mobile:Label id="lblOrderNo" Font-Bold="true" runat="server" />

 <mobile:Label id="lblCustName" runat="server" />

 <mobile:Label id="lblAddress" runat="server" />

 <mobile:Label id="lblOrdered" runat="server" />

 <mobile:Label id="lblShipped" runat="server" />

 <mobile:Label id="lblVia" runat="server" />

 <mobile:List id="lstOrderLines" styleReference="styListAndLink"

 runat="server" />

 <mobile:Label id="lblTotal" Font-Bold="true" runat="server" />

 <mobile:Link NavigateUrl="#frmOrderSelect" SoftKeyLabel="Order"

 Text="Select Order"

 styleReference="styListAndLink" runat="server" />

 <mobile:Link NavigateUrl="#frmCustType" SoftKeyLabel="Customer"

 Text="Select Customer"

 styleReference="styListAndLink" runat="server" />

</mobile:Form>

The next screenshot shows what this screen looks like when order number 10692 is selected:

Working with Down-Level Clients

205

The Code in the ShowOrderDetail Event Handler

The ShowOrderDetail function in our page runs when the user selects an order from the list in the
previous screen. It is somewhat more complex than the ShowOrderLines event handler we saw in the
HTML version of our application, because it has to display values from both of the tables in our
DataSet. We first collect the order ID from the arguments passed to this event handler (the value
selected in the list), and the customer ID from the "status" label in the previous screen. Then we can
collect the DataSet from our GetOrderDataSetFromSessionOrServer function:

Sub ShowOrderDetail(objSender As Object, objArgs As ListCommandEventArgs)
'create order line details to display on page 5

 'get OrderID from selection made in List control on page 4
 Dim strOrderID As String = objArgs.ListItem.Value

 'get CustomerID by parsing out of Label control on page 4
 Dim strCustID As String = Mid(lblStatus2.Text, _
 InStr(lblStatus2.Text, ":") + 1)

 'get DataSet using function elsewhere in this page
 Dim objDataSet As DataSet = GetOrderDataSetFromSessionOrServer(strCustID)
 ...

Chapter 5

206

The DataSet will contain details of all orders for this customer, not just the order selected in the
previous screen. This might seem an inefficient approach, but in most cases we will collect this
DataSet from the user's session rather than hitting the database again. We used the same DataSet in
the previous screen, and it will also be reused if the user chooses a different order to view afterwards.

We need to apply a filter to both of the tables in the DataSet so that only the details of the selected
order are displayed. We filter both tables on the current order ID:

 ...

 'create filtered DataView from Orders table in DataSet

 Dim objOrderView As DataView = objDataSet.Tables("Orders").DefaultView

 objOrderView.RowFilter = "OrderID = " & strOrderID

 'create filtered DataView from OrderLines table in DataSet

 Dim objLinesView As DataView = objDataSet.Tables("OrderLines").DefaultView

 objLinesView.RowFilter = "OrderID = " & strOrderID
 ...

Now we can calculate the order total by summing the values in the LineTotal column that we added
to the OrderLines table in our GetOrderDataSetFromSessionOrServer function. Then we extract
the shipping details from the single row in the filtered DataView of the Orders table and display these
in the Label controls:

 ...

 'calculate total value of order

 Dim dblTotal As Double = 0

 Dim objDataRowView As DataRowView

 For Each objDataRowView In objLinesView

 dblTotal += objDataRowView("LineTotal")

 Next

 'check that there are some matching order lines

 If objLinesView.Count > 0 Then

 'display the shipping details in Labels

 lblOrderNo.Text = "Order No: " & strOrderID

 lblCustName.Text = "Customer: " & objOrderView.Item(0)("ShipName")

 Dim datThisDate as DateTime = objOrderView.Item(0)("OrderDate")

 lblOrdered.Text = "Ordered: " & datThisDate.ToString("d")

 If IsDbNull(objOrderView.Item(0)("ShippedDate")) Then

 lblShipped.Text = "Awaiting shipping"

 Else

 datThisDate = objOrderView.Item(0)("ShippedDate")

 lblShipped.Text = "Shipped: " & datThisDate.ToString("d")

 End If

 lblVia.Text = "via " & objOrderView.Item(0)("CompanyName")

 'display the total value of the order

 lblTotal.Text = "Total value: " & dblTotal.ToString("$#,##0.00")
 ...

Working with Down-Level Clients

207

Finally, we bind the filtered DataView of the OrderLines table to the List control to display the
order line details. Again, we bind to the new column named DisplayCol that we added to the
OrderLines table in our GetOrderDataSetFromSessionOrServer function. Then we can activate
this screen so that the order details are displayed to the user:

 ...
 'set DataSource and bind the List control
 lstOrderLines.DataSource = objLinesView
 lstOrderLines.DataTextField = "DisplayCol"
 lstOrderLines.DataBind()

 Else

 lblOrderNo.Text = "No order lines found for this order..."

 End If

 'display page 4 containing the details
 ActiveForm = frmOrderDetail

End Sub

Summary
In this chapter we've looked at two versions of our example application that lists orders for customers of
a fictional food distribution corporation. We saw an overview of its capabilities, and discussed some of
the design decisions and how we detect the client type when the application first starts.

We also looked at how we provide the data to drive the application, using components that we
developed in Chapters 2 and 3, to create a separate data tier. From there we moved on to examine in
more detail the version of the application designed for down-level HTML clients, and the version for
small screen and mobile devices such as PDAs and cellular phones.

The topics we covered were:

❑ What the application looks like

❑ Some of the design considerations involved

❑ Specific client detection techniques for the example application

❑ The version of the application aimed at HTML 3.2 clients

❑ The version aimed at small screen and mobile devices

In the next chapter we'll continue to look at this application by examining some of the other versions
that we've provided as examples. In particular, we'll see how we can work with "rich" clients, using
XML and delimited text as the data transfer and storage medium.

Chapter 5

208

